In cooperation with
Ohio Department of
Natural Resources,
Division of Soil and Water
Conservation;
Ohio Agricultural Research
and Development Center;
Ohio State University
Extension;
Columbiana County
Commissioners;
Columbiana Soil and Water
Conservation District

Soil Survey of
Columbiana
County, Ohio
How To Use This Soil Survey

General Soil Map

The general soil map, which is a color map, shows the survey area divided into groups of associated soils called general soil map units. This map is useful in planning the use and management of large areas.

To find information about your area of interest, locate that area on the map, identify the name of the map unit in the area on the color-coded map legend, then refer to the section General Soil Map Units for a general description of the soils in your area.

Detailed Soil Maps

The detailed soil maps can be useful in planning the use and management of small areas.

To find information about your area of interest, locate that area on the Index to Map Sheets. Note the number of the map sheet and turn to that sheet.

Locate your area of interest on the map sheet. Note the map unit symbols that are in that area. Turn to the Contents, which lists the map units by symbol and name and shows the page where each map unit is described.

The Contents shows which table has data on a specific land use for each detailed soil map unit. Also see the Contents for sections of this publication that may address your specific needs.

A State Soil Geomorphic Data Base (STATSGO) is available for the county. This data base consists of a soils map at a scale of 1:250,000 and descriptions of groups of associated soils. It replaces the general soil map published in older soil surveys. The map and the data base can be used for multicounty planning, and map output can be tailored for a specific use. More information about the State Soil Geographic Data Base for this county, or any portion of Ohio, is available at the local office of the Natural Resources Conservation Service.
This soil survey report is a publication of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (formerly the Soil Conservation Service) has leadership for the Federal part of the National Cooperative Soil Survey.

Major fieldwork for this soil survey was completed in 2003. Soil names and descriptions were approved in 2005. Unless otherwise indicated, statements in this publication refer to conditions in the survey area in 2003. This survey was made cooperatively by the Natural Resources Conservation Service; Ohio Department of Natural Resources, Division of Soil and Water Conservation; Ohio Agricultural Research and Development Center; Ohio State University Extension; Columbiana County Commissioners; and the Columbiana Soil and Water Conservation District. The survey is part of the technical assistance furnished to the Columbiana Soil and Water Conservation District.

Soil maps in this survey may be copied without permission. Enlargement of these maps, however, could cause misunderstanding of the detail of mapping. If enlarged, maps do not show the small areas of contrasting soils that could have been shown at a larger scale.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD).

To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W. Washington, D.C. 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Cover: Typical family farmstead in Columbiana County where management is dedicated to growing crops of corn, soybeans, winter wheat, and hay and pasture for livestock.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>How To Use This Soil Survey</td>
<td>i</td>
</tr>
<tr>
<td>Contents</td>
<td>iii</td>
</tr>
<tr>
<td>Foreword</td>
<td>ix</td>
</tr>
<tr>
<td>General Nature of the County</td>
<td>1</td>
</tr>
<tr>
<td>How This Survey Was Made</td>
<td>10</td>
</tr>
<tr>
<td>General Soil Map Units</td>
<td>13</td>
</tr>
<tr>
<td>1. Canfield-Ravenna Association</td>
<td>13</td>
</tr>
<tr>
<td>2. Rittman-Wadsworth Association</td>
<td>14</td>
</tr>
<tr>
<td>3. Teegarden-Kensington-Gilpin Association</td>
<td>15</td>
</tr>
<tr>
<td>4. Homeworth-Chili-Bogart Association</td>
<td>17</td>
</tr>
<tr>
<td>5. Fredericktown-Zepernick-Wick Association</td>
<td>18</td>
</tr>
<tr>
<td>6. Chili-Zepernick-Wick Association</td>
<td>19</td>
</tr>
<tr>
<td>7. Tioga-Omulga-Rainsboro Association</td>
<td>20</td>
</tr>
<tr>
<td>8. Berks-Coshocton-Gilpin Association</td>
<td>21</td>
</tr>
<tr>
<td>9. Fairpoint-Berks-Gilpin Association</td>
<td>22</td>
</tr>
<tr>
<td>10. Berks-Gilpin-Coshocton Association</td>
<td>23</td>
</tr>
<tr>
<td>11. Berks-Westmoreland-Gilpin Association</td>
<td>24</td>
</tr>
<tr>
<td>12. Vandergrift-Berks-Upshur Association</td>
<td>25</td>
</tr>
<tr>
<td>13. Westmoreland-Coshocton-Berks Association</td>
<td>26</td>
</tr>
<tr>
<td>14. Hazleton-Westmoreland-Berks Association</td>
<td>27</td>
</tr>
<tr>
<td>Detailed Soil Map Units</td>
<td>29</td>
</tr>
<tr>
<td>AmF—Amanda loam, 35 to 70 percent slopes</td>
<td>31</td>
</tr>
<tr>
<td>BkB—Berks channery silt loam, 2 to 6 percent slopes</td>
<td>34</td>
</tr>
<tr>
<td>BkC—Berks channery silt loam, 6 to 15 percent slopes</td>
<td>35</td>
</tr>
<tr>
<td>BkD—Berks channery silt loam, 15 to 25 percent slopes</td>
<td>37</td>
</tr>
<tr>
<td>BkE—Berks channery silt loam, 25 to 40 percent slopes</td>
<td>39</td>
</tr>
<tr>
<td>BmB—Berks-Urban land complex, 2 to 6 percent slopes</td>
<td>40</td>
</tr>
<tr>
<td>BmC—Berks-Urban land complex, 6 to 15 percent slopes</td>
<td>42</td>
</tr>
<tr>
<td>BmD—Berks-Urban land complex, 15 to 25 percent slopes</td>
<td>43</td>
</tr>
<tr>
<td>BpF—Bethesda very channery silt loam, 25 to 70 percent slopes</td>
<td>44</td>
</tr>
<tr>
<td>BsC2—Bogart loam, 6 to 12 percent slopes, eroded</td>
<td>46</td>
</tr>
<tr>
<td>BtA—Bogart silt loam, 0 to 2 percent slopes</td>
<td>48</td>
</tr>
<tr>
<td>BtB—Bogart silt loam, 2 to 6 percent slopes</td>
<td>49</td>
</tr>
<tr>
<td>BtC—Bogart silt loam, 6 to 12 percent slopes</td>
<td>51</td>
</tr>
<tr>
<td>CaA—Calcutta silt loam, 0 to 3 percent slopes</td>
<td>53</td>
</tr>
<tr>
<td>CcB—Canfield silt loam, 2 to 6 percent slopes</td>
<td>54</td>
</tr>
<tr>
<td>CcC—Canfield silt loam, 6 to 12 percent slopes</td>
<td>56</td>
</tr>
<tr>
<td>CcD—Canfield silt loam, 12 to 20 percent slopes</td>
<td>59</td>
</tr>
<tr>
<td>CcE—Canfield silt loam, 20 to 35 percent slopes</td>
<td>60</td>
</tr>
<tr>
<td>CeA—Carlisle muck, 0 to 1 percent slopes</td>
<td>62</td>
</tr>
<tr>
<td>Cfd2—Chili loam, 12 to 20 percent slopes, eroded</td>
<td>64</td>
</tr>
<tr>
<td>Cha—Chili silt loam, 0 to 2 percent slopes</td>
<td>65</td>
</tr>
<tr>
<td>ChB—Chili silt loam, 2 to 6 percent slopes</td>
<td>67</td>
</tr>
<tr>
<td>ChC—Chili silt loam, 6 to 12 percent slopes</td>
<td>68</td>
</tr>
<tr>
<td>CmB—Conotton gravelly loam, 2 to 6 percent slopes</td>
<td>70</td>
</tr>
</tbody>
</table>
CmC—Conotton gravelly loam, 6 to 12 percent slopes ... 71
CoB—Coshohcton silt loam, 2 to 6 percent slopes ... 73
CoC—Coshohcton silt loam, 6 to 15 percent slopes ... 74
CoD—Coshohcton silt loam, 15 to 25 percent slopes ... 76
DAM—Dam ... 78
DgA—Doles silt loam, 0 to 3 percent slopes ... 79
ErC—Ernest silt loam, 6 to 15 percent slopes ... 81
ErD—Ernest silt loam, 15 to 25 percent slopes ... 83
FbB—Fairpoint very channery silt loam, 0 to 8 percent slopes 85
FbD—Fairpoint very channery silt loam, 8 to 25 percent slopes 86
FbF—Fairpoint very channery silt loam, 25 to 70 percent slopes 88
FcB—Fairpoint silty clay loam, 0 to 8 percent slopes .. 90
FdA—Fitchville silt loam, 0 to 2 percent slopes .. 93
FdB—Fitchville silt loam, 2 to 6 percent slopes .. 95
FeA—Fluvaquents, silty, 0 to 1 percent slopes, frequently flooded 97
FnC—Fredericktown gravelly loam, 6 to 15 percent slopes, eroded 98
FnD—Fredericktown gravelly loam, 15 to 25 percent slopes, eroded 100
FoB—Fredericktown silt loam, 2 to 6 percent slopes 101
FrA—Frenchtown silt loam, 0 to 2 percent slopes .. 103
GaB—Gavers silt loam, 2 to 6 percent slopes .. 105
GeC—Germano fine sandy loam, 6 to 15 percent slopes 106
GeD—Germano fine sandy loam, 15 to 25 percent slopes 108
GnB—Gilpin silt loam, 2 to 6 percent slopes .. 110
GnC—Gilpin silt loam, 6 to 15 percent slopes .. 111
GnD—Gilpin silt loam, 15 to 25 percent slopes .. 113
GoC—Gilpin-Coshohcton silt loams, 6 to 15 percent slopes 115
GoD—Gilpin-Coshohcton silt loams, 15 to 25 percent slopes 118
GpC—Gilpin-Coshohcton-Urban land complex, 6 to 15 percent slopes 121
GrB—Glenford silt loam, 2 to 6 percent slopes .. 124
GrC—Glenford silt loam, 6 to 12 percent slopes .. 125
GuC—Guernsey silt loam, 6 to 15 percent slopes ... 127
GuC2—Guernsey silt loam, 6 to 15 percent slopes, eroded 130
GuD—Guernsey silt loam, 15 to 25 percent slopes .. 132
HeB—Hazleton channery loam, 2 to 6 percent slopes .. 134
HeC—Hazleton channery loam, 6 to 15 percent slopes 135
HeD—Hazleton channery loam, 15 to 25 percent slopes 137
HeE—Hazleton channery loam, 25 to 40 percent slopes 139
HfF—Hazleton-Rock outcrop complex, 40 to 70 percent slopes 141
HgF—Hazleton-Westmoreland channery loams, 40 to 70 percent slopes 143
HkA—Holly silt loam, 0 to 2 percent slopes, frequently flooded 146
HlB—Homewood silt loam, 2 to 6 percent slopes ... 148
HmA—Homeworth loam, 0 to 2 percent slopes ... 149
HmB—Homeworth loam, 2 to 6 percent slopes ... 151
HoA—Homeworth silt loam, 0 to 2 percent slopes ... 153
HoB—Homeworth silt loam, 2 to 6 percent slopes ... 154
JwA—Jimtown silt loam, 0 to 2 percent slopes ... 156
JwB—Jimtown silt loam, 2 to 6 percent slopes ... 158
KeB—Keene silt loam, 2 to 6 percent slopes .. 160
KnB—Kensington silt loam, 2 to 6 percent slopes ... 161
KnC—Kensington silt loam, 6 to 15 percent slopes .. 163
KnD—Kensington silt loam, 15 to 25 percent slopes ... 165
LbA—Lobdell silt loam, 0 to 2 percent slopes, occasionally flooded 167
LnA—Lorain silt loam, 0 to 2 percent slopes ... 168
McB—Mechanicsburg silt loam, 2 to 6 percent slopes .. 170
McC—Mechanicsburg silt loam, 6 to 15 percent slopes 172
MnB—Morristown silty clay loam, 0 to 8 percent slopes 173
MnD—Morristown silty clay loam, 8 to 25 percent slopes 175
MoB—Morristown channery silty clay loam, 0 to 8 percent slopes 177
MoD—Morristown channery silty clay loam, 8 to 25 percent slopes 178
OdA—Olmsted and Valley soils, 0 to 2 percent slopes 180
OmB—Omulga silt loam, 2 to 6 percent slopes ... 183
OmC—Omulga silt loam, 6 to 12 percent slopes ... 185
OrA—Orrville silt loam, 0 to 2 percent slopes, occasionally flooded 187
Pg—Pits, gravel .. 189
RaB—Rainsboro silt loam, 2 to 6 percent slopes ... 189
RaC2—Rainsboro silt loam, 6 to 12 percent slopes, eroded 191
RbC—Rainsboro silt loam, 6 to 12 percent slopes, stony 193
ReA—Ravenna silt loam, 0 to 2 percent slopes ... 195
ReB—Ravenna silt loam, 2 to 6 percent slopes ... 197
RhD—Richland silt loam, 15 to 25 percent slopes, stony 199
RhE—Richland silt loam, 25 to 40 percent slopes, stony 201
RsB—Rittman silt loam, 2 to 6 percent slopes ... 203
RsC—Rittman silt loam, 6 to 12 percent slopes ... 204
RsD2—Rittman silt loam, 12 to 20 percent slopes, eroded 206
TeB—Teegarden silt loam, 2 to 6 percent slopes ... 208
TeC—Teegarden silt loam, 6 to 15 percent slopes ... 210
TeC2—Teegarden silt loam, 6 to 15 percent slopes, eroded 212
ToA—Tioga loam, 0 to 2 percent slopes, occasionally flooded 214
Ua—Udorthents, loamy, 2 to 25 percent slopes .. 216
Ub—Udorthents, refuse substratum, 2 to 25 percent slopes 217
Uc—Udorthents-Pits complex, 0 to 70 percent slopes 219
UkC2—Upshur-Berks complex, 6 to 15 percent slopes, eroded 221
UkD2—Upshur-Berks complex, 15 to 25 percent slopes, eroded 224
UkE2—Upshur-Berks complex, 25 to 40 percent slopes, eroded 228
Ur—Urban land, 0 to 15 percent slopes .. 231
UtB—Urban land-Canfield complex, 2 to 6 percent slopes 231
UuC—Urban land-Canfield complex, 6 to 12 percent slopes 233
UvB—Urban land-Chili complex, 2 to 6 percent slopes 234
VaA—Valley silt loam, 0 to 2 percent slopes .. 236
VbA—Valley silty clay loam, 0 to 2 percent slopes ... 238
VcA—Valley-Lorain silt loams, 0 to 2 percent slopes 239
VnB—Vandergrift silt loam, 2 to 6 percent slopes ... 243
VnC—Vandergrift silt loam, 6 to 15 percent slopes 245
W—Water ... 247
WaA—Wadsworth silt loam, 0 to 2 percent slopes ... 248
WaB—Wadsworth silt loam, 2 to 6 percent slopes ... 249
WkE—Westmoreland-Berks complex, 25 to 40 percent slopes 251
WkF—Westmoreland-Berks complex, 40 to 70 percent slopes 254
WmC—Westmoreland-Coshocton silt loams, 8 to 15 percent slopes 257
WmD—Westmoreland-Coshocton silt loams, 15 to 25 percent slopes 260
WoA—Wick silt loam, 0 to 2 percent slopes, frequently flooded 264
ZeA—Zepernick silt loam, 0 to 2 percent slopes, occasionally flooded 265

Important Farmland ... 269
Prime Farmland ... 269
Unique Farmland ... 270
Additional Farmland of Statewide Importance ... 270
Additional Farmland of Local Importance .. 270
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydric Soils</td>
<td>271</td>
</tr>
<tr>
<td>Use and Management of the Soils</td>
<td>273</td>
</tr>
<tr>
<td>Interpretive Ratings</td>
<td>273</td>
</tr>
<tr>
<td>Rating Class Terms</td>
<td>273</td>
</tr>
<tr>
<td>Numerical Ratings</td>
<td>273</td>
</tr>
<tr>
<td>Crops and Pasture</td>
<td>274</td>
</tr>
<tr>
<td>Cropland Limitations and Hazards</td>
<td>274</td>
</tr>
<tr>
<td>Managing Cropland</td>
<td>277</td>
</tr>
<tr>
<td>Managing Pasture and Hayland</td>
<td>278</td>
</tr>
<tr>
<td>Crop Yield Index</td>
<td>279</td>
</tr>
<tr>
<td>Land Capability Classification</td>
<td>279</td>
</tr>
<tr>
<td>Pasture and Hayland Suitability Groups</td>
<td>280</td>
</tr>
<tr>
<td>Woodland Productivity and Management</td>
<td>283</td>
</tr>
<tr>
<td>Woodland Productivity</td>
<td>284</td>
</tr>
<tr>
<td>Woodland Management</td>
<td>285</td>
</tr>
<tr>
<td>Windbreaks and Environmental Plantings</td>
<td>286</td>
</tr>
<tr>
<td>Recreational Development</td>
<td>287</td>
</tr>
<tr>
<td>Wildlife Habitat</td>
<td>289</td>
</tr>
<tr>
<td>Engineering</td>
<td>293</td>
</tr>
<tr>
<td>Construction Materials</td>
<td>294</td>
</tr>
<tr>
<td>Building Site Development</td>
<td>295</td>
</tr>
<tr>
<td>Sanitary Facilities</td>
<td>296</td>
</tr>
<tr>
<td>Agricultural Waste Management</td>
<td>298</td>
</tr>
<tr>
<td>Water Management</td>
<td>301</td>
</tr>
<tr>
<td>Soil Properties</td>
<td>305</td>
</tr>
<tr>
<td>Engineering Index Properties</td>
<td>305</td>
</tr>
<tr>
<td>Physical Properties</td>
<td>306</td>
</tr>
<tr>
<td>Chemical Properties</td>
<td>308</td>
</tr>
<tr>
<td>Water Features</td>
<td>309</td>
</tr>
<tr>
<td>Soil Features</td>
<td>310</td>
</tr>
<tr>
<td>Classification of the Soils</td>
<td>313</td>
</tr>
<tr>
<td>Amanda Series</td>
<td>314</td>
</tr>
<tr>
<td>Berks Series</td>
<td>316</td>
</tr>
<tr>
<td>Bethesda Series</td>
<td>317</td>
</tr>
<tr>
<td>Bogart Series</td>
<td>318</td>
</tr>
<tr>
<td>Calcutta Series</td>
<td>319</td>
</tr>
<tr>
<td>Canfield Series</td>
<td>322</td>
</tr>
<tr>
<td>Carlisle Series</td>
<td>324</td>
</tr>
<tr>
<td>Chili Series</td>
<td>325</td>
</tr>
<tr>
<td>Conotton Series</td>
<td>327</td>
</tr>
<tr>
<td>Coshocton Series</td>
<td>328</td>
</tr>
<tr>
<td>Doles Series</td>
<td>330</td>
</tr>
<tr>
<td>Ernest Series</td>
<td>333</td>
</tr>
<tr>
<td>Fairpoint Series</td>
<td>334</td>
</tr>
<tr>
<td>Fitchville Series</td>
<td>335</td>
</tr>
<tr>
<td>Fredericktown Series</td>
<td>337</td>
</tr>
<tr>
<td>Frenchtown Series</td>
<td>339</td>
</tr>
<tr>
<td>Gavers Series</td>
<td>342</td>
</tr>
<tr>
<td>Germano Series</td>
<td>344</td>
</tr>
<tr>
<td>Gilpin Series</td>
<td>346</td>
</tr>
<tr>
<td>Glenford Series</td>
<td>347</td>
</tr>
<tr>
<td>Guernsey Series</td>
<td>349</td>
</tr>
<tr>
<td>Hazleton Series</td>
<td>350</td>
</tr>
<tr>
<td>Holly Series</td>
<td>351</td>
</tr>
</tbody>
</table>
Table 24.—Sanitary Facilities Part 2 .. 627
Table 25.—Agricultural Waste Management ... 641
Table 26.—Water Management Part 1 ... 664
Table 27.—Water Management Part 2 ... 675
Table 28.—Engineering Index Properties ... 692
Table 29.—Physical Properties of the Soils ... 745
Table 30.—Chemical Properties of the Soils ... 759
Table 31.—Water Features ... 770
Table 32.—Soil Features ... 781
Table 33.—Classification of the Soils ... 792

Interpretive Groups .. 793

Issued 2007
Foreword

This soil survey contains information that affects land use planning in Columbiana County. It contains predictions of soil behavior for selected land uses. The survey also highlights soil limitations, improvements needed to overcome the limitations, and the impact of selected land uses on the environment.

This soil survey is designed for many different users. Farmers, foresters, and agronomists can use it to evaluate the potential of the soil and the management needed for maximum food and fiber production. Planners, community officials, engineers, developers, builders, and home buyers can use the survey to plan land use, select sites for construction, and identify special practices needed to ensure proper performance. Conservationists, teachers, students, and specialists in recreation, wildlife management, waste disposal, and pollution control can use the survey to help them understand, protect, and enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. The information in this report is intended to identify soil properties that are used in making various land use or land treatment decisions. Statements made in this report are intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are shallow to bedrock. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

These and many other soil properties that affect land use are described in this soil survey. Broad areas of soils are shown on the general soil map. The location of each soil is shown on the detailed soil maps. Each soil in the survey area is described. Information on specific uses is given for each soil. Help in using this publication and additional information are available at the local office of the Natural Resources Conservation Service or the Ohio State University Extension.

Terry J. Cosby
State Conservationist
Natural Resources Conservation Service
Soil Survey of
Columbiana County, Ohio

By E. Larry Milliron, Natural Resources Conservation Service; Richard W. Buzard, Ohio Department of Natural Resources, Division of Soil and Water Conservation

Fieldwork by Linn E. Roth, Richard W. Buzard, Stephen T. Prebonick and James R. Svoboda, Ohio Department of Natural Resources, Division of Soil and Water Conservation

United States Department of Agriculture, Natural Resources Conservation Service, in cooperation with the Ohio Department of Natural Resources, Division of Soil and Water Conservation; Ohio Agricultural Research and Development Center; Ohio State University Extension; Columbiana County Commissioners; and Columbiana Soil and Water Conservation District

This soil survey is an inventory and evaluation of the soils in Columbiana County. It can be used beneficially to plan and manage land uses appropriate to the limitations and potentials of the soil resources and the environment.

This soil survey updates and supersedes the survey of Columbiana County published in 1968 (Lessig and others, 1968). It provides updated information including additional descriptive data, soil interpretations, and larger scale maps on a newer photographic background.

Knowledge and understanding of soils increased as soil survey has progressed in Ohio. Many new soil types have been identified and defined which were not previously recognized. Also, the modern system of soil classification has been refined to provide more accurate and additional interpretations. A careful evaluation of the 1968 Soil Survey of Columbiana County was conducted at the request of the Columbiana County Commissioners. The evaluation revealed significant need to update the soil survey and the cooperative effort was subsequently undertaken.

General Nature of the County

Columbiana County is in the eastern part of Ohio with an area of 343,027 acres, or 536 square miles, including land covered by water (fig. 1). The population of the county was 112,075 in 2000 (Ohio Department of Development, 2000). Lisbon, the county seat, is located in the central part of the county. The largest city is East Liverpool.

Columbiana County soils range widely in natural drainage, texture and other characteristics. Most coarse textured soils are formed from outwash deposits found on stream terraces. Finer textured soils account for the majority of the county and formed in glacial till and lacustrine sediments. Topography is generally nearly level or gently sloping with the greatest relief found in areas of stream dissection, and the bluffs along the Ohio River. The major management concerns for cultivated crops are wetness and erosion.

In 1997, 980 farms were operating in the county. Most of the larger farms are in the northern part of the county. Grain and dairy farms are important agricultural
industries. Nurseries, orchards, Christmas trees, and other specialty crops are important enterprises located mostly in the northern part of the county (fig. 2).

Approximately 43 percent of the county is wooded. This includes idle and abandoned fields that are reverting to forest species. Areas that are difficult to drain are commonly left uncultivated. More productive, better drained fields are kept in crop production.

Climate

Prepared by the Natural Resources Conservation Service National Water and Climate Center, Portland, Oregon.

Thunderstorm days, relative humidity, percent sunshine, and wind information are estimated from First Order station Cleveland, Ohio.

Table 1 gives data on temperature and precipitation for the survey area as recorded at Millport 2 NW in the period 1971 to 2000. Table 2 shows probable dates of the first freeze in fall and the last freeze in spring. Table 3 provides data on the length of the growing season.

In winter, the average temperature is 28.6 degrees F and the average daily minimum temperature is 19.3 degrees. The lowest temperature on record, which occurred at Millport 2 NW on January 19, 1994, is -34 degrees. In summer, the average temperature is 68.9 degrees and the average daily maximum temperature is 81.5 degrees. The highest temperature, which occurred at Millport 2 NW on July 16, 1988, is 103 degrees.

Growing degree days are shown in Table 1. They are equivalent to “heat units”. During the month, growing degree days accumulate by the amount that the average temperature each day exceeds a base temperature (50 degrees F). The normal monthly accumulation is used to schedule single or successive plantings of a crop between the last freeze in spring and the first freeze in fall.

The average annual total precipitation is about 38.46 inches. Of this, about 18.58 inches, or 48 percent, usually falls in May through September. The growing season for
most crops falls within this period. The heaviest 1-day rainfall during the period of record was 3.71 inches at Millport 2 NW on May 28, 1985. Thunderstorms occur on about 35 days each year, and most occur in June.

The average seasonal snowfall is 30.3 inches. The greatest snow depth at any one time during the period of record was 22 inches recorded on November 28, 1950. On an average, 11 days per year have at least 1 inch of snow on the ground. The heaviest 1-day snowfall on record was 20 inches, recorded on December 2, 1974.

The average relative humidity in mid-afternoon is about 62 percent. Humidity is higher at night, and the average at dawn is about 79 percent. The sun shines 65 percent of the time in summer and 31 percent in winter. The prevailing wind is from the south southwest. Average wind speed is highest, 12.3 miles per hour, in January.

History

D. Mitch Cattrell, District Conservationist, Natural Resources Conservation Service, prepared this section.

The Wyandots, Delaware, and Mingo tribes camped and hunted the grounds of Columbiana County before the early European settlers. The county was formed on March 25, 1803, and is named for Christopher Columbus. It originally contained five townships, but presently there are eighteen. The first recorded permanent settlement was by John Quinn about 1792 near what is East Liverpool, on the banks of the Ohio River.

Lisbon, the second oldest town in Ohio, is the county seat. The first court house in Lisbon was a log structure constructed for $150.00. The lots on which it was erected is now the site of the present court house. A stone jail was built in 1807 on Beaver Street and still stands.
No common school system existed in the county until after 1820. In 1834 the Sandy & Beaver Canal was begun. It was finished in 1846 and abandoned in 1852. The main office of this waterway was in Lisbon. The Sandy & Beaver Canal was built in the decline of canal transportation and the coming of the railroads put an end to this leisurely era. The remains of numerous locks on the canal can still be found throughout the county.

The Columbiana County Agricultural Society was founded in 1846 to promote interest in scientific farming practices, and became the sponsor of the Columbiana County Fair. The first county fair was held in 1845.

The peace and progress of the first half of the century was ended with the onset of the Civil War in 1861. Many young men from Columbiana County who were in the military never returned from the war. The only Civil War battle fought in the county took place near West Point and resulted in the capture of General John Morgan and his Confederate troops.

After the Civil War, East Liverpool continued to expand as the “Pottery Center of the World.” Salem, Leetonia, Wellsville, and Salineville also experienced industrial expansion as the mining of coal, clay, and gravel in these areas were necessary materials for the coming Industrial Age.

Stagecoaches traveled over the Lisbon-East Liverpool road, and another line connected Lisbon with Wellsville. In those days, a trip from Lisbon to the south end of the county took about six hours for the sixteen mile distance. Mail and passengers were also brought to East Liverpool and Wellsville by steamboat down the Ohio River. The use of automobiles after the turn of the century was the impetus that was needed to make the people of the county provide an improved system of roads and highways.

Geology, Physiography, Relief, and Drainage

Mike Angle, Geologist, Ohio Department of Natural Resources, prepared this section.

The majority of Columbiana County lies within the Glaciated Allegheny Plateau Province. The southern third of the county is on the edge of the Unglaciated Allegheny Plateau Province (Thornbury, 1965). Elevation ranges from about 1,447 feet above sea level at Round Knob in Madison Township to 652 feet above sea level at the Ohio River in Yellow Creek Township. Total relief within the county is approximately 795 feet.

Northern Columbiana County is characterized by hummocky to rolling uplands associated with the numerous end moraines (White and Totten, 1985). Valleys in this area tend to be relatively broad and flat-lying. Central and southern Columbiana County is typified by much higher relief and by steep, bedrock-controlled uplands. Valleys tend to be narrower and have steep sides. The topography becomes noticeably more “rugged” and the relief much higher upon approaching the glacial boundary from the north.

All of Columbiana County eventually drains into the Ohio River watershed. The southwestern corner of the county is drained by Sandy Creek. Sandy Creek flows westward, joining the Tuscarawas River in Tuscarawas County. The northwestern corner of the county is drained by the Mahoning River. The Mahoning River flows to the northwest into Mahoning and Portage counties and then turns eastward into Trumbull County. The Mahoning River continues eastward, emptying into the Little Beaver River in Pennsylvania. The extreme southern end of the county is drained by Little Yellow Creek and North Fork Yellow Creek. The majority of the county is drained by Little Beaver Creek, Middle Fork Little Beaver Creek, and North Fork Little Beaver Creek.

Major changes in drainage occurred during the periods of glaciation (Stout and Lamborn, 1924). The Negley River, a major pre-glacial river, ran from west to east, draining all of Columbiana County. The Negley River emptied into the northerly-
flowing precursor of the Ohio River, referred to as the Pittsburgh River. The Pittsburgh-Negley drainage system existed at roughly the same time as the Teays River (Stout and others, 1943).

The advancing ice front blocked many of the pre-existing drainages, causing ponding which eventually led to new outlets being cut and the initiation of new, southerly-flowing drainage systems. In northern and central Columbiana County, many of the pre-existing valleys were filled or “buried” by thick sequences of glacial drift. South of the glacial boundary, the reversed, now southerly-flowing streams helped to create entrenched, steep-sided gorges. Minor drainage changes occurred throughout the later Illinoian and Wisconsinan ice advances.

Bedrock Geology

Columbiana County is underlain by relatively flat-lying sedimentary rocks of the Pennsylvanian System. These rocks are horizontally bedded and dip to the east and south. The uppermost portion of the Pottsville Group, the Allegheny Group, and the majority of the Conemaugh Group are represented in Columbiana County (Stout and Lamborn, 1924). Rocks of the Pottsville Group and Allegheny Group contain highly variable sequences of interbedded shales, fine-grained, dirty sandstones, thin limestones, underclays, and coals (Collins, 1979; Larsen, 1991). The rocks of the Allegheny Group have historically had the greatest economic importance. Of particular importance are the lower Kittanning and upper Freeport coals. Rocks of the Conemaugh Group consist primarily of interbedded shales, fine-grained sandstones, and mudstones. The Mahoning Coal, which is near the base of the Conemaugh, is the only important coal. The upper portion of the Conemaugh is dominated by reddish mudstones. The interval near the boundary between rocks of the Allegheny Group and rocks of the Conemaugh Group roughly marks the transition from deposition in a marine, coastal environment to a more terrestrial floodplain environment (Collins, 1979).

Glacial Geology

During the Pleistocene Epoch several episodes of ice advance occurred in northeastern Ohio. The age of glacial deposits within Columbiana County is still somewhat poorly understood. Surficial deposits throughout northern Columbiana County are associated with the Late Wisconsinan Glaciation (approximately 20,000 years ago). The thin glacial till covering the bedrock uplands in central Columbiana County marks a transition between the thick glacial drift to the north and the unglaciated area to the south. The deposits have alternatively been interpreted as being either Early Wisconsinan (approximately 40,000 to 70,000 years ago) in age (White and Totten, 1985) or Illinoian (over 120,000 years ago) in age (Volpi and Szabo, 1988). Some highly-weathered, potentially pre-Illinoian or “Kansan” deposits (over 730,000 years ago) have been reported in the Elkton area.

Potentially the oldest unconsolidated deposits in Columbiana County are some ancient lacustrine deposits referred to as the Calcutta Silts (Lessig, 1963; Lessig, 1964). The Calcutta Silts were believed to be the result of ponding of the Pittsburgh River-Negley River system during the initial ice advance. The Calcutta Silts are comprised of two to ten feet of silts, clays, and fine sands deposited between elevations of 1,080 and 1,180 feet above sea level. These deposits are found capping terraces along West Fork Little Beaver Creek and Little Beaver Creek south of the glacial boundary. Mapping done in conjunction with this soil survey has suggested that the extent of the Calcutta Silts may have been exaggerated. Many areas may contain extremely weathered shale or loess deposits which were misidentified as being of lacustrine origin.

The surficial tills which compose the end moraines and ground moraine in northern Columbiana County reflect two separate ice advances during the Late Wisconsinan. Till is an unsorted, non-bedded, mixture of sand, silt, clay, and gravel deposited
directly by the ice sheet. Most of the material in till is locally derived. Some of the boulders are igneous or metamorphic rocks eroded from Canada. Such boulders are referred to as erratics. The older Kent Till is sandy, stony, loose, and contains abundant lenses of sand and gravel. The younger Lavery Till lies to the north of the Kent Till and is silty to clayey, less stony, more compacted, and commonly lacks sand and gravel lenses. End moraines are ridges which mark a thicker accumulation of till. These features were classically interpreted as being areas where material piled as the ice sheet melted. They also may be formed by material stacking up by an overriding, advancing ice sheet. End moraines tend to have a hummocky, rolling topography and act as local drainage divides. Ground moraines have a thinner accumulation of till which was deposited by actively moving ice. Ground moraine is typically relatively flat-lying to rolling. In the central portion of Columbiana County, the till cover is quite thin and the topography is controlled by the steep bedrock ridges. The bedrock-controlled topography makes it difficult to distinguish between end moraine and ground moraine. Along some of the steeper slopes and ridges, the till may be absent, having been eroded away over time.

Outwash deposits are created by active deposition of sediments by meltwater streams leading away from the melting ice sheets. These deposits generally contain interbedded, sorted sand and gravel. The degree of bedding and sorting in part reflects the velocity of the meltwater stream and the distance from the melting ice sheet. Outwash deposits in Columbiana County are predominantly located within stream valleys. Outwash is typically deposited by braided streams. Such streams have multiple channels which migrate across the valley floor, leaving behind a complex record of deposition and erosion. Modern streams have downcut and dissected these deposits, leaving behind older, now higher elevation remnants of the valley floors referred to as terraces. The majority of the outwash terraces are reported as being Wisconsinian in age (White and Totten, 1985).

Kames and kame terraces are ice contact features. They are composed of masses of generally poorly-sorted sand and gravel, along with minor till. These materials are washed into depressions, tunnels, holes, or other cavities in the ice. As the surrounding ice melts, a mound of sediment is left behind. In Columbiana County the majority of these kames are deposited along the flanks of larger stream valleys. The kames tend to merge together along the valley margins and tend to occur at common elevations. Such features are referred to as kame terraces. They represent deposition of materials between the melting ice sheet and the bedrock slope flanking the valley. A few isolated kames can be found in the upland areas of Columbiana County. The majority of the kames in the county were probably associated with the deposition of the Kent Moraine during the Late Wisconsinian.

Lacustrine deposits were created by lakes or ponds which formed by the damming of streams by either ice sheets or deposits associated with the ice sheet. The buried valleys may contain appreciable thicknesses of lacustrine sediments at depth. Thinner “slackwater” deposits reflect ponding of tributary streams in upland areas. These deposits consist of fairly dense, uniform silt and clay with lesser amounts of fine sand. The deposits may display very fine bedding referred to as laminations.

Loess is another glacially derived deposit found in Columbiana County. Loess is the accumulation of windblown silt. Loess is derived by the wind picking up fine silt-sized particles covering the floodplains of the wide, outwash covered valley floors. Loess is commonly found capping kames or high bedrock knobs to the east (downwind) of the major river valleys. In Columbiana County, loess deposits are typically less than five feet thick. Loess is important in the soil development process.

Mineral Resources

The Allegheny formation is the most important division of rocks appearing at the surface for economic significance in Columbiana County.
Coal
Coal is known to have been used by the local population as early as 1840. It is still of some economic importance to the county today.

The Lower and Middle Kittanning coals were mined near Leetonia and provided the coal used in making coke (fig. 3).

Sand and Gravel
The sand and gravel in Columbiana County is a very important resource for construction and industrial uses.

These resources in Columbiana County have been mainly used for building aggregate, paving materials, and other uses. At first many small pits were used but now larger operations are common.

The quality of rock materials of the glacial deposits varies considerably from place to place, primarily due to the origin of the rock materials. Rock strength ranges from very strong in relatively unweathered igneous materials transported into Columbiana County from Canada by the glaciers, to very soft weathered shales that were ripped off the upper bedrock stratas and incorporated into till or water-sorted with the igneous rock fragments as gravel outwash deposits. The range of particle or fragment size determines need for washing and screening.

Sandstone
The Lower Freeport sandstone was once economically important and quarried as large grindstones called pulpstones in Center Township. Pulpstones were used in the paper making industry.

Some sandstone was used for construction.

Figure 3.—These beehive coke ovens are part of a facility of 200, which makes it the largest of its kind known to exist today. This historic point of interest is in the Cherry Valley Arboretum at Leetonia. The soil map unit on this site is Ua–Udorthents, loamy, 2 to 25 percent slopes.
Shale and Clay
Shale and clay have been very important raw materials for the firing of a wide variety of tile and pottery products. Sewer pipes, terra cotta, fire proofing materials, fire brick, stoneware pottery, and tile have been made from these resources. Shale is mined for tile production in the Summitville area (fig. 4).

Salt
Salt making began actively near Salineville about 1809.

Iron ore
Local iron ores supplied early pioneer foundries in the county.

Limestone
The limestone in the county has long been used in the making of hydraulic cements and were used in the locks and dams of the Sandy Beaver Canal that crossed the county.

Natural Gas and Oil
Oil and gas reserves are recovered from drilled wells located throughout the county.

Water Resources
Mike Angle, Geologist, Ohio Department of Natural Resources, prepared this section.

The water resources of Columbiana County are variable. The vast majority of residents depend upon ground water for their drinking supply. Many of the communities in Columbiana County, including Lisbon, East Palestine, and Leetonia utilize well fields to supply their municipal water systems.

The availability of ground water is much better in northern Columbiana County. Wells completed in sand and gravel outwash deposits occupying buried valleys can yield upwards of 100 gallons per minute (gpm) and are capable of supporting small municipalities or light industrial needs (Crowell, 1978). Valleys containing modern streams typically have higher recharge and can better provide a long term ground water supply. Test drilling may be necessary to identify the higher yielding deposits. Outside of the major buried valley systems, wells can be completed in sand and gravel lenses interbedded in the glacial till where there is sufficient drift available. These wells typically yield 10 to 25 gpm (Crowell, 1978) and are adequate for domestic or farm use. The majority of domestic wells in northern Columbiana County are completed in the interbedded sandstones, shales, limestones, and coal of the upper Pottsville and lower Allegheny groups. These wells yield 10 to 25 gpm on average (Crowell 1978). Yields are dependent upon the number of fractures and bedding planes encountered by the well. Yields tend to be higher in stream valleys due primarily to the increased fracturing.

In central Columbiana County, the glacial drift is too thin to serve as an aquifer. The thin outwash and alluvial deposits in the stream valleys allow for more rapid recharge.
to the underlying bedrock aquifers. Wells completed in the interbedded sandstones, shales, limestones, and coal of the upper Allegheny Group typically yield from 3 to 10 gpm and are adequate for most domestic uses (Crowell, 1978).

The rocks of the Conemaugh Group in southern Columbiana County constitute a poor aquifer. The sequence is composed of fine-grained, dirty sandstones, shales, and mudstones. Yields under 3 gpm are commonly reported and supplies are meager for even domestic use (Crowell, 1978). Additional well or holding tank storage is recommended and cisterns may be necessary on some of the higher ridgetops.

The alluvial and outwash deposits flanking the Ohio River are an excellent source of ground water. Yields of over 500 gpm are available from properly constructed large diameter wells. The Ohio River itself is a major supplier of water to both industry and to the city of East Liverpool.

Agriculture

D. Mitch Cattrell, District Conservationist, Natural Resources Conservation Service, prepared this section.

In 1985, 157,600 acres were in agricultural production, according to the Columbiana Soil and Water Conservation District's Resources Inventory (USDA-SCS, 1985). Pasturelands accounted for 58,400 acres of this total, with 99,200 acres in crop production, primarily for grains and forage. The most common grain crops grown in the county are corn, soybeans, oats, and wheat. Forage crops are dominated by alfalfa hay and mixed grasses hay.

Specialty crops grown in the county include vegetables, strawberries, raspberries, blueberries, potatoes, and sweet corn. Apples and peaches are the most common tree fruits. Other crops grown in smaller acreages are sunflowers, nursery plants, and Christmas trees.

The soils in the survey area generally are well suited to row crop production. Most crop production occurs on uplands because the acreage of floodplains is limited. The northern glaciated part of the county is dominated by moderately well drained Canfield and Rittman and somewhat poorly drained Ravenna and Wadsworth soils. The main farming enterprises are dairying and row crop production. If the major soils are intensively managed, they are more productive than most other upland soils in Columbiana County.

The central part of the county is characterized by moderately well drained soils and well drained soils that are moderately deep to very deep over bedrock, such as Kensington, Mechanicsburg, and Gilpin.

Southern Columbiana County consists of steeper upland soils developed in residuum from bedrock that are moderately deep, well drained, and tend to be more droughty. Soils such as Berks-Gilpin-Coshocton and Westmoreland-Coshocton complexes on moderate slopes are cropped in rotation with hay production. More intensive crop production occurs on foot slopes and benches which include Coshocton and Keene soils.

Normal agronomic crops such as corn, soybeans, and small grains and hay crops are generally successfully grown throughout the county. Specialty crops and orchards tend to be concentrated in the central to northeastern part of the survey area. Soils that tend to be droughty and have low available moisture holding capacity in southern areas are generally unsuited to the requirements of vegetables, fruit, and berry production. In addition to the land currently being cropped, some land that is not currently tilled and is reverting to woodland, pasture, or brush land has good potential for use as cropland. Crop production could be increased by applying the latest technology to all the cropland in this soil survey area. The information in this survey can facilitate the application of such technology.
How This Survey Was Made

This survey was made to provide updated and more complete information about the soils and miscellaneous areas in Columbiana County than was reported in the original 1968 soil survey. The information includes descriptions of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specified uses.

Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They dug many holes to study the soil profile, which is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

The soils and miscellaneous areas in the survey area are in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept or model of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted color, texture, size, and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are
assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soils are rated in their natural state. No unusual modification of the soil site or material is made other than that which is considered normal practice for the rated use. Even though soils may have limitations, it is important to remember that engineers and others can modify soil features or can design or adjust the plans for a structure to compensate for some of the limitations. Most of these practices, however, are costly. The final decision in selecting a site for a particular use generally involves weighing the costs of site preparation and maintenance.

Soil Survey Procedures

Columbiana County is one of the first counties in Ohio to have the original soil survey updated in this fashion. In the modernization work, some problems were more obvious than others. Some soils clearly required more field work than others to standardize the database to current criteria. For example, some updates in soil taxonomy influenced some previous soil correlations more than others or updates in the National Soil Survey Handbook impacted some map units more than others in the 1968 survey. Field work involved activities to evaluate prior correlations and gathering documentation for a modern correlation. Patterns within the soil landscape are often complex. To provide more accurate soil maps, some areas were remapped to delineate soil types that were not recognized in the 1968 report.

Documentation for the soil database includes: (1) transects to record soil profile features within soil map units; (2) detailed soil pedon descriptions for representative references and correlation; (3) soil sampling for laboratory analysis and evaluation of those analyses; and (4) redrafting soil maps to reflect new information and improve accuracy or usefulness.

Soil scientists evaluated map unit designs and the soil types mapped in those units to determine if significant taxonomic or interpretive differences existed. Soils occur in an orderly pattern on the landscape that is related to geology, landforms, relief, climate, and the natural vegetation of the area. By observing the soils in the survey area and relating their attributes to specific positions or segments of the landscape, a concept or model of how the individual soils were formed is developed. This model enables the soil scientists to predict with a considerable degree of accuracy the kind of soil at any specific location on the landscape.
Soils transition in their various features across the landscape. Some transitions are gradual and subtle and the corresponding map unit is more difficult to recognize. Others are more contrasting and abrupt and the corresponding map unit is easily associated. Consistent professional judgment is required to determine and accurately place the boundary between the critical soil conditions of the landscape. Patterns of ecological relationships associated with specific soil conditions are also helpful and used by soil scientists in identifying soil map delineations.

Soil profiles are scrutinized carefully for better understanding of the soil formation processes and for proper classification. Attributes such as layer distinction, color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features enable soil scientists to identify soils. Soil profiles are then classified by the conventions of soil taxonomy. Each taxonomic class has a set of soil characteristics with precisely defined limits.

The classes are used as a basis for comparison to classify soils systematically. During field work, the soils were examined using hand augers and soil tubes as the soil scientists made walking transects across the land. Soils were examined to deeper depth from dug pits and samples extracted by truck mounted hydraulic probes. Opportunities to observe soils at road cuts, construction sites and backhoe pits dug for site-specific evaluations were maximized.

Soil Survey Findings

The summary of the findings of the soil survey is this updated survey report. The information includes a description of the soils and miscellaneous areas and their location and a discussion of their suitability, limitations, and management for specific uses. The soil database and the revised soil maps are digitized for greater access and application. The spatial database for the soil maps is orthophotography at 1:12,000 scale. The soil attribute database is used to generate standardized interpretation tables. The text includes descriptive and management information for the soil series and map units as well as other important information.
General Soil Map Units

The general soil map shows broad areas that have a distinctive pattern of soils, relief, and drainage. Each map unit on the general soil map is a unique landscape. Typically, it consists of one or more major soils or miscellaneous areas and some minor soils or miscellaneous areas. It is named for the major soils or miscellaneous areas. The components of one map unit can occur in another but in a different pattern.

The general soil map can be used to compare the suitability of large areas for general land uses. Areas of suitable soils can be identified on the map. Likewise, areas where the soils are not suitable can be identified.

Because of its small scale, the map is not suitable for planning the management of a farm or field or for selecting the site for a road or building or other structure. The soils in any one map unit differ from place to place in slope, depth, drainage, and other characteristics that affect management.

1. Canfield-Ravenna Association

Very deep, level to steep, somewhat poorly drained and moderately well drained soils that formed in till on till plains (fig. 5)

Setting

Landform: Till plain
Slope range: 0 to 70 percent—about 8 percent of the area is 0 to 2 percent slope, 41 percent is 2 to 6 percent slope, 38 percent is 6 to 12 percent slope, 7 percent is 12 to 20 percent slope, 3 percent is 20 to 40 percent slope, and 3 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 30 percent
Extent of the soils in the association:

- Canfield soils: 70 percent
- Ravenna soils: 8 percent
- Minor soils: 22 percent

Soil Properties and Qualities

Canfield
Depth class: Very deep
Drainage class: Moderately well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Till
Surface textural class: Silt loam
Slope: Gently sloping to steep

Ravenna
Depth class: Very deep
Drainage class: Somewhat poorly drained
14 Soil Survey

Position on the landform: Summit, backslope, footslope, toeslope
Parent material: Till
Surface textural class: Silt loam
Slope: Level to gently sloping

Minor Soils
- Fairpoint on summits, shoulders, backslopes
- Zepernick on flood-plain step
- Valley on toeslopes
- Urban land on summits, shoulders, backslopes
- Chili on treads and risers of terraces; summits, shoulders, backslopes of kames
- Amanda on shoulders, backslopes

Use and Management

Major uses: Cropland, woodland, urban land
Management concerns: Detrimental effects of seasonal wetness, compaction, and slope

2. Rittman-Wadsworth Association

Very deep, level to steep, moderately well drained and somewhat poorly drained soils that formed in till on till plains

Setting

Landform: Till plain
Slope range: 0 to 70 percent—about 12 percent of the area is 0 to 2 percent slope, 50 percent is 2 to 6 percent slope, 27 percent is 6 to 12 percent slope, 8 percent is
12 to 20 percent slope, 2 percent is 20 to 40 percent slope, and less than 1 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 3 percent
Extent of the soils in the association:
- Rittman soils: 71 percent
- Wadsworth soils: 13 percent
- Minor soils: 16 percent

Soil Properties and Qualities

Rittman
Depth class: Very deep
Drainage class: Moderately well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Till
Surface textural class: Silt loam
Slope: Gently sloping to steep

Wadsworth
Depth class: Very deep
Drainage class: Somewhat poorly drained
Position on the landform: Summit, backslope, footslope, toeslope
Parent material: Till
Surface textural class: Silt loam
Slope: Level to gently sloping

Minor Soils
- Valley on toeslopes
- Canfield on summits, shoulders, backslopes
- Fitchville on terrace treads
- Orrville on flood-plain step

Use and Management

Major uses: Cropland, pasture, woodland
Management concerns: Detrimental effects of seasonal wetness, compaction, and slope

3. Teegarden-Kensington-Gilpin Association

Moderately deep to very deep, gently sloping to steep, well drained and moderately well drained soils that formed in loess, till, and/or residuum weathered from interbedded sedimentary rock on till plains and unglaciated hills (fig. 6)

Setting

Landform: Till plain and hill
Slope range: 0 to 70 percent—about 3 percent of the area is 0 to 2 percent slope, 9 percent is 2 to 6 percent slope, 41 percent is 6 to 15 percent slope, 25 percent is 15 to 25 percent slope, 11 percent is 25 to 40 percent slope, and 11 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 11 percent
Extent of the soils in the association:
Teegarden soils: 20 percent
Kensington soils: 17 percent
Gilpin and similar soils: 29 percent
Minor soils: 34 percent

Soil Properties and Qualities

Teegarden
Depth class: Very deep
Drainage class: Moderately well drained
Position on the landform: Summit, shoulder, backslope, footslope
Parent material: Loess, till, and underlying residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping and moderately steep

Kensington
Depth class: Deep
Drainage class: Moderately well drained
Position on the landform: Summit, backslope, shoulder
Parent material: Loess, till, and underlying residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Gilpin
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, backslope, shoulder
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Minor Soils
• Berks on summits, shoulders, backslopes
• Fairpoint on summits, shoulders, backslopes
• Mechanicsburg on summits, shoulders
• Hazleton on summits, shoulders, backslopes
• Zepernick on flood-plain step

Use and Management
Major uses: Woodland, pasture, cropland
Management concerns: Detrimental effects of seasonal wetness, compaction, slope, and shallow/hard bedrock

4. Homeworth-Chili-Bogart Association

Very deep, level to steep, somewhat poorly drained to well drained soils that formed in loamy glaciofluvial deposits over silty and clayey glaciolacustrine deposits, and stratified loamy outwash on outwash plains, outwash terraces, stream terraces and kames

Setting
Landform: Outwash plains, outwash terraces, stream terraces and kames
Slope range: 0 to 70 percent—about 58 percent of the area is 0 to 2 percent slope, 27 percent is 2 to 6 percent slope, 10 percent is 6 to 12 percent slope, 2 percent is 12 to 20 percent slope, 1 percent is 20 to 40 percent slope, and 2 percent is 40 to 70 percent slope

Composition
Extent of the association in the county: 1 percent
Extent of the soils in the association:
 Homeworth and similar soils: 43 percent
 Chili soils: 14 percent
 Bogart soils: 10 percent
 Minor soils: 33 percent

Soil Properties and Qualities
Homeworth
Depth class: Very deep
Drainage class: Somewhat poorly drained
Position on the landform: Tread
Parent material: Loamy glaciofluvial deposits over silty and clayey glaciolacustrine deposits
Surface textural class: Silt loam and loam
Slope: Level to gently sloping

Chili
Depth class: Very deep
Drainage class: Well drained
Position on the landform: Tread and riser on terrace; summit, shoulder and backslope on kames
Parent material: stratified loamy outwash
Surface textural class: Silt loam and loam
Slope: Level to steep
Bogart
Depth class: Very deep
Drainage class: Moderately well drained
Position on the landform: Tread and riser
Parent material: Stratified loamy outwash
Surface textural class: Silt loam and loam
Slope: Level to strongly sloping

Minor Soils
- Lobdell on flood-plain step
- Zepernick on flood-plain step
- Orrville on flood-plain step

Use and Management

Major uses: Cropland, pasture, woodland
Management concerns: Detrimental effects of seasonal wetness, low strength, and slope

5. Fredericktown-Zepernick-Wick Association

Very deep, level to steep, well drained to very poorly drained soils that formed in stratified loamy outwash on kame terraces, stream terraces, and silty alluvium on flood plains

Setting

Landform: Kame terraces, stream terraces and flood plains
Slope range: 0 to 70 percent—about 58 percent of the area is 0 to 2 percent slope, 33 percent is 2 to 6 percent slope, 7 percent is 6 to 15 percent slope, 1 percent is 15 to 25 percent slope, less than 1 percent is 25 to 40 percent slope, and less than 1 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 2 percent
Extent of the soils in the association:
 - Fredericktown soils: 26 percent
 - Zepernick and similar soils: 33 percent
 - Wick soils: 12 percent
 - Minor soils: 29 percent

Soil Properties and Qualities

Fredericktown
Depth class: Very deep
Drainage class: Well drained
Position on the landform: Tread and riser
Parent material: Stratified loamy outwash
Surface textural class: Silt loam and gravelly loam
Slope: Gently sloping to steep

Zepernick
Depth class: Very deep
Drainage class: Somewhat poorly drained
Position on the landform: Flood-plain step
Parent material: Silty alluvium
Surface textural class: Silt loam
Slope: Level and nearly level

Wick
Depth class: Very deep
Drainage class: Very poorly drained
Position on the landform: Flood-plain step
Parent material: Silty alluvium
Surface textural class: Silt loam
Slope: Level and nearly level

Minor Soils
- Fitchville on terrace treads
- Chili on treads and risers of terraces; summits, shoulders, backslopes of kames
- Glenford on terrace treads, risers

Use and Management

Major uses: Woodland, cropland, pasture
Management concerns: Detrimental effects of wetness, low strength, flooding, and steeper slopes

6. **Chili-Zepernick-Wick Association**

Very deep, level to steep, well drained to very poorly drained soils that formed in stratified loamy outwash on outwash terraces, stream terraces and kames, and silty alluvium on flood plains

Setting

Landform: Outwash terrace, stream terrace, kames and flood plain
Slope range: 0 to 70 percent—about 42 percent of the area is 0 to 2 percent slope, 30 percent is 2 to 6 percent slope, 22 percent is 6 to 15 percent slope, 2 percent is 15 to 25 percent slope, 1 percent is 25 to 40 percent slope, and 3 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 3 percent
Extent of the soils in the association:
- Chili soils: 23 percent
- Zepernick and similar soils: 27 percent
- Wick soils: 12 percent
- Minor soils: 38 percent

Soil Properties and Qualities

Chili
Depth class: Very deep
Drainage class: Well drained
Position on the landform: Tread and riser on terrace, summit, shoulder, and backslope on kames
Parent material: Stratified loamy outwash
Surface textural class: Silt loam and loam
Slope: Level to steep

Zepernick
Depth class: Very deep
Drainage class: Somewhat poorly drained
Position on the landform: Flood-plain step
Parent material: Silty alluvium
Surface textural class: Silt loam
Slope: Level and nearly level

Wick
Depth class: Very deep
Drainage class: Very poorly drained
Position on the landform: Flood-plain step
Parent material: Silty alluvium
Surface textural class: Silt loam
Slope: Level and nearly level

Minor Soils
- Jimtown on terrace treads
- Fitchville on terrace treads
- Orrville on flood-plain step
- Bogart on terrace treads, risers

Use and Management

Major uses: Woodland, cropland, pasture
Management concerns: Detrimental effects of wetness, low strength, flooding and slope

7. Tioga-Omulga-Rainsboro Association

Very deep, level to strongly sloping, well drained and moderately well drained soils that formed in alluvium on flood plains, loess over old alluvium or colluvium, and loess over outwash on stream terraces

Setting

Landform: Flood plain, stream terrace
Slope range: 0 to 70 percent—about 47 percent of the area is 0 to 3 percent slope, 28 percent is 3 to 8 percent slope, 16 percent is 8 to 15 percent slope, less than 1 percent is 15 to 25 percent slope, less than 1 percent is 25 to 40 percent slope, and 8 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 2 percent
Extent of the soils in the association:
- Tioga and similar soils: 48 percent
- Omulga soils: 10 percent
- Rainsboro soils: 9 percent
- Minor soils: 33 percent

Soil Properties and Qualities

Tioga
Depth class: Very deep
Drainage class: Well drained
Position on the landform: Toeslope
Parent material: Alluvium
Surface textural class: Loam
Slope: Level and nearly level

Omulga
Depth class: Very deep
Drainage class: Moderately well drained
Position on the landform: Tread
Parent material: Loess over old alluvium or colluvium
Surface textural class: Silt loam
Slope: Gently and strongly sloping

Rainsboro
Depth class: Very deep
Drainage class: Moderately well drained
Position on the landform: Tread and riser
Parent material: Loess over outwash
Surface textural class: Silt loam
Slope: Gently and strongly sloping

Minor Soils
- Conotton on terrace treads, risers
- Frederickstown on terrace treads, risers
- Hazleton on summits, shoulders, backslopes
- Chili on treads and risers of terraces; summits, shoulders, backslopes of kames
- Zepernick on flood-plain steps

Use and Management

Major uses: Woodland, cropland, and pasture
Management concerns: Detrimental effects of seasonal wetness, low strength, flooding, and slope

8. Berks-Coshocton-Gilpin Association

Moderately deep to very deep, gently sloping to steep, well drained and moderately well drained soils that formed in loamy colluvium and residuum weathered from interbedded sedimentary rock on unglaciated hills

Setting

Landform: Hill
Slope range: 0 to 70 percent—about 4 percent of the area is 0 to 3 percent slope, 13 percent is 3 to 8 percent slope, 44 percent is 8 to 15 percent slope, 19 percent is 15 to 25 percent slope, 17 percent is 25 to 40 percent slope, and 3 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 25 percent
Extent of the soils in the association:
- Berks soils: 49 percent
- Coshocton soils: 16 percent
- Gilpin soils: 10 percent
- Minor soils: 25 percent

Soil Properties and Qualities

Berks
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Channery silt loam
Slope: Gently sloping to steep
Coshocton
Depth class: Deep and very deep
Drainage class: Moderately well drained
Position on the landform: Summit, backslope, footslope
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Gilpin
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Minor Soils
- Fairpoint on summits, shoulders, backslopes
- Orrville on flood-plain step
- Keene on summits, shoulders, footslopes
- Gavers on footslopes
- Hazleton on summits, shoulders, backslopes

Use and Management
Major uses: Woodland, pasture, and cropland
Management concerns: Detrimental effects of seasonal wetness, low strength, shallow/hard bedrock, and slope

9. **Fairpoint-Berks-Gilpin Association**
*Moderately deep to very deep, gently sloping to very steep, well drained soils that formed in a mix of partly weathered fine earth and rock fragments from mine spoil or earthy fill of surface mines, and residuum weathered from interbedded sedimentary rock on unglaciated hills***

Setting
Landform: Surface mine and hill
Slope range: 0 to 70 percent—about 3 percent of the area is 0 to 3 percent slope, 14 percent is 3 to 8 percent slope, 23 percent is 8 to 15 percent slope, 22 percent is 15 to 25 percent slope, 9 percent is 25 to 40 percent slope, and 29 percent is 40 to 70 percent slope

Composition
Extent of the association in the county: 7 percent
Extent of the soils in the association:
- Fairpoint soils: 35 percent
- Berks soils: 24 percent
- Gilpin soils: 7 percent
- Minor soils: 34 percent

Soil Properties and Qualities
Fairpoint
Depth class: Very deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope, footslope
Parent material: Mix of partly weathered fine earth and rock fragments from mine spoil or earthy fill
Surface textural class: Very channery silt loam and silty clay loam
Slope: Gently sloping to very steep

Berks
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Channery silt loam
Slope: Gently sloping to steep

Gilpin
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Minor Soils
- Coshocton on summits, shoulders, backslopes, footslopes
- Morristown on summits, shoulders, backslopes, footslopes
- Keene on summits, shoulders, footslopes
- Orrville on flood-plain step
- Hazleton on summits, shoulders, backslopes

Use and Management

Major uses: Woodland, pasture, and cropland
Management concerns: Detrimental effects of low strength, shallow/hard bedrock, slope and shrink-swell in fine textured mine spoil

10. Berks-Gilpin-Coshocton Association

Moderately deep to very deep, gently sloping to steep, well drained and moderately well drained soils that formed in loamy colluvium and residuum weathered from interbedded sedimentary rock on unglaciated hills

Setting

Landform: Hill
Slope range: 0 to 70 percent—about 1 percent of the area is 0 to 2 percent slope, 9 percent is 2 to 8 percent slope, 56 percent is 8 to 15 percent slope, 16 percent is 15 to 25 percent slope, 13 percent is 25 to 40 percent slope, and 5 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 4 percent
Extent of the soils in the association:
- Berks soils: 41 percent
- Gilpin soils: 22 percent
- Coshocton soils: 12 percent
- Minor soils: 25 percent
Soil Properties and Qualities

Berks
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Channery silt loam
Slope: Gently sloping to steep

Gilpin
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Coshocton
Depth class: Deep or very deep
Drainage class: Moderately well drained
Position on the landform: Summit, backslope, footslope
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Minor Soils
- Fairpoint on summits, shoulders, backslopes
- Orrville on flood-plain step
- Keene summits, shoulders, footslopes
- Gavers on footslopes
- Hazleton on summits, shoulders, backslopes

Use and Management

Major uses: Woodland, pasture, and cropland
Management concerns: Detrimental effects of seasonal wetness, low strength, shallow/hard bedrock, and slope

11. Berks-Westmoreland-Gilpin Association

Moderately deep to very deep, gently sloping to very steep, well drained soils that formed in residuum weathered from interbedded sedimentary rock and loamy colluvium and residuum weathered from interbedded sedimentary rock on unglaciated hills

Setting

Landform: Hill
Slope range: 0 to 70 percent—about 4 percent of the area is 0 to 3 percent slope, 7 percent is 3 to 8 percent slope, 12 percent is 8 to 15 percent slope, 8 percent is 15 to 25 percent slope, 24 percent is 25 to 40 percent slope, and 45 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 6 percent
Extent of the soils in the association:
 Berks soils: 34 percent
 Westmoreland soils: 24 percent
Gilpin soils: 5 percent
Minor soils: 37 percent

Soil Properties and Qualities

Berks
- **Depth class:** Moderately deep
- **Drainage class:** Well drained
- **Position on the landform:** Summit, shoulder, backslope
- **Parent material:** Residuum weathered from interbedded sedimentary rock
- **Surface textural class:** Channery silt loam
- **Slope:** Gently sloping to steep

Westmoreland
- **Depth class:** Deep and very deep
- **Drainage class:** Well drained
- **Position on the landform:** Summit, shoulder, backslope
- **Parent material:** Loamy colluvium and residuum weathered from interbedded sedimentary rock
- **Surface textural class:** Silt loam
- **Slope:** Strongly sloping to very steep

Gilpin
- **Depth class:** Moderately deep
- **Drainage class:** Well drained
- **Position on the landform:** Summit, shoulder, backslope
- **Parent material:** Residuum weathered from interbedded sedimentary rock
- **Surface textural class:** Silt loam
- **Slope:** Gently sloping to steep

Minor Soils
- Coshocton on summits, shoulders, backslopes, footslopes
- Hazleton on summits, shoulders, backslopes
- Tioga on flood-plain step
- Orrville on flood-plain step
- Fairpoint on summits, shoulders, backslopes

Use and Management

Major uses: Woodland, pasture, and cropland
Management concerns: Detrimental effects of low strength, shallow/hard bedrock, and slope

12. **Vandergrift-Berks-Upshur Association**

Moderately deep to very deep, gently sloping to steep, moderately well drained and well drained soils that formed in residuum weathered from clayey shale and siltstone, and residuum weathered from interbedded sedimentary rock on unglaciated hills

Setting

- **Landform:** Hill
- **Slope range:** 2 to 70 percent—about 12 percent of the area is 2 to 8 percent slope, 36 percent is 8 to 15 percent slope, 16 percent is 15 to 25 percent slope, 34 percent is 25 to 40 percent slope, and 2 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 1 percent
Extent of the soils in the association:
Vandergrift soils: 40 percent
Berks soils: 28 percent
Upshur soils: 21 percent
Minor soils: 11 percent

Soil Properties and Qualities

Vandergrift
Depth class: Deep and very deep
Drainage class: Moderately well drained
Position on the landform: Summit, backslope, footslope
Parent material: Residuum weathered from calcareous and noncalcareous interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently and strongly sloping

Berks
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Channery silt loam
Slope: Gently sloping to steep

Upshur
Depth class: Deep and very deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from clayey shale
Surface textural class: Silty clay loam
Slope: Strongly sloping to steep

Minor Soils
- Hazleton on summits, shoulders, backslopes
- Fairpoint on summits, shoulders, backslopes
- Westmoreland on shoulders, backslopes
- Gilpin on summits, shoulders, backslopes

Use and Management

Major uses: Woodland, pasture, and cropland
Management concerns: Detrimental effects of seasonal wetness, low strength, shallow/hard bedrock, slope, and slippage/shrink-swell in fine-textured horizons

13. Westmoreland-Coshocton-Berks Association

Moderately deep to very deep, gently sloping to steep, well drained and moderately well drained soils that formed in loamy colluvium and residuum weathered from interbedded sedimentary rock on unglaciated hills

Setting

Landform: Hill
Slope range: 0 to 70 percent—about 3 percent of the area is 0 to 2 percent slope, 5 percent is 2 to 8 percent slope, 82 percent is 8 to 15 percent slope, 9 percent is 15 to 25 percent slope, less than 1 percent is 25 to 40 percent slope, and less than 1 percent is 40 to 70 percent slope
Composition

Extent of the association in the county: 1 percent
Extent of the soils in the association:
 - Westmoreland soils: 35 percent
 - Coshocton soils: 22 percent
 - Berks soils: 16 percent
 - Minor soils: 27 percent

Soil Properties and Qualities

Westmoreland
Depth class: Deep and very deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Strongly sloping to steep

Coshocton
Depth class: Deep or very deep
Drainage class: Moderately well drained
Position on landform: Summit, backslope, footslope
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Gently sloping to steep

Berks
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Channery silt loam
Slope: Gently sloping to steep

Minor Soils
- Gilpin on summits, shoulders, backslopes
- Orrville on flood-plain step
- Keene on summits, shoulders, foote slopes
- Gavers on footslopes

Use and Management

Major uses: Woodland, pasture, and cropland
Management concerns: Detrimental effects of seasonal wetness, low strength, shallow/hard bedrock, and slope

14. Hazleton-Westmoreland-Berks Association

Moderately deep to very deep, gently sloping to very steep, well drained soils that formed in loamy colluvium and residuum weathered from sandstone and interbedded sedimentary rock on unglaciated hills

Setting

Landform: Hill
Slope range: 0 to 70 percent—about 2 percent of the area is 0 to 3 percent slope, 8 percent is 3 to 8 percent slope, 18 percent is 8 to 15 percent slope, 9 percent is
15 to 25 percent slope, 7 percent is 25 to 40 percent slope, and 56 percent is 40 to 70 percent slope

Composition

Extent of the association in the county: 4 percent
Extent of the soils in the association:
 - Hazleton and similar soils: 37 percent
 - Westmoreland and similar soils: 18 percent
 - Berks soils: 12 percent
 - Minor soils: 33 percent

Soil Properties and Qualities

Hazleton
Depth class: Deep and very deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from sandstone
Surface textural class: Channery loam
Slope: Gently sloping to steep

Westmoreland
Depth class: Deep and very deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Surface textural class: Silt loam
Slope: Strongly sloping to very steep

Berks
Depth class: Moderately deep
Drainage class: Well drained
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from interbedded sedimentary rock
Surface textural class: Channery silt loam
Slope: Gently sloping to steep

Minor Soils
- Gilpin on summits, shoulders, backslopes
- Bethesda on summits, shoulders, backslopes, footslopes
- Fairpoint on summits, shoulders, backslopes
- Tioga on flood-plain step
- Coshocton on summits, shoulders, backslopes, footslopes

Use and Management

Major uses: Woodland, pasture, and cropland
Management concerns: Detrimental effects of low soil strength, shallow/hard bedrock, and slope
The map units delineated on the detailed soil maps in this survey represent the soils or miscellaneous areas in Columbiana County. The map unit descriptions in this section, along with the maps, can be used to determine the suitability and potential of an area of interest for specific uses. They also can be used to plan the management needed for those uses.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for important properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not adversely affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used (fig. 7). Some small areas of strongly contrasting soils or miscellaneous areas are identified by special symbols on the maps. The most common contrasting components are mentioned in the map unit descriptions. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas more precisely.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives the principal hazards and limitations to be considered in planning for specific uses.

Soils that have profiles that are almost alike make up a soil series. Except for the differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.
Soils of one series can differ in texture of the surface layer, slope, stoniness, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown as map units on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Homeworth silt loam, 0 to 2 percent slopes is a phase of the Homeworth series.

Some map units in Columbiana County are made up of two or more major soils or miscellaneous areas. These map units are complexes or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Gilpin-Coshocton-Urban land complex, 6 to 15 percent slopes is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Olmsted and Valley soils, 0 to 2 percent slopes is an undifferentiated group in this survey of Columbiana County.

This survey includes miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Pits, gravel is an example.

The detailed map unit descriptions list management statements for most major uses of the soils: cropland, pastureland, woodland, building sites, septic tank absorption fields, and local roads and streets. The management statements listed for a particular map unit address the most limiting features of that soil for a certain use.
Some management statements suggest specific measures that may help alleviate the effects of these limiting soil features. The mention of such management measures is not a recommendation, especially where current laws or programs may prohibit an activity, such as installation of drainage. Even the best management practices cannot overcome some limitations of the soil.

Land management units such as farms and smaller management units such as fields often are comprised of more than one soil map unit. Figure 8 shows a management unit of hayland that has three soil map units within it.

Figure 9 shows the relationship between different geomorphic slope positions and slope terminology in Columbiana County (Wysoki and others, 2000). These terms are applied only where slopes are more than 2 percent. More detailed definitions of these landform components are in the Glossary.

AmF—Amanda loam, 35 to 70 percent slopes

Setting

Landform: Till plain
Position on the landform: Shoulder and backslope
Size of areas: About 1.5 to 138 acres

Map Unit Composition

Amanda soils: 95 percent
Contrasting Components:
Zepernick soils: 5 percent

Figure 8.—This field of grass and legumes being cut for hay is underlain by three soils: Fitchville silt loam, 2 to 6 percent slopes; Kensington silt loam, 6 to 15 percent slopes; and Berks channery silt loam, 15 to 25 percent slopes.
Map Unit Interpretive Groups

Land capability classification: 7e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 10.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 20 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 5.0 to 6.7 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate or moderately rapid
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
- This soil is generally not recommended for pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during the construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The potential for slippage may interfere with the construction and use of haul roads and log landings, and creates unsafe operating conditions.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• Because of the slope, the use of equipment to prepare this site for planting and seeding is not practical.
• Because of the slope, the use of mechanical planting equipment is not practical.
• Burning may destroy organic matter and increase sedimentation.

Building Sites
• The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. Special design of structures is needed to prevent damage caused by wetness.

Septic Tank Absorption Fields
• Slippage may result in damage to effluent distribution lines and increased maintenance costs.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
• The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
• Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: H-1
Hydric soil: No
BkB—Berks channery silt loam, 2 to 6 percent slopes

Setting

Landform: Hill
Position on the landform: Summit
Size of areas: About 1.0 to 118 acres

Map Unit Composition

Berks soils: 85 percent
Contrasting Components:
 Gilpin soils: 10 percent
 Coshocton soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 2.8 inches to a depth of 36 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic): 20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 3.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Cropland
- The rooting depth of crops is restricted by bedrock.
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Pastureland
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
Using a system of conservation tillage when pastures are renovated conserves soil moisture. This soil provides poor summer pasture. The rooting depth of plants may be restricted by bedrock.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
- The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups
- *Pasture and hayland suitability group: F-1*
- *Hydric soil: No*

BkC—Berks channery silt loam, 6 to 15 percent slopes

Setting
- Landform: Hill
- Position on the landform: Shoulder, backslope, and summit
- Size of areas: About 1.0 to 383 acres

Map Unit Composition
- Berks soils: 85 percent
- Contrasting Components:
 - Gilpin soils: 10 percent
 - Guernsey soils: 5 percent

Map Unit Interpretive Groups
- Land capability classification: 3e
- Prime farmland: Not prime farmland

Soil Properties and Qualities
- Available water capacity: About 1.8 inches to a depth of 23 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic): 20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.9 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Cropland
• The rooting depth of crops is restricted by bedrock.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• The rooting depth of plants may be restricted by bedrock.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Bedrock may interfere with the construction of haul roads and log landing sites.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
• The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields

• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets

• The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-1
Hydric soil: No

BkD—Berks channery silt loam, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope and shoulder
Size of areas: About 1.0 to 254 acres

Map Unit Composition

Berks soils: 90 percent
Contrasting Components:
 • Gilpin soils: 5 percent
 • Guernsey soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 1.9 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers
Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
- Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
- The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-1

Hydric soil: No
BkE—Berks channery silt loam, 25 to 40 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope
Size of areas: About 1.0 to 581 acres

Map Unit Composition

Berks soils: 85 percent
Contrasting Components:
 Gilpin soils: 10 percent
 Guernsey soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 6e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 2.1 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 150 to 230 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic): 20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 70.0 to 99.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Slightly decomposed plant material
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Pastureland
- The slope may restrict the use of some farm equipment.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.

The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.

Because of the slope, the use of mechanical planting equipment is not practical.

Rock fragments in the soil obstruct the use of mechanical planting equipment.

The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites

- The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
- The engineering properties of this soil are generally unfavorable for supporting heavy loads. Special design of footings and foundations may be needed to prevent the structural damage caused by low soil strength.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields

- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets

- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-2

Hydric soil: No

BmB—Berks-Urban land complex, 2 to 6 percent slopes

Setting

Landform: Hill

Position on the landform: Summit

Size of areas: About 2.0 to 61 acres

Map Unit Composition

Berks soils: 50 percent

Urban land: 40 percent

Contrasting Components:

- Coshocton soils: 5 percent
- Gilpin soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: None assigned

Prime farmland: Not prime farmland
Soil Properties and Qualities

Berks
Available water capacity: About 1.7 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Definition of Urban land

Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures, and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Use and Management Considerations Affecting the Berks Soil

Building Sites
• The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.

Septic Tank Absorption Fields
• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Use and Management Considerations Affecting Urban land

Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups

Berks
Pasture and hayland suitability group: Not rated
Hydric soil: No

Urban land
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked
BmC—Berks-Urban land complex, 6 to 15 percent slopes

Setting

Landform: Hill
Position on the landform: Summit, shoulder, and backslope
Size of areas: About 8.0 to 193 acres

Map Unit Composition

Berks soils: 50 percent
Urban land: 40 percent
Contrasting Components:
 Coshocton soils: 5 percent
 Gilpin soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

Soil Properties and Qualities

Berks
Available water capacity: About 1.7 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Definition of Urban land

Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures, and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Use and Management Considerations Affecting the Berks Soil

Building Sites
• The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.
Septic Tank Absorption Fields

- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets

- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting Urban land

Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups

Berks
Pasture and hayland suitability group: Not rated
Hydric soil: No

Urban land
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

BmD—Berks-Urban land complex, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Shoulder and backslope
Size of areas: About 6.0 to 107 acres

Map Unit Composition

Berks soils: 50 percent
Urban land: 40 percent
Contrasting Components:
 Gilpin soils: 5 percent
 Guernsey soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

Soil Properties and Qualities

Berks
Available water capacity: About 1.8 inches to a depth of 23 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic): 20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.9 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Definition of Urban land

Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Use and Management Considerations Affecting the Berks Soil

Building Sites
- The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting Urban land

Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups

Berks
Pasture and hayland suitability group: Not rated
Hydric soil: No

Urban land
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

BpF—Bethesda very channery silt loam, 25 to 70 percent slopes

Setting

Landform: Surface mine on hill
Position on the landform: Shoulder, backslope, footslope, summit
Size of areas: About 2.0 to 103 acres

Map Unit Composition

Bethesda soils: 85 percent
Contrasting Components:
- Highwalls: 5 percent
- Summits, benches: 5 percent
- Water: 5 percent

Map Unit Interpretive Groups

Land capability classification: 7e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.3 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 7.0 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 0.5 percent
Parent material: Acid residuum of fine earth and rock fragments from coal extraction
mine spoil derived from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Very channery silt loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Pastureland
- This soil is generally not recommended for pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.
- Because of the slope, the use of mechanical planting equipment is not practical.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- Burning may destroy organic matter.

Building Sites
- The hazard of slippage increases the risk of mass soil movement. Sites subject to slippage are generally unsuited to building site development.
Septic Tank Absorption Fields
- Because of the high potential for slippage, this soil is generally unsuited to septic tank absorption fields.

Local Roads and Streets
- Because of the high potential for slippage, this soil is generally unsuited to use for local roads and streets.

Component Interpretive Groups

Pasture and hayland suitability group: H-1
Hydric soil: No

BsC2—Bogart loam, 6 to 12 percent slopes, eroded

Setting

Landform: Stream terrace
Position on the landform: Riser
Size of areas: About 3.0 to 19 acres

Map Unit Composition

Bogart soils: 80 percent
Contrasting Components:
 Chili soils: 10 percent
 Soils with till or colluvium in the substratum: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 8.5 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciofluvial outwash deposits
Permeability: Moderate
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Erosion has removed part of the surface soil, and the remaining surface soil is less productive and more difficult to manage.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• Subsurface drainage helps to lower the seasonal high water table.

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No
BtA—Bogart silt loam, 0 to 2 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 2.0 to 17 acres

Map Unit Composition

Bogart soils: 80 percent
Contrasting Components:
 Chili soils: 5 percent
 Glenford soils: 5 percent
 Jimtown soils: 5 percent
 Soils with silty lacustrine layers in the substratum: 5 percent

Map Unit Interpretive Groups

Land capability classification: 1
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 8.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciofluvial outwash deposits
Permeability: Moderate
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• Systematic subsurface drainage will extend the period of planting and harvesting crops.

Pastureland
• This soil is well suited to pasture.
Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No

BtB—Bogart silt loam, 2 to 6 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 1.0 to 67 acres

Map Unit Composition

Bogart soils: 80 percent
Contrasting Components:
- Chili soils: 5 percent
- Glenford soils: 5 percent
- Jimtown soils: 5 percent
- Soils with silty lacustrine layers in the substratum: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland
Soil Properties and Qualities

Available water capacity: About 8.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 60 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciofluvial outwash deposits
Permeability: Moderate
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• Subsurface drainage helps to lower the seasonal high water table.

Pastureland
• Erosion control is needed when pastures are renovated.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.
Septic Tank Absorption Fields

- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No

BtC—Bogart silt loam, 6 to 12 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Riser
Size of areas: About 2.0 to 59 acres

Map Unit Composition

Bogart soils: 80 percent
Contrasting Components:
 - Chilli soils: 10 percent
 - Soils with till or colluvium in the substratum: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 8.5 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciofluvial outwash deposits
Permeability: Moderate
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers
Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Because of the slope, designing local roads and streets is difficult.
Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No

CaA—Calcutta silt loam, 0 to 3 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 2.0 to 52 acres

Map Unit Composition

Calcutta soils: 80 percent
Contrasting Components:
 Fitchville soils: 10 percent
 Rainsboro soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 5.3 inches to a depth of 27 inches
Cation-exchange capacity of the surface layer: 150 to 230 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 30 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 70.0 to 99.0 percent
Parent material: Loess over outwash over residuum
Permeability: Moderate or moderately slow above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Slightly decomposed plant material
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
• Plants may suffer from moisture stress because of the limited available water capacity.
• The root system of winter grain crops may be damaged by frost action.
• Subsurface drainage helps to lower the seasonal high water table.
• The rooting depth of crops is restricted by dense soil material.

Pastureland
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low pH in the soil may cause a nutrient imbalance in seedlings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• The engineering properties of this soil are generally unfavorable for supporting heavy loads. Special design of footings and foundations may be needed to prevent the structural damage caused by low soil strength.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: D-1
Hydric soil: No

CcB—Canfield silt loam, 2 to 6 percent slopes

Setting

Landform: Till plain
Position on the landform: Shoulder and summit
Size of areas: About 0.5 to 1,233 acres
Map Unit Composition

Canfield soils: 90 percent
Contrasting Components:
 Ravenna soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 4.2 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 30 inches
Depth to the top of the seasonal high water table: 1.2 to 2.3 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

CcC—Canfield silt loam, 6 to 12 percent slopes

Setting

Landform: Till plain
Position on the landform: Shoulder, summit, and backslope
Size of areas: About 0.5 to 2,703 acres

Map Unit Composition

Canfield soils: 85 percent
Contrasting Components:
 Ravenna soils: 10 percent
 Amanda soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3e (fig. 10)
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.7 inches to a depth of 25 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 30 inches
Depth to the top of the seasonal high water table: 1.2 to 2.3 feet
Kind of water table: Perched
Ponding: None
Use and Management Considerations

Cropland

- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.
Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No
CcD—Canfield silt loam, 12 to 20 percent slopes

Setting

Landform: Till plain
Position on the landform: Backslope
Size of areas: About 0.5 to 125 acres

Map Unit Composition

Canfield soils: 90 percent
Contrasting Components:
 Amanda soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 3.9 inches to a depth of 21 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan: 18 to 30 inches
Depth to the top of the seasonal high water table: 1.2 to 2.3 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

CcE—Canfield silt loam, 20 to 35 percent slopes

Setting

Landform: Till plain
Position on the landform: Backslope
Size of areas: About 0.5 to 107 acres

Map Unit Composition

Canfield soils: 80 percent
Contrasting Components:
 Amanda soils: 10 percent
 Zepernick soils: 10 percent
Map Unit Interpretive Groups

Land capability classification: 6e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.7 inches to a depth of 26 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan: 18 to 30 inches
Depth to the top of the seasonal high water table: 1.2 to 2.3 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- The slope may restrict the use of some farm equipment.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Because of the slope, the use of mechanical planting equipment is not practical.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
Building Sites

- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields

- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-4
Hydric soil: No

CeA—Carlisle muck, 0 to 1 percent slopes

Setting

Landform: Depression on outwash plain; depression on ground moraine
Position on the landform: Toeslope
Size of areas: About 1.0 to 79 acres

Map Unit Composition

Carlisle soils: 90 percent
Contrasting Components:
 Lorain soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 5w
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 23.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 150 to 230 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.0 to 1.0 feet
Kind of water table: Apparent
Ponding: Very long
Depth of ponding: 0.0 to 2.0 feet
Drainage class: Very poorly drained (fig. 11)
Flooding: None
Organic matter content in the surface layer: 70.0 to 99.0 percent
Parent material: Herbaceous and woody organic material
Permeability: Moderately slow to moderately rapid
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Muck
Potential for surface runoff: Negligible
Wind erosion hazard: Severe
Distinctive soil property: Layers of organic material

Use and Management Considerations

Pastureland
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• Standing water can inhibit the growth of some species of seedlings by restricting root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.

Figure 11.—Hydric soils of wetlands support a wide diversity of hydrophytic vegetation such as the iris, cattails, reeds, and shrubs in this picture.
• Soil wetness may limit the use of this soil by log trucks.
• Ponding restricts the safe use of roads by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• When drained, the organic layers in this soil subside. Subsidence leads to differential rates of settlement which may cause foundations to break. Because of the high potential for subsidence, this soil is generally unsuited to building site development.
• Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.

Septic Tank Absorption Fields
• Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
• Subsidence of the organic material reduces the bearing capacity of this soil.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups
Pasture and hayland suitability group: D-1
Hydric soil: Yes

CfD2—Chili loam, 12 to 20 percent slopes, eroded

Setting
Landform: Kame and stream terrace
Position on the landform: Riser on terrace; backslope on kame
Size of areas: About 1.0 to 15 acres

Map Unit Composition
Chili soils: 90 percent
Contrasting Components:
 Conotton soils: 10 percent

Map Unit Interpretive Groups
Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 7.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Glaciofluvial outwash
Permeability: Moderately rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
Pasture and hayland suitability group: A-1
Hydric soil: No

ChA—Chili silt loam, 0 to 2 percent slopes

Setting

Landform: Kame and stream terrace
Position on the landform: Tread on terrace; summit on kame
Size of areas: About 2.0 to 63 acres
Map Unit Composition

Chili soils: 90 percent
Contrasting Components:
 Conotton soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2s
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 6.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Glaciofluvial outwash
Permeability: Moderately rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- This soil is well suited to pasture.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.
- This soil is well suited to use as building sites.

Septic Tank Absorption Fields
- The excessive permeability limits the proper treatment of the effluent from septic
systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

- **Pasture and hayland suitability group**: A-1
- **Hydric soil**: No

ChB—Chili silt loam, 2 to 6 percent slopes

Setting

- **Landform**: Stream terrace and kame
- **Position on the landform**: Tread on terrace; summit and shoulder on kame
- **Size of areas**: About 0.5 to 160 acres

Map Unit Composition

- **Chili soils**: 90 percent
- **Conotton soils**: 10 percent

Map Unit Interpretive Groups

- **Land capability classification**: 2e
- **Prime farmland**: All areas are prime farmland

Soil Properties and Qualities

- **Available water capacity**: About 6.7 inches to a depth of 60 inches
- **Cation-exchange capacity of the surface layer**: 8.0 to 16 meq per 100 grams
- **Depth class**: Very deep
- **Depth to root restrictive feature**: Greater than 80 inches
- **Depth to the top of the seasonal high water table**: Greater than 6.0 feet
- **Ponding**: None
- **Drainage class**: Well drained
- **Flooding**: None
- **Organic matter content in the surface layer**: 1.0 to 3.0 percent
- **Parent material**: Glaciofluvial outwash
- **Permeability**: Moderately rapid
- **Potential frost action**: Moderate
- **Shrink-swell potential**: Low
- **Surface layer texture**: Silt loam
- **Potential for surface runoff**: Low
- **Wind erosion hazard**: Slight
- **Distinctive soil property**: Very gravelly layers

Use and Management Considerations

Cropland

- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
• Erosion control is needed when pastures are renovated.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.
• This soil is well suited to use as building sites.

Septic Tank Absorption Fields
• The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No

ChC—Chili silt loam, 6 to 12 percent slopes

Setting

Landform: Stream terrace and kame
Position on the landform: Riser on terrace; summit, shoulder, and backslope on kame
Size of areas: About 0.5 to 102 acres

Map Unit Composition

Chili soils: 90 percent
Contrasting Components:
Conotton soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 7.8 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 16 meq per 100 grams
Columbiana County, Ohio

Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Glaciofluvial outwash
Permeability: Moderately rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.
Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No

CmB—Conotton gravelly loam, 2 to 6 percent slopes

Setting

Landform: Stream terrace and kame terrace
Position on the landform: Tread on terrace; shoulder on kame
Size of areas: About 1.5 to 48 acres

Map Unit Composition

Conotton soils: 90 percent
Contrasting Components:
 Chili soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3s
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 5.3 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 3.0 percent
Parent material: Glaciofluvial outwash
Permeability: Rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Gravelly loam
Potential for surface runoff: Very low
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Pastureland
- Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Stones restrict the use of equipment during site preparation for planting or seeding.
• A loss of soil productivity may occur following an episode of fire.

Building Sites
• This soil is well suited to use as building sites.

Septic Tank Absorption Fields
• The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

Pasture and hayland suitability group: B-1
Hydric soil: No

CmC—Conotton gravelly loam, 6 to 12 percent slopes

Setting

Landform: Stream terrace and kame terrace
Position on the landform: Riser on terrace; shoulder and footslope on kame
Size of areas: About 1.5 to 20 acres

Map Unit Composition

Conotton soils: 90 percent
Contrasting Components:
 Chili soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 5.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 3.0 percent
Parent material: Glaciofluvial outwash
Permeability: Rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Gravelly loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- A loss of soil productivity may occur following an episode of fire.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: B-1
Hydric soil: No

CoB—Coshocton silt loam, 2 to 6 percent slopes

Setting

Landform: Hill
Position on the landform: Summit
Size of areas: About 1.0 to 72 acres

Map Unit Composition

Coshocton soils: 90 percent
Contrasting Components:
 * Gilpin soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 8.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic): 40 to 120 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• The root system of winter grain crops may be damaged by frost action.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
• Erosion control is needed when pastures are renovated.
• The root systems of plants may be damaged by frost action.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: A-6
Hydric soil: No

CoC—Coshocton silt loam, 6 to 15 percent slopes

Setting

Landform: Hill, backslope, and summit
Size of areas: About 1.0 to 322 acres

Map Unit Composition

Coshocton soils: 85 percent
Contrasting Components:
 Gilpin soils: 15 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 8.3 inches to a depth of 52 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 120 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland

- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- The root systems of plants may be damaged by frost action.

Woodland

- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks. The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines. Seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: A-6
Hydric soil: No

CoD—Coshocton silt loam, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Footslope and backslope
Size of areas: About 2.0 to 31 acres

Map Unit Composition

Coshocton soils: 85 percent
Contrasting Components:
Gilpin soils: 15 percent

Map Unit Interpretive Groups
Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 8.8 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 120 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations
Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
Pasture and hayland suitability group: A-2
Hydric soil: No

DAM—Dam

Setting

Landform: None assigned
Size of areas: About 1.0 to 11 acres

Map Unit Composition
Dam: 100 percent

Map Unit Interpretive Groups
Land capability classification: None assigned
Prime farmland: Not prime farmland

Definition of Dam
An earthen barrier constructed across a valley to check the flow of a stream and create a small lake or reservoir. Spillways or other components of the dam may be hardened by concrete or other engineered materials.
Use and Management Considerations

- Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups

Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

DgA—Doles silt loam, 0 to 3 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 1.5 to 63 acres

Map Unit Composition

Doles soils: 90 percent
Contrasting Components:
- Wetter soil: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 5.7 inches to a depth of 30 inches
Cation-exchange capacity of the surface layer: 10 to 20 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 30 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Floodling: None
Organic matter content in the surface layer: 0.5 to 3.0 percent
Parent material: Loess over old alluvium or silty colluvium
Permeability: Moderately slow or slow above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
Subsurface drainage helps to lower the seasonal high water table.
The rooting depth of crops is restricted by dense soil material.

Pastureland
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

*Pasture and hayland suitability group: C-1
Hydric soil: No*
ErC—Ernest silt loam, 6 to 15 percent slopes

Setting

Landform: Hill
Position on the landform: Footslope
Size of areas: About 3.0 to 63 acres

Map Unit Composition

Ernest soils: 80 percent
Contrasting Components:
 Coshocton soils: 5 percent
 Guernsey soils: 5 percent
 Omulga soils: 5 percent
 Richland soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 3.6 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 11 to 13 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 36 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Loamy colluvium derived from interbedded sedimentary rock
Permeability: Slow or moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.
Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No
ErD—Ernest silt loam, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Footslope
Size of areas: About 2.0 to 55 acres

Map Unit Composition

Ernest soils: 80 percent
Contrasting Components:
 Coshocton soils: 5 percent
 Guernsey soils: 5 percent
 Omulga soils: 5 percent
 Richland soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 5.1 inches to a depth of 33 inches
Cation-exchange capacity of the surface layer: 11 to 13 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 36 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Loamy colluvium derived from interbedded sedimentary rock
Permeability: Slow or moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment. The low strength of the soil increases the cost of constructing haul roads and log landings. Soil wetness may limit the use of this soil by log trucks. The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks. Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks. The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment. The slope may restrict the use of some mechanical planting equipment. The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness. The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance. Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines. The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field. The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets. Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture. The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil. Special design of roads and streets is needed to prevent the structural damage caused by low soil strength. Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No
FbB—Fairpoint very channery silt loam, 0 to 8 percent slopes

Setting

Landform: Surface mine on hill
Position on the landform: Shoulder and summit
Size of areas: About 1.0 to 70 acres

Map Unit Composition

Fairpoint soils: 90 percent
Contrasting Components:
 Ultra acid soils: 8 percent
 Water: 2 percent

Map Unit Interpretive Groups

Land capability classification: 4s
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.5 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 7.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 0.5 percent
Parent material: Medium acid residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderate or moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Very channery silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very channery layers

Use and Management Considerations

Pastureland (fig. 12)
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- Burning may destroy organic matter.
Building Sites
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups
Pasture and hayland suitability group: E-3
Hydric soil: No

FbD—Fairpoint very channery silt loam, 8 to 25 percent slopes

Setting
Landform: Surface mine on hill
Position on the landform: Backslope, shoulder, summit, and footslope
Size of areas: About 1.0 to 215 acres
Map Unit Composition

Fairpoint soils: 85 percent
Contrasting Components:
> Steeper areas and highwalls: 5 percent
> Ultra acid soils: 5 percent
> Water: 5 percent

Map Unit Interpretive Groups

Land capability classification: 6s
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 7.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 0.5 percent
Parent material: Medium acid residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderate or moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Very channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Very channery layers

Use and Management Considerations

Pastureland

- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.

Woodland

- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.
• Stones restrict the use of equipment during site preparation for planting or seeding.
• Burning may destroy organic matter.

Building Sites
• The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• Slippage may result in damage to effluent distribution lines and increased maintenance costs.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
• Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: E-3
Hydric soil: No

FbF—Fairpoint very channery silt loam, 25 to 70 percent slopes

Setting

Landform: Surface mine on hill
Position on the landform: Shoulder, summit, and backslope
Size of areas: About 0.5 to 2,032 acres

Map Unit Composition

Fairpoint soils: 85 percent
Contrasting Components:
 Highwalls: 5 percent
 Summits and benches: 5 percent
 Water: 5 percent
Map Unit Interpretive Groups

Land capability classification: 7e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 7.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 0.5 percent
Parent material: Medium acid residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderate or moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Very channery silt loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight
Distinctive soil property: Very channery layers

Use and Management Considerations

Pastureland
- This soil is generally not recommended for pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.
- Because of the slope, the use of mechanical planting equipment is not practical.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- Burning may destroy organic matter.

Building Sites
- The hazard of slippage increases the risk of mass soil movement. Sites subject to slippage are generally unsuited to building site development.

Septic Tank Absorption Fields
- Because of the high potential for slippage, this soil is generally unsuited to septic tank absorption fields.

Local Roads and Streets
- Because of the high potential for slippage, this soil is generally unsuited to use for local roads and streets.
Component Interpretive Groups

Pasture and hayland suitability group: H-1
Hydric soil: No

FcB—Fairpoint silty clay loam, 0 to 8 percent slopes

Setting

Landform: Surface mine on hill
Position on the landform: Shoulder and summit
Size of areas: About 1.5 to 162 acres

Map Unit Composition

Fairpoint soils: 90 percent
Contrasting Components:
 Unmined areas: 8 percent
 Water: 2 percent

Map Unit Interpretive Groups

Land capability classification: 3s
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.8 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 24 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Medium acid residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderate or moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silty clay loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very channery layers

Use and Management Considerations

Pastureland

• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland

• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
The low strength of the soil increases the cost of constructing haul roads and log landings. Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks. Rock fragments in the soil obstruct the use of mechanical planting equipment. Stones restrict the use of equipment during site preparation for planting or seeding. Burning may destroy organic matter.

Building Sites
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

Pasture and hayland suitability group: B-4

Hydric soil: No

FcD—Fairpoint silty clay loam, 8 to 25 percent slopes

Setting

Landform: Surface mine on hill

Position on the landform: Shoulder, summit, backslope, and footslope

Size of areas: About 2.0 to 278 acres

Map Unit Composition

Fairpoint soils: 90 percent
Contrasting Components:
- Unmined areas: 8 percent
- Highwalls: 2 percent

Map Unit Interpretive Groups

Land capability classification: 4s

Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.8 inches to a depth of 60 inches

Cation-exchange capacity of the surface layer: 10 to 24 meq per 100 grams

Depth class: Very deep

Depth to root restrictive feature: Greater than 80 inches

Depth to the top of the seasonal high water table: Greater than 6.0 feet

Ponding: None

Drainage class: Well drained

Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Medium acid residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderate or moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silty clay loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Very channery layers

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- Burning may destroy organic matter.

Building Sites
- The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• Slippage may result in damage to effluent distribution lines and increased maintenance costs.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
• Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: B-4
Hydric soil: No

FdA—Fitchville silt loam, 0 to 2 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 1.0 to 110 acres

Map Unit Composition

Fitchville soils: 90 percent
Contrasting Components:
 Heavier soils: 5 percent
 Wetter soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 10.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 14 to 22 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciolacustrine deposits
Permeability: Moderate or moderately slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: C-1
Hydric soil: No

FdB—Fitchville silt loam, 2 to 6 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 0.5 to 41 acres

Map Unit Composition

Fitchville soils: 85 percent
Contrasting Components:
 * Glenford soils: 5 percent
 * Heavier soils: 5 percent
 * Wetter soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 10.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 14 to 22 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciolacustrine deposits
Permeability: Moderate or moderately slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

• Grasped waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• The root system of winter grain crops may be damaged by frost action.
Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Controlling traffic can minimize soil compaction.

Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Subsurface drainage helps to lower the seasonal high water table.

Pastureland

- Erosion control is needed when pastures are renovated.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland

- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites

- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields

- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets

- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: C-1

Hydric soil: No
FeA—Fluvaquents, silty, 0 to 1 percent slopes, frequently flooded

Setting

Landform: Flood plain
Position on the landform: Flood-plain step
Size of areas: About 8.0 to 131 acres

Map Unit Composition

Fluvaquents: 100 percent

Map Unit Interpretive Groups

Land capability classification: 5w
Prime farmland: Not prime farmland

General Description

Fluvaquents are soils on flood plains which are perennally covered by water. The soil material consists of dark- and light-colored, stratified sandy, loamy, silty or clayey alluvial deposits.

Soil Properties and Qualities

Available water capacity: About 13.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: Variable
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: At or near the surface
Kind of water table: Apparent
Ponding: Very long
Depth of ponding: 0.0 to 2.0 feet
Drainage class: Very poorly drained
Flooding: Frequent
Organic matter content in the surface layer:
Parent material: Alluvium
Permeability: Slow to rapid
Potential frost action: Not rated
Shrink-swell potential: Not rated
Surface layer texture: Stratified variable
Potential for surface runoff: Negligible
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland

• Forage production can be improved by seeding grass-legume mixtures that are tolerant of flooding.
• Sediment left on forage plants after a flood event may reduce palatability and forage intake by the grazing animal.
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.

Woodland

• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low pH in the soil may cause a nutrient imbalance in seedlings.
Standing water can inhibit the growth of some species of seedlings by restricting root respiration.
Flooding may result in damage to haul roads and increased maintenance costs.
Soil wetness may limit the use of this soil by log trucks.
Flooding restricts the safe use of roads by log trucks.
Ponding restricts the safe use of roads by log trucks.

Building Sites
The frequent flooding in areas of this soil greatly increases the risk of damage associated with floodwaters. Because of the flooding, this soil is generally unsuited to building site development.
Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.

Septic Tank Absorption Fields
This soil is generally unsuited to septic tank absorption fields. The flooding in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Rapidly moving floodwaters may damage some components of septic systems.
Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
Special design of roads and bridges is needed to prevent the damage caused by flooding.

Component Interpretive Groups
Pasture and hayland suitability group: Not rated
Hydric soil: Yes

FnC2—Fredericktown gravelly loam, 6 to 15 percent slopes, eroded

Setting
Landform: Kame terrace and stream terrace
Position on the landform: Riser
Size of areas: About 1.0 to 58 acres

Map Unit Composition
Fredericktown soils: 90 percent
Contrasting Components:
Conotton soils: 10 percent

Map Unit Interpretive Groups
Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 5.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 6.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loess over glaciofluvial outwash
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Gravelly loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and helps to minimize soil loss by erosion.
- Erosion has removed part of the surface soil, and the remaining surface soil is less productive and more difficult to manage.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.
Septic Tank Absorption Fields
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: B-1
Hydric soil: No

FnD2—Fredericktown gravelly loam, 15 to 25 percent slopes, eroded

Setting

Landform: Stream terrace and kame terrace
Position on the landform: Riser
Size of areas: About 1.5 to 16 acres

Map Unit Composition

Fredericktown soils: 90 percent
Contrasting Components:
 Conotton soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 7.7 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 6.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loess over glaciofluvial outwash
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Gravelly loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers
Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: A-2
Hydric soil: No

FoB—Fredericktown silt loam, 2 to 6 percent slopes

Setting

Landform: Stream terrace and kame terrace
Position on the landform: Tread
Size of areas: About 1.0 to 139 acres
Map Unit Composition
Fredericktown soils: 90 percent
Contrasting Components:
Conotton soils: 10 percent

Map Unit Interpretive Groups
Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities
Available water capacity: About 6.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 6.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loess over glaciofluvial outwash
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly layers

Use and Management Considerations

Cropland
• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
• Erosion control is needed when pastures are renovated.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.
This soil is well suited to use as building sites.

Septic Tank Absorption Fields
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups
- Pasture and hayland suitability group: A-1
- Hydric soil: No

FrA—Frenchtown silt loam, 0 to 2 percent slopes

Setting
- Landform: Till plain
- Position on the landform: Footslope and toeslope
- Size of areas: About 1.0 to 23 acres

Map Unit Composition
- Frenchtown soils: 100 percent

Map Unit Interpretive Groups
- Land capability classification: 3w
- Prime farmland: Prime farmland if drained

Soil Properties and Qualities
- Available water capacity: About 4.2 inches to a depth of 24 inches
- Cation-exchange capacity of the surface layer: 10 to 22 meq per 100 grams
- Depth class: Very deep
- Depth to root restrictive feature: Fragipan—18 to 38 inches
- Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
- Kind of water table: Perched
- Ponding: Brief
- Depth of ponding: 0.0 to 1.0 feet
- Drainage class: Poorly drained
- Flooding: None
- Organic matter content in the surface layer: 2.0 to 4.0 percent
- Parent material: Loamy till
- Permeability: Moderate above fragipan; slow or very slow in fragipan
- Potential frost action: High
- Shrink-swell potential: Low
- Surface layer texture: Silt loam
- Potential for surface runoff: Low
- Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
• The root system of winter grain crops may be damaged by frost action.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent
crusting, improves tilth, and increases the rate of water infiltration.
• A combination of surface and subsurface drainage helps to remove excess water.
• The movement of water into subsurface drains is restricted. Drainage guides can be
used to determine tile spacing requirements.
• The rooting depth of crops is restricted by dense soil material.

Pastureland
• Plants may suffer moisture stress during the drier summer months because of the
limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil
moisture.
• This soil provides poor summer pasture.
• Excess water should be removed, or grass or legume species that are adapted to
wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.
• Restricting grazing during wet periods can minimize compaction.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by
reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in
unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log
landings.
• Soil wetness may limit the use of this soil by log trucks.
• Ponding restricts the safe use of roads by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and
damage may result. The low strength of the soil may create unsafe conditions for
log trucks.

Building Sites
• Because water tends to pond on this soil, the period when excavations can be
made may be restricted and intensive construction site development and building
maintenance may be needed. The soil is generally unsuited to building site
development.

Septic Tank Absorption Fields
• Because of ponding, this soil is generally unsuited to use as a site for septic tank
absorption fields.

Local Roads and Streets
• Ponding affects the ease of excavation and grading and limits the bearing capacity
of this soil.
• Local roads and streets may be damaged by frost action, which is caused by the
freezing and thawing of soil moisture.

Component Interpretive Groups

*Pasture and hayland suitability group: C-1
Hydric soil: Yes*
GaB—Gavers silt loam, 2 to 6 percent slopes

Setting

Landform: Hill
Position on the landform: Footslope
Size of areas: About 1.0 to 70 acres

Map Unit Composition

Gavers soils: 90 percent
Contrasting Components:
Coshocton soils: 5 percent
Wetter soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 9.7 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loess over colluvium over interbedded siltstone, clayey shale and limestone residuum
Permeability: Slow or moderately slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland

- Erosion control is needed when pastures are renovated.
Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.

The root systems of plants may be damaged by frost action.

Restricting grazing during wet periods can minimize compaction.

Woodland

A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.

The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.

The low strength of the soil increases the cost of constructing haul roads and log landings.

Soil wetness may limit the use of this soil by log trucks.

Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites

The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields

The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets

Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.

Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: C-1

Hydric soil: No

GeC—Germano fine sandy loam, 6 to 15 percent slopes

Setting

Landform: Hill

Position on the landform: Shoulder, summit, and backslope

Size of areas: About 1.5 to 30 acres

Map Unit Composition

Germano soils and similar components: 85 percent

Similar components: More than 60 percent rock fragments in the surface layer

Contrasting Components:

Gilpin soils: 15 percent
Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.0 inches to a depth of 33 inches
Cation-exchange capacity of the surface layer: 5.0 to 10 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 3.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Fine sandy loam
Potential for surface runoff: Low
Wind erosion hazard: Moderate
Distinctive soil property: Very channery layers

Use and Management Considerations

Cropland
- The rooting depth of crops is restricted by bedrock.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Maintaining vegetative cover and establishing windbreaks reduce the hazard of wind erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• A loss of soil productivity may occur following an episode of fire.

Building Sites
• The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
Pasture and hayland suitability group: F-1
Hydric soil: No

GeD—Germano fine sandy loam, 15 to 25 percent slopes

Setting
Landform: Hill
Position on the landform: Backslope, shoulder, and summit
Size of areas: About 24 to 36 acres

Map Unit Composition
Germano soils and similar components: 85 percent
 Similar components: More than 60 percent rock fragments in the surface layer
Contrasting Components:
 Gilpin soils: 15 percent

Map Unit Interpretive Groups
Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 4.0 inches to a depth of 36 inches
Cation-exchange capacity of the surface layer: 5.0 to 10 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 3.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 3.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Fine sandy loam
Potential for surface runoff: Medium
Wind erosion hazard: Moderate
Distinctive soil property: Very channery layers

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- Sandy layers in this soil increase the maintenance of haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
- Burning may destroy organic matter.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.
- Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-1
Hydric soil: No
GnB—Gilpin silt loam, 2 to 6 percent slopes

Setting

Landform: Hill
Position on the landform: Summit
Size of areas: About 0.5 to 134 acres

Map Unit Composition

Gilpin soils: 90 percent
Contrasting Components:
 Berks soils: 5 percent
 Coshocton soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 3.2 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 8.0 to 18 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
• The rooting depth of crops is restricted by bedrock.
• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
• Erosion control is needed when pastures are renovated.
Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.

Using a system of conservation tillage when pastures are renovated conserves soil moisture.

This soil provides poor summer pasture.

The rooting depth of plants may be restricted by bedrock.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.

Building Sites
- The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

Pasture and hayland suitability group: F-1
Hydric soil: No

GnC—Gilpin silt loam, 6 to 15 percent slopes

Setting

Landform: Hill
Position on the landform: Summit, shoulner, and backslope
Size of areas: About 0.5 to 257 acres

Map Unit Composition

Gilpin soils: 85 percent
Contrasting Components:
- Coshocton soils: 10 percent
- Berks soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland
Soil Properties and Qualities

Available water capacity: About 3.6 inches to a depth of 25 inches
Cation-exchange capacity of the surface layer: 8.0 to 18 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.1 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- The rooting depth of crops is restricted by bedrock.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Burning may destroy organic matter.

Building Sites
• The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-1
Hydric soil: No

GnD—Gilpin silt loam, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Shoulder and backslope
Size of areas: About 1.0 to 117 acres

Map Unit Composition

Gilpin soils: 85 percent
Contrasting Components:
 • Coshocton soils: 10 percent
 • Berks soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.3 inches to a depth of 30 inches
Cation-exchange capacity of the surface layer: 8.0 to 18 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.5 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-1
Hydric soil: No
GoC—Gilpin-Coshocton silt loams, 6 to 15 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope, summit, and shoulder
Size of areas: About 2.0 to 808 acres

Map Unit Composition

Gilpin soils: 55 percent
Coshocton soils: 30 percent
Contrasting Components:
 Berks soils: 10 percent
 Guernsey soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Gilpin
Available water capacity: About 3.7 inches to a depth of 28 inches
Cation-exchange capacity of the surface layer: 8.0 to 18 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.3 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Coshocton
Available water capacity: About 8.9 inches to a depth of 56 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 80 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Gilpin Soil

Cropland

- The rooting depth of crops is restricted by bedrock.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland

- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland

- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites

- The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields

- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.
Use and Management Considerations Affecting the Coshocton Soil

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Gilpin
Pasture and hayland suitability group: F-1
Hydric soil: No

Coshocton
Pasture and hayland suitability group: A-6
Hydric soil: No

GoD—Gilpin-Coshocton silt loams, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope
Size of areas: About 1.0 to 117 acres

Map Unit Composition

Gilpin soils: 55 percent
Coshocton soils: 30 percent
Contrasting Components:
 - Berks soils: 10 percent
 - Guernsey soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Gilpin
Available water capacity: About 4.0 inches to a depth of 28 inches
Cation-exchange capacity of the surface layer: 8.0 to 18 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.3 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Soil Properties and Qualities

Coshocton
- **Available water capacity:** About 9.1 inches to a depth of 56 inches
- **Cation-exchange capacity of the surface layer:** 10 to 18 meq per 100 grams
- **Depth class:** Deep or very deep
- **Depth to root restrictive feature:** Bedrock (paralithic)—40 to 80 inches
- **Depth to the top of the seasonal high water table:** 1.5 to 2.5 feet
- **Kind of water table:** Perched
- **Ponding:** None
- **Drainage class:** Moderately well drained
- **Flooding:** None
- **Organic matter content in the surface layer:** 1.0 to 3.0 percent
- **Parent material:** Loamy colluvium and residuum weathered from interbedded sedimentary rock
- **Permeability:** Moderately slow or slow
- **Potential frost action:** High
- **Shrink-swell potential:** Moderate
- **Surface layer texture:** Silt loam
- **Potential for surface runoff:** High
- **Wind erosion hazard:** Slight

Use and Management Considerations Affecting the Gilpin Soil

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Coshocton Soil

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Gilpin
Pasture and hayland suitability group: F-1
Hydric soil: No

Coshocton
Pasture and hayland suitability group: A-2
Hydric soil: No

GpC—Gilpin-Coshocton-Urban land complex, 6 to 15 percent slopes

Setting
Landform: Hill
Position on the landform: Shoulder, summit, and backslope
Size of areas: About 10 to 169 acres

Map Unit Composition
Gilpin soils: 40 percent
Coshocton soils: 30 percent
Urban land: 20 percent
Contrasting Components:
 Berks soils: 5 percent
 Guernsey soils: 5 percent

Map Unit Interpretive Groups
Land capability classification: None assigned
Prime farmland: Not prime farmland

Soil Properties and Qualities
Gilpin
Available water capacity: About 4.2 inches to a depth of 30 inches
Cation-exchange capacity of the surface layer: 8.0 to 18 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.5 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Coshocton
Available water capacity: About 8.7 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 80 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Definition of Urban land

Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Use and Management Considerations Affecting the Gilpin Soil

Building Sites
• The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.
Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Coshocton Soil

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting Urban land

Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups

Gilpin
Pasture and hayland suitability group: Not rated
Hydric soil: No

Coshocton
Pasture and hayland suitability group: Not rated
Hydric soil: No

Urban land
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked
GrB—Glenford silt loam, 2 to 6 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 1.0 to 38 acres

Map Unit Composition

Glenford soils: 95 percent
Contrasting Components:
Fitchville soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 9.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Stratified glaciolacustrine deposits
Permeability: Moderate or moderately slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crust, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Erosion control is needed when pastures are renovated.
- The root systems of plants may be damaged by frost action.
Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: A-6
Hydric soil: No

GrC—Glenford silt loam, 6 to 12 percent slopes

Setting
Landform: Stream terrace
Position on the landform: Riser
Size of areas: About 1.0 to 34 acres

Map Unit Composition

Glenford soils: 95 percent
Contrasting Components:
Coshocton soils: 5 percent
Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 9.4 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Stratified glaciolacustrine deposits
Permeability: Moderate or moderately slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
- **Pasture and hayland suitability group:** A-6
- **Hydric soil:** No

GuC—Guernsey silt loam, 6 to 15 percent slopes

Setting
- **Landform:** Hill
- **Position on the landform:** Footslope and backslope
- **Size of areas:** About 2.0 to 80 acres

Map Unit Composition
- Guernsey soils: 90 percent
- Contrasting Components:
 - Berks soils: 5 percent
 - Keene soils: 5 percent

Map Unit Interpretive Groups
- **Land capability classification:** 3e
- **Prime farmland:** Not prime farmland
Soil Properties and Qualities

Available water capacity: About 8.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 12 to 25 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—50 to 120 inches
Depth to the top of the seasonal high water table: 0.8 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Colluvium and residuum weathered from shale and siltstone over
interbedded with some limestone
Permeability: Moderate to slow above the bedrock
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.

Building Sites
• The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Severe shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures generally require special design and construction techniques or intensive maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.
• In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
• Slippage may result in damage to effluent distribution lines and increased maintenance costs.
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.
Component Interpretive Groups

Pasture and hayland suitability group: A-6
Hydric soil: No

GuC2—Guernsey silt loam, 6 to 15 percent slopes, eroded

Setting

Landform: Hill
Position on the landform: Backslope and footslope
Size of areas: About 1.0 to 25 acres

Map Unit Composition

Guernsey soils: 90 percent
Contrasting Components:
 Berks soils: 5 percent
 Keene soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 8.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 12 to 25 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—50 to 120 inches
Depth to the top of the seasonal high water table: 0.8 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Colluvium and residuum weathered from shale and siltstone over interbedded with some limestone
Permeability: Moderate to slow above the bedrock
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Erosion has removed part of the surface soil, and the remaining surface soil is less productive and more difficult to manage.
• The root system of winter grain crops may be damaged by frost action.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
The rooting depth of crops may be restricted by the high clay content. Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration. Subsurface drainage helps to lower the seasonal high water table. Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Severe shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures generally require special design and construction techniques or intensive maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.
Septic Tank Absorption Fields
- Slippage may result in damage to effluent distribution lines and increased maintenance costs.
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
Pasture and hayland suitability group: A-6
Hydric soil: No

GuD—Guernsey silt loam, 15 to 25 percent slopes

Setting
Landform: Hill
Position on the landform: Footslope and backslope
Size of areas: About 1.5 to 30 acres

Map Unit Composition
Guernsey soils: 85 percent
Contrasting Components:
Berks soils: 10 percent
Somewhat poorly drained soils: 5 percent

Map Unit Interpretive Groups
Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 8.0 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 12 to 25 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—50 to 120 inches
Depth to the top of the seasonal high water table: 0.8 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Colluvium and residuum weathered from shale and siltstone over
interbedded with some limestone
Permeability: Moderate to slow above the bedrock
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silt loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.
• Removing excess water can reduce the possibility of soil slippage.
• Slippage may cause uneven slopes, which can affect equipment use and the
 grazing patterns of animals.
• Slips may affect fencing patterns and increase the cost of maintaining fences and
 buried water pipelines.
• The root systems of plants may be damaged by frost action.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a
 potential for erosion during construction of haul roads and log landings.
• A seasonal high water table can inhibit the growth of some species of seedlings by
 reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in
 unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log
 landings.
• The potential for slippage may interfere with the construction and use of haul roads
 and log landings and creates unsafe operating conditions.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency
 of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and
 damage may result. The low strength of the soil may create unsafe conditions for
 log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency
 of harvesting and mechanical planting equipment.
• The slope may restrict the use of some mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and
 seeding.

Building Sites
• The hazard of slippage increases the risk of mass soil movement. Sites subject to
 slippage are generally unsuited to building site development.
• In some areas the high content of clay in the subsurface layer increases the
difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
• Because of the high potential for slippage, this soil is generally unsuited to septic
tank absorption fields.

Local Roads and Streets
• Because of the high potential for slippage, this soil is generally unsuited to use for
local roads and streets.

Component Interpretive Groups

Pasture and hayland suitability group: A-2
Hydric soil: No

HeB—Hazleton channery loam, 2 to 6 percent slopes

Setting

Landform: Hill
Position on the landform: Summit
Size of areas: About 2.0 to 12 acres

Map Unit Composition

Hazleton soils: 85 percent
_Contrasting Components:
 Westmoreland soils: 10 percent
 Germano soils: 5 percent_

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 4.5 inches to a depth of 44 inches
Cation-exchange capacity of the surface layer: 15 to 30 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 3.7 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery loam
Potential for surface runoff: Very low
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Cropland
• Grassed waterways can be used in some areas to slow and direct the movement of
water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.

Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
• The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

Pasture and hayland suitability group: B-1
Hydric soil: No

HeC—Hazleton channery loam, 6 to 15 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope, summit, and shoulder
Size of areas: About 1.0 to 441 acres

Map Unit Composition

Hazleton soils: 85 percent
Contrasting Components:
Westmoreland soils: 10 percent
Germano soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.6 inches to a depth of 45 inches
Cation-exchange capacity of the surface layer: 15 to 30 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 3.7 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Cropland
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.

Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Sandy layers in this soil increase the maintenance of haul roads and log landings.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• Sandy layers may slough, thus reducing the efficiency of mechanical planting equipment.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
• The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: B-1
Hydric soil: No

HeD—Hazleton channery loam, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Summit, shoulder, and backslope
Size of areas: About 0.5 to 95 acres

Map Unit Composition

Hazleton soils: 85 percent
Contrasting Components:
 - Westmoreland soils: 10 percent
 - Germano soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 5.7 inches to a depth of 58 inches
Cation-exchange capacity of the surface layer: 15 to 30 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 4.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• Sandy layers in this soil increase the maintenance of haul roads and log landings.
• Bedrock may interfere with the construction of haul roads and log landing sites.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The sandiness of the soil may reduce the traction of wheeled harvest equipment and log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• Sandy layers may slough, thus reducing the efficiency of mechanical planting equipment.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.
• Stones restrict the use of equipment during site preparation for planting or seeding.
• Burning may destroy organic matter.

Building Sites
• The slope influences the use of machinery and the amount of excavation required.
Special building practices and designs are required to ensure satisfactory performance.

- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.
- Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.

Septic Tank Absorption Fields

- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: B-1

Hydric soil: No

HeE—Hazleton channery loam, 25 to 40 percent slopes

Setting

- Landform: Hill
- Position on the landform: Backslope
- Size of areas: About 1.0 to 210 acres

Map Unit Composition

- Hazleton soils: 90 percent
- Westmoreland soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 6e

Prime farmland: Not prime farmland

Soil Properties and Qualities

- Available water capacity: About 4.9 inches to a depth of 48 inches
- Cation-exchange capacity of the surface layer: 15 to 30 meq per 100 grams
- Depth class: Deep or very deep
- Depth to root restrictive feature: Bedrock (lithic)—40 to 72 inches
- Depth to the top of the seasonal high water table: Greater than 4.0 feet
- Ponding: None
- Drainage class: Well drained
- Flooding: None
- Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Extremely channery layers

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- The slope may restrict the use of some farm equipment.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Sandy layers in this soil increase the maintenance of haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Sandy layers may slough, thus reducing the efficiency of mechanical planting equipment.
- Because of the slope, the use of mechanical planting equipment is not practical.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
- Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: B-2
Hydric soil: No

HfF—Hazleton-Rock outcrop complex, 40 to 70 percent slopes

Setting
Landform: Hill
Position on the landform: Backslope
Size of areas: About 4.0 to 368 acres

Map Unit Composition

Hazleton soils: 65 percent
Rock outcrop: 25 percent
Contrasting Components:
Westmoreland soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 7e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Hazleton
Available water capacity: About 4.4 inches to a depth of 44 inches
Cation-exchange capacity of the surface layer: 15 to 30 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 3.7 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderate to rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Definition of Rock outcrop

Rock outcrop is exposed bedrock escarpments, consisting mostly of sandstone, on vertical cliffs and ledges on upper side slopes. Large boulders and smaller fragments that have broken off the exposed bedrock accumulate below the outcrop.

Use and Management Considerations Affecting Hazleton Soil

Pastureland

- This soil is generally not recommended for pasture.

Woodland

- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- Sandy layers in this soil increase the maintenance of haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.
- Because of the slope, the use of mechanical planting equipment is not practical.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- Burning may destroy organic matter and increase sedimentation.

Building Sites

- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.

Septic Tank Absorption Fields

- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting Rock outcrop

Onsite investigation is needed to determine the suitability for specific uses.
Component Interpretive Groups

Hazleton
Pasture and hayland suitability group: H-1
Hydric soil: No

Rock outcrop
Pasture and hayland suitability group: Not rated
Hydric soil: No

HgF—Hazleton-Westmoreland channery loams, 40 to 70 percent slopes

Setting
Landform: Hill
Position on the landform: Backslope
Size of areas: About 0.5 to 1,581 acres

Map Unit Composition
Hazleton and similar components: 55 percent
Westmoreland and similar components: 35 percent
Similar components: Stony surface
Contrasting Components:
 Rock outcrop: 10 percent

Map Unit Interpretive Groups
Land capability classification: 7e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Hazleton
Available water capacity: About 6.5 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 150 to 230 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 5.6 feet
Ponding: None
Drainage class: Well drained
Floodling: None
Organic matter content in the surface layer: 70.0 to 99.0 percent
Parent material: Residuum weathered from sandstone
Permeability: Moderate to rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Slightly decomposed plant material
Potential for surface runoff: High
Wind erosion hazard: Slight

Westmoreland
Available water capacity: About 7.1 inches to a depth of 52 inches
Cation-exchange capacity of the surface layer: 15 to 30 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (lithic)—40 to 120 inches
Depth to the top of the seasonal high water table: Greater than 4.3 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Loamy colluvium and residuum weathered from sandstone and siltstone
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Hazleton Soil

Pastureland
- This soil is generally not recommended for pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- Sandy layers in this soil increase the maintenance of haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The sandiness of the soil may reduce the traction of wheeled harvest equipment and log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Sandy layers may slough, thus reducing the efficiency of mechanical planting equipment.
- Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.
- Because of the slope, the use of mechanical planting equipment is not practical.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.

Building Sites
- The engineering properties of this soil are generally unfavorable for supporting heavy loads. Special design of footings and foundations may be needed to prevent the structural damage caused by low soil strength.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The excessive permeability limits the proper treatment of the effluent from septic
systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Westmoreland Soil

Pastureland

- This soil is generally not recommended for pasture.

Woodland

- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.
- Because of the slope, the use of mechanical planting equipment is not practical.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Burning may destroy organic matter and increase sedimentation.

Building Sites

- The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing foundations and installing utilities.

Septic Tank Absorption Fields

- Slippage may result in damage to effluent distribution lines and increased maintenance costs.
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
Local Roads and Streets
- Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Hazleton
Pasture and hayland suitability group: H-1
Hydric soil: No

Westmoreland
Pasture and hayland suitability group: H-1
Hydric soil: No

HkA—Holly silt loam, 0 to 2 percent slopes, frequently flooded

Setting
Landform: Flood plain
Position on the landform: Flood-plain step
Size of areas: About 1.0 to 151 acres

Map Unit Composition
Holly soils: 95 percent
Contrasting Components:
- Tioga soils: 5 percent

Map Unit Interpretive Groups
Land capability classification: 3w
Prime farmland: Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season

Soil Properties and Qualities
Available water capacity: About 9.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 24 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Bedrock (lithic)—70 to 120 inches
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Poorly drained
Flooding: Frequent
Organic matter content in the surface layer: 2.0 to 5.0 percent
Parent material: Loamy alluvium
Permeability: Moderately slow to moderately rapid
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight
Use and Management Considerations

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Winter grain crops are commonly not grown because of frequent flooding.
- Measures that protect the soil from scouring and minimize the loss of crop residue by floodwaters are needed.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Forage production can be improved by seeding grass-legume mixtures that are tolerant of flooding.
- Sediment left on forage plants after a flood event may reduce palatability and forage intake by the grazing animal.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- Standing water can inhibit the growth of some species of seedlings by restricting root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Flooding may result in damage to haul roads and increased maintenance costs.
- Soil wetness may limit the use of this soil by log trucks.
- Flooding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The frequent flooding in areas of this soil greatly increases the risk of damage associated with floodwaters. Because of the flooding, this soil is generally unsuited to building site development.

Septic Tank Absorption Fields
- This soil is generally unsuited to septic tank absorption fields. The flooding in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Rapidly moving floodwaters may damage some components of septic systems.
- Because of the seasonal high water table, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Special design of roads and bridges is needed to prevent the damage caused by flooding.

Component Interpretive Groups

Pasture and hayland suitability group: C-3
Hydric soil: Yes

HIB—Homewood silt loam, 2 to 6 percent slopes

Setting

Landform: Till plain
Position on the landform: Backslope and summit
Size of areas: About 2.0 to 56 acres

Map Unit Composition

Homewood soils: 90 percent
Contrasting Components:
 * Teegarden soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 4.7 inches to a depth of 25 inches
Cation-exchange capacity of the surface layer: 7.0 to 13 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 30 inches; Bedrock (paralithic)—60 to 120 inches
Depth to the top of the seasonal high water table: 1.5 to 2.3 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loess over till over residuum
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• The rooting depth of crops is restricted by dense soil material.

Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

HmA—Homeworth loam, 0 to 2 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 8.0 to 88 acres
Map Unit Composition

Homeworth soils: 90 percent
Contrasting Components:
 Chili soils: 5 percent
 Wetter soil: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 6.6 inches to a depth of 43 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Abrupt textural change: 30 to 50 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy water-sorted material over clayey lacustrine sediments
Permeability: Moderate in upper part; very slow in lower part
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland
• The root system of winter grain crops may be damaged by frost action.
• Subsurface drainage helps to lower the seasonal high water table.

Pastureland
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and
building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields

- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

*Pasture and hayland suitability group: C-1
Hydric soil: No*

HmB—Homeworth loam, 2 to 6 percent slopes

Setting

*Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 4.0 to 39 acres*

Map Unit Composition

Homeworth soils: 90 percent
Contrasting Components:
 - Chili soils: 5 percent
 - Wetter soil: 5 percent

Map Unit Interpretive Groups

*Land capability classification: 2e
Prime farmland: Prime farmland if drained*

Soil Properties and Qualities

*Available water capacity: About 6.1 inches to a depth of 38 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Abrupt textural change: 30 to 50 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy water-sorted material over clayey lacustrine sediments
Permeability: Moderate in upper part; very slow in lower part
Potential frost action: High
Shrink-swell potential: Moderate*
Surface layer texture: Loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- The rooting depth of crops may be restricted by the high clay content.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Subsurface drainage helps to lower the seasonal high water table.
- Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Erosion control is needed when pastures are renovated.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: C-2

Hydric soil: No

HoA—Homeworth silt loam, 0 to 2 percent slopes

Setting

Landform: Stream terrace

Position on the landform: Tread

Size of areas: About 3.0 to 75 acres

Map Unit Composition

Homeworth soils: 90 percent

Contrasting Components:

 Chili soils: 5 percent
 Wetter soil: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2w

Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 6.3 inches to a depth of 40 inches

Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams

Depth class: Very deep

Depth to root restrictive feature: Abrupt textural change: 30 to 50 inches

Depth to the top of the seasonal high water table: 0.5 to 1.0 feet

Kind of water table: Perched

Ponding: None

Drainage class: Somewhat poorly drained

Flooding: None

Organic matter content in the surface layer: 1.0 to 3.0 percent

Parent material: Loamy water-sorted material over clayey lacustrine sediments

Permeability: Moderate in upper part; very slow in lower part

Potential frost action: High

Shrink-swell potential: Moderate

Surface layer texture: Silt loam

Potential for surface runoff: Negligible

Wind erosion hazard: Slight

Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland

The root system of winter grain crops may be damaged by frost action.

Controlling traffic can minimize soil compaction.

The rooting depth of crops may be restricted by the high clay content.

Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Subsurface drainage helps to lower the seasonal high water table.

Including deep-rooted cover crops in the rotation is important for improving soil
structure and providing pathways in the clayey subsoil to facilitate the movement of
water into subsurface drains.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to
 wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by
 reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in
 unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log
 landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and
 damage may result. The low strength of the soil may create unsafe conditions for
 log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be
 made and may require a higher degree of construction site development and
 building maintenance. It is poorly suited to building site development and structures
 may need special design to avoid damage from wetness.
- In some areas the high content of clay in the subsurface layer increases the
 difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and
 proper treatment of the effluent from septic systems. Costly measures may be
 needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of
 the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the
 freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and
 reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: C-1
Hydric soil: No

HoB—Homeworth silt loam, 2 to 6 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 1.5 to 100 acres

Map Unit Composition

Homeworth soils: 90 percent
Contrasting Components:
- Chili soils: 5 percent
- Wetter soil: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 6.1 inches to a depth of 38 inches
Depth class: Very deep
Depth to root restrictive feature: Abrupt textural change: 30 to 50 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy water-sorted material over clayey lacustrine sediments
Permeability: Moderate in upper part; very slow in lower part
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Subsurface drainage helps to lower the seasonal high water table.
- Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Erosion control is needed when pastures are renovated.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.
Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: C-2
Hydric soil: No

JwA—Jimtown silt loam, 0 to 2 percent slopes

Setting

Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 1.5 to 30 acres

Map Unit Composition

Jimtown soils: 80 percent
Contrasting Components:
- Fitchville soils: 5 percent
- Fitchville soils with a till substratum above 60 inches: 5 percent
- Homeworth soils: 5 percent
- Valley soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2w
Prime farmland: Prime farmland if drained
Soil Properties and Qualities

Available water capacity: About 7.0 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciofluvial outwash deposits
Permeability: Moderate or moderately rapid
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Very gravelly or extremely gravelly layers

Use and Management Considerations

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.
Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups
Pasture and hayland suitability group: C-1
Hydric soil: No

JwB—Jimtown silt loam, 2 to 6 percent slopes

Setting
Landform: Stream terrace
Position on the landform: Tread
Size of areas: About 1.0 to 36 acres

Map Unit Composition
Jimtown soils: 80 percent
Contrasting Components:
- Fitchville soils: 5 percent
- Fitchville soils with a till substratum above 60 inches: 5 percent
- Homeworth soils: 5 percent
- Valley soils: 5 percent

Map Unit Interpretive Groups
Land capability classification: 2e
Prime farmland: Prime farmland if drained

Soil Properties and Qualities
Available water capacity: About 8.0 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 15 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Stratified glaciofluvial outwash deposits
Permeability: Moderate or moderately rapid
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Erosion control is needed when pastures are renovated.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
Component Interpretive Groups

Pasture and hayland suitability group: C-1
Hydric soil: No

KeB—Keene silt loam, 2 to 6 percent slopes

Setting

Landform: Hill
Position on the landform: Footslope, backslope, and summit
Size of areas: About 0.5 to 141 acres

Map Unit Composition

Keene soils: 90 percent
Contrasting Components:
 Gilpin soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 9.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 120 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loess over residuum weathered from shale and siltstone
Permeability: Moderate to slow above the bedrock
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland

- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
Pastureland
- Erosion control is needed when pastures are renovated.
- The root systems of plants may be damaged by frost action.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: A-6
Hydric soil: No

KnB—Kensington silt loam, 2 to 6 percent slopes

Setting

Landform: Till plain
Position on the landform: Summit
Size of areas: About 2.0 to 39 acres

Map Unit Composition

Kensington soils and similar components: 85 percent
Similar components: Somewhat poorly drained soils
Contrasting Components:
 Mechanicsburg soils: 15 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 7.3 inches to a depth of 42 inches
Cation-exchange capacity of the surface layer: 6.0 to 15 meq per 100 grams
Depth class: Deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 60 inches
Depth to the top of the seasonal high water table: 1.5 to 3.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loess over till over residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- Erosion control is needed when pastures are renovated.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields

- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets

- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No

KnC—Kensington silt loam, 6 to 15 percent slopes

Setting

Landform: Till plain
Position on the landform: Summit, shoulder, and backslope
Size of areas: About 1.0 to 455 acres

Map Unit Composition

Kensington soils and similar components: 85 percent
Similar components: Somewhat poorly drained soils
Contrasting Components:
Mechanicsburg soils: 15 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 9.0 inches to a depth of 58 inches
Cation-exchange capacity of the surface layer: 6.0 to 15 meq per 100 grams
Depth class: Deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 60 inches
Depth to the top of the seasonal high water table: 1.5 to 3.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loess over till over residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
Pasture and hayland suitability group: A-1
Hydric soil: No

KnD—Kensington silt loam, 15 to 25 percent slopes

Setting
Landform: Till plain
Position on the landform: Backslope
Size of areas: About 1.0 to 151 acres

Map Unit Composition
Kensington soils: 90 percent
Contrasting Components:
 Mechanicsburg soils: 10 percent

Map Unit Interpretive Groups
Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 9.3 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 6.0 to 15 meq per 100 grams
Depth class: Deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 60 inches
Depth to the top of the seasonal high water table: 1.5 to 3.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loess over till over residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Because of the slope, designing local roads and streets is difficult.
Component Interpretive Groups

Pasture and hayland suitability group: A-2
Hydric soil: No

LbA—Lobdell silt loam, 0 to 2 percent slopes, occasionally flooded

Setting

Landform: Flood plain
Position on the landform: Flood-plain step
Size of areas: About 1.5 to 180 acres

Map Unit Composition

Lobdell soils: 80 percent
Contrasting Components:
 Holly soils: 5 percent
 Orrville soils: 5 percent
 Tioga soils: 5 percent
 Zepernick soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 1
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 11.3 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 76 inches
Depth to the top of the seasonal high water table: 1.2 to 2.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Moderately well drained
Flooding: Occasional
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy alluvium
Permeability: Moderate or moderately rapid
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Very low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
Measures that protect the soil from scouring and minimize the loss of crop residue by floodwaters are needed. Small grain crops may be damaged by flooding in winter and spring. Systematic subsurface drainage will extend the period of planting and harvesting crops.

Pastureland
- Forage production can be improved by seeding grass-legume mixtures that are tolerant of flooding.
- Sediment left on forage plants after a flood event may reduce palatability and forage intake by the grazing animal.
- The root systems of plants may be damaged by frost action.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Flooding may result in damage to haul roads and increased maintenance costs.
- Soil wetness may limit the use of this soil by log trucks.
- Flooding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- Under normal weather conditions, this soil is subject to occasional flooding. The flooding may result in physical damage and costly repairs to buildings. This soil is generally unsuited to homesites. Special design of some structures, such as farm outbuildings, may be needed to prevent damage caused by flooding.

Septic Tank Absorption Fields
- This soil is generally unsuited to septic tank absorption fields. The flooding in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Rapidly moving floodwaters may damage some components of septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and bridges is needed to prevent the damage caused by flooding.

Component Interpretive Groups

Pasture and hayland suitability group: A-5
Hydric soil: No

LnA—Lorain silt loam, 0 to 2 percent slopes

Setting

Landform: Till plain
Position on the landform: Toeslope
Size of areas: About 1.0 to 108 acres

Map Unit Composition

Lorain soils and similar components: 80 percent
Similar components:
Soils with a thick, dark-colored surface layer
Soils with a surface layer formed in organic material

Contrasting Components:
Valley soils: 15 percent
Fitchville soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 7.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 14 to 26 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 62 inches
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: Long
Depth of ponding: 0.0 to 0.5 feet
Drainage class: Very poorly drained
Flooding: None
Organic matter content in the surface layer: 4.0 to 8.0 percent
Parent material: Silty and clayey glaciolacustrine deposits
Permeability: Moderately slow to very slow
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silt loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- A combination of surface and subsurface drainage helps to remove excess water.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland

- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.
Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- Standing water can inhibit the growth of some species of seedlings by restricting root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Ponding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.

Building Sites
- Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: C-2
Hydric soil: Yes

McB—Mechanicsburg silt loam, 2 to 6 percent slopes

Setting

Landform: Till plain
Position on the landform: Summit
Size of areas: About 1.0 to 73 acres

Map Unit Composition

Mechanicsburg and similar components: 90 percent
Contrasting Components:
 Kensington soils: 10 percent
Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 7.5 inches to a depth of 50 inches
Cation-exchange capacity of the surface layer: 10 to 20 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic): 40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 4.2 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till over residuum weathered from sandstone and siltstone
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Distinctive soil property: Very channery or extremely channery layers

Use and Management Considerations

Cropland
• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
• Erosion control is needed when pastures are renovated.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.

Building Sites
• This soil is well suited to use as building sites.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups
Pasture and hayland suitability group: A-1
Hydric soil: No

McC—Mechanicsburg silt loam, 6 to 15 percent slopes

Setting
Landform: Till plain
Position on the landform: Summit and shoulder
Size of areas: About 1.0 to 163 acres

Map Unit Composition
Mechanicsburg soils: 90 percent
Contrasting Components:
 Kensington soils: 10 percent

Map Unit Interpretive Groups
Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 7.8 inches to a depth of 50 inches
Cation-exchange capacity of the surface layer: 10 to 20 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic): 40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 4.2 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till over residuum weathered from sandstone and siltstone
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very channery or extremely channery layers

Use and Management Considerations
Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: A-1
Hydric soil: No

MnB—Morristown silty clay loam, 0 to 8 percent slopes

Setting

Landform: Surface mine on hill
Position on the landform: Summit and shoulder
Size of areas: About 3.0 to 175 acres
Map Unit Composition

Morristown soils: 90 percent
Contrasting Components:
 Unmined areas: 8 percent
 Water: 2 percent

Map Unit Interpretive Groups

Land capability classification: 3s
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 25 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Calcareous residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silty clay loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very channery or extremely channery layers

Use and Management Considerations

Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Stones restrict the use of equipment during site preparation for planting or seeding.
• Burning may destroy organic matter.

Building Sites
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups
Pasture and hayland suitability group: B-4
Hydric soil: No

MnD—Morristown silty clay loam, 8 to 25 percent slopes

Setting
Landform: Surface mine on hill
Position on the landform: Backslope, footslope, shoulder, and summit
Size of areas: About 2.0 to 237 acres

Map Unit Composition
Morristown soils: 85 percent
Contrasting Components:
 Highwalls: 5 percent
 Unmined areas: 5 percent
 Water: 5 percent

Map Unit Interpretive Groups
Land capability classification: 4s
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 4.6 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 25 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Calcareous residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silty clay loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Very channery or extremely channery layers
Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- Burning may destroy organic matter.

Building Sites
- The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- Slippage may result in damage to effluent distribution lines and increased maintenance costs.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
- Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

*Pasture and hayland suitability group: B-4
Hydric soil: No*

MoB—Morristown channery silty clay loam, 0 to 8 percent slopes

Setting

*Landform: Surface mine on hill
Position on the landform: Shoulder and summit
Size of areas: About 3.0 to 66 acres*

Map Unit Composition

*Morristown soils: 90 percent
Contrasting Components:
 Unmined areas: 8 percent
 Water: 2 percent*

Map Unit Interpretive Groups

*Land capability classification: 4s
Prime farmland: Not prime farmland*

Soil Properties and Qualities

*Available water capacity: About 4.3 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 25 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 0.5 percent
Parent material: Calcareous residuum of fine earth and rock fragments from coal extraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Channery silty clay loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Distinctive soil property: Very channery or extremely channery layers*

Use and Management Considerations

*Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.*
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.

Woodland
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Stones restrict the use of equipment during site preparation for planting or seeding.
• Burning may destroy organic matter.

Building Sites
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

Pasture and hayland suitability group: E-3
Hydric soil: No

MoD—Morristown channery silty clay loam, 8 to 25 percent slopes

Setting

Landform: Surface mine on hill
Position on the landform: Backslope, footslope, shoulder, and summit
Size of areas: About 2.0 to 181 acres

Map Unit Composition

Morristown soils: 85 percent
Contrasting Components:
• Steeper areas and highwalls: 5 percent
• Unmined areas: 5 percent
• Water: 5 percent

Map Unit Interpretive Groups

Land capability classification: 6s
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.3 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 25 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 0.5 percent
Parent material: Calcareous residuum of fine earth and rock fragments from coal
eextraction mine spoil derived from interbedded sedimentary rock
Permeability: Moderately slow
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Channery silty clay loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Very channery or extremely channery layers

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
- Stones restrict the use of equipment during site preparation for planting or seeding.
- Burning may destroy organic matter.

Building Sites
- The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special
design and construction may be needed to help prevent structural damage caused by slippage.

- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields

- Slippage may result in damage to effluent distribution lines and increased maintenance costs.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets

- Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

*Pasture and hayland suitability group: E-3
Hydric soil: No*

OdA—Olmsted and Valley soils, 0 to 2 percent slopes

Setting

*Landform: Terrace and till plain
Position on the landform: Depression on terrace tread; toeslope on plain
Size of areas: About 1.0 to 25 acres*

Map Unit Composition

- Olmsted soils and similar components: 45 percent
- Valley soils and similar components: 35 percent
 - Similar components: Soil with less clay and more silt in the subsoil than Valley

Contrasting Components:

- Homeworth soils: 10 percent
- Fitchville soils: 5 percent
- Jimtown soils: 5 percent

Map Unit Interpretive Groups

*Land capability classification: 3w
Prime farmland: Not prime farmland*

Soil Properties and Qualities

Olmsted

*Available water capacity: About 7.7 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 11 to 19 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 60 inches*
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: Long
Depth of ponding: 0.0 to 1.0 feet
Drainage class: Very poorly drained
Flooding: None
Organic matter content in the surface layer: 3.0 to 8.0 percent
Parent material: Loamy glaciofluvial deposits
Permeability: Moderate or moderately rapid
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight

Valley
Available water capacity: About 8.6 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 15 to 22 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: Brief
Depth of ponding: 0.0 to 0.5 feet
Drainage class: Poorly drained
Flooding: None
Organic matter content in the surface layer: 3.0 to 11.0 percent
Parent material: Glaciolacustrine deposits over till
Permeability: Very slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Olmsted Soil

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- A combination of surface and subsurface drainage helps to remove excess water.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- Standing water can inhibit the growth of some species of seedlings by restricting root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
The low strength of the soil increases the cost of constructing haul roads and log landings.

Soil wetness may limit the use of this soil by log trucks.

Ponding restricts the safe use of roads by log trucks.

Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites

- Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.

Septic Tank Absorption Fields

- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets

- Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Use and Management Considerations Affecting the Valley Soil

Cropland

- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- A combination of surface and subsurface drainage helps to remove excess water.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland

- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland

- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Ponding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The stickiness of the soil reduces the efficiency of mechanical planting equipment.

Building Sites
• Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.
• In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
• Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Olmsted
*Pasture and hayland suitability group: C-1
Hydric soil: Yes*

Valley
*Pasture and hayland suitability group: C-2
Hydric soil: Yes*

OmB—Omulga silt loam, 2 to 6 percent slopes

Setting

*Landform: Terrace
Position on the landform: Tread
Size of areas: About 1.0 to 138 acres*

Map Unit Composition

Omulga soils: 90 percent
Contrasting Components:
 * Doles soils: 10 percent

Map Unit Interpretive Groups

*Land capability classification: 2e
Prime farmland: All areas are prime farmland*

Soil Properties and Qualities

*Available water capacity: About 7.0 inches to a depth of 34 inches
Cation-exchange capacity of the surface layer: 10 to 20 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan: 18 to 36 inches*
Depth to the top of the seasonal high water table: 1.0 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Loess over old alluvium and/or colluvium
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• The root system of winter grain crops may be damaged by frost action.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• Subsurface drainage helps to lower the seasonal high water table.
• The rooting depth of crops is restricted by dense soil material.

Pastureland
• Erosion control is needed when pastures are renovated.
• The root systems of plants may be damaged by frost action.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• A loss of soil productivity may occur following an episode of fire.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
• The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups
Pasture and hayland suitability group: F-3
Hydric soil: No

OmC—Omulga silt loam, 6 to 12 percent slopes

Setting
Landform: Terrace
Position on the landform: Riser
Size of areas: About 1.5 to 89 acres

Map Unit Composition
Omulga soils: 90 percent
Contrasting Components:
 Well drained soils without a fragipan: 10 percent

Map Unit Interpretive Groups
Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 4.7 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 10 to 20 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan: 18 to 36 inches
Depth to the top of the seasonal high water table: 1.0 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Loess over old alluvium and/or colluvium
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations
Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
• The root system of winter grain crops may be damaged by frost action.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• Subsurface drainage helps to lower the seasonal high water table.
• The rooting depth of crops is restricted by dense soil material.

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• The root systems of plants may be damaged by frost action.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• A loss of soil productivity may occur following an episode of fire.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

OrA—Orrville silt loam, 0 to 2 percent slopes, occasionally flooded

Setting
Landform: Flood plain
Position on the landform: Flood-plain step
Size of areas: About 1.0 to 824 acres

Map Unit Composition

Orrville soils and similar components: 85 percent
Similar components: Soils with thin layers having more than 15 percent gravel
Contrasting Components:
 - Tioga soils: 10 percent
 - Holly soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities
Available water capacity: About 9.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 20 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: Occasional
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Loamy alluvium
Permeability: Moderate or moderately rapid
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight
Use and Management Considerations

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Measures that protect the soil from scouring and minimize the loss of crop residue by floodwaters are needed.
- Small grain crops may be damaged by flooding in winter and spring.
- Subsurface drainage helps to lower the seasonal high water table.

Pastureland
- Forage production can be improved by seeding grass-legume mixtures that are tolerant of flooding.
- Sediment left on forage plants after a flood event may reduce palatability and forage intake by the grazing animal.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Flooding may result in damage to haul roads and increased maintenance costs.
- Soil wetness may limit the use of this soil by log trucks.
- Flooding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- Under normal weather conditions, this soil is subject to occasional flooding. The flooding may result in physical damage and costly repairs to buildings. This soil is generally unsuited to homesites. Special design of some structures, such as farm outbuildings, may be needed to prevent damage caused by flooding.

Septic Tank Absorption Fields
- This soil is generally unsuited to septic tank absorption fields. The flooding in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Rapidly moving floodwaters may damage some components of septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and bridges is needed to prevent the damage caused by flooding.
Component Interpretive Groups

Pasture and hayland suitability group: C-3
Hydric soil: No

Pg—Pits, gravel

Setting

Landform: Till plain and terrace
Size of areas: About 0.5 to 89 acres

Map Unit Composition

Pits: 85 percent
Contrasting Components:
 - Reclaimed areas: 5 percent
 - Spoil piles: 5 percent
 - Water: 5 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

Definition of Pits, gravel

Open excavations from which soil, sand or gravel are being removed, exposing the underlying substratum material. Also includes spoil from grading and washing processes, and inactive pits that are not reclaimed.

Use and Management Considerations

Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups

Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

RaB—Rainsboro silt loam, 2 to 6 percent slopes

Setting

Landform: Terrace
Position on the landform: Tread
Size of areas: About 1.5 to 63 acres

Map Unit Composition

Rainsboro soils: 85 percent
Contrasting Components:
 - Calcutta soils: 5 percent
 - Doles soils: 5 percent
 - Fredericktown soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland
Soil Properties and Qualities

Available water capacity: About 5.4 inches to a depth of 26 inches
Cation-exchange capacity of the surface layer: 6.0 to 11 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 30 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Loess over outwash
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- Burning may destroy organic matter.
Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

RaC2—Rainsboro silt loam, 6 to 12 percent slopes, eroded

Setting
Landform: Terrace
Position on the landform: Riser
Size of areas: About 0.5 to 50 acres

Map Unit Composition
Rainsboro soils: 80 percent
Contrasting Components:
 Fredericktown soils: 10 percent
 Omulga soils: 10 percent

Map Unit Interpretive Groups
Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 5.3 inches to a depth of 25 inches
Cation-exchange capacity of the surface layer: 6.0 to 11 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 30 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Loess over outwash
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Erosion has removed part of the surface soil, and the remaining surface soil is less productive and more difficult to manage.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Burning may destroy organic matter.

Building Sites
- The seasonal high water table may restrict the period when excavations can be
made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields

- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets

- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

RbC—Rainsboro silt loam, 6 to 12 percent slopes, stony

Setting

Landform: Terrace
Position on the landform: Riser
Size of areas: About 2.0 to 15 acres

Map Unit Composition

Rainsboro soils: 80 percent
Contrasting Components:
 - Fredericktown soils: 10 percent
 - Omulga soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 5.2 inches to a depth of 28 inches
Cation-exchange capacity of the surface layer: 6.0 to 11 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—20 to 30 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 2.0 percent
Parent material: Loess over outwash
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Large stones restrict the use of most farm machinery.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.
- Large stones on the surface may restrict the operation of some farm machinery during pasture renovation.

Woodland
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• A loss of soil productivity may occur following an episode of fire.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

ReA—Ravenna silt loam, 0 to 2 percent slopes

Setting
Landform: Till plain
Position on the landform: Toeslope and summit
Size of areas: About 1.0 to 70 acres

Map Unit Composition
Ravenna soils: 90 percent
Contrasting Components:
 Canfield soils: 5 percent
 Wetter soils: 5 percent

Map Unit Interpretive Groups
Land capability classification: 2w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities
Available water capacity: About 4.4 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—14 to 30 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Floodling: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and
building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: C-1
Hydric soil: No

ReB—Ravenna silt loam, 2 to 6 percent slopes

Setting
- Landform: Till plain
- Position on the landform: Shoulder, gootslope, backslope, and summit
- Size of areas: About 0.5 to 120 acres

Map Unit Composition

Ravenna soils: 90 percent
Contrasting Components:
 - Canfield soils: 5 percent
 - Wetter soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 4.7 inches to a depth of 25 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan: 14 to 30 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight
Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.

Component Interpretive Groups

Pasture and hayland suitability group: C-1
Hydric soil: No

RhD—Richland silt loam, 15 to 25 percent slopes, stony

Setting

Landform: Hill
Position on the landform: Footslope
Size of areas: About 3.0 to 59 acres

Map Unit Composition

-Richland soils: 85 percent
-Contrasting Components:
 -Coshocton soils: 5 percent
 -Guernsey soils: 5 percent
 -Westmoreland soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 7.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 2.0 to 3.5 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Colluvium derived from interbedded sedimentary rock
Permeability: Moderate
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland

- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Large stones on the surface may restrict the operation of some farm machinery during pasture renovation.
Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
• The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: A-2
Hydric soil: No
RhE—Richland silt loam, 25 to 40 percent slopes, stony

Setting

Landform: Hill
Position on the landform: Footslope
Size of areas: About 3.0 to 68 acres

Map Unit Composition

Richland soils: 85 percent
Contrasting Components:
 Coshocton soils: 5 percent
 Guernsey soils: 5 percent
 Westmoreland soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 6e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 7.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 2.0 to 3.5 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Colluvium derived from interbedded sedimentary rock
Permeability: Moderate
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- The slope may restrict the use of some farm equipment.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.
- Large stones on the surface may restrict the operation of some farm machinery during pasture renovation.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• Because of the slope, the use of mechanical planting equipment is not practical.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
• The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• Slippage may result in damage to effluent distribution lines and increased maintenance costs.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
• The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
• Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Because of the slope, designing local roads and streets is difficult.
Component Interpretive Groups

Pasture and hayland suitability group: A-3
Hydric soil: No

RsB—Rittman silt loam, 2 to 6 percent slopes

Setting

Landform: Till plain
Position on the landform: Summit, shoulder, and backslope
Size of areas: About 1.0 to 338 acres

Map Unit Composition

Rittman soils: 90 percent
Contrasting Components:
 Wadsworth soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 3.8 inches to a depth of 21 inches
Cation-exchange capacity of the surface layer: 12 to 25 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 36 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Grasped waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
• The rooting depth of crops is restricted by dense soil material.

Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• The root systems of plants may be damaged by frost action.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

Rsc—Rittman silt loam, 6 to 12 percent slopes

Setting

Landform: Till plain
Position on the landform: Backslope, shoulder, and summit
Size of areas: About 0.5 to 254 acres

Map Unit Composition

Rittman soils: 90 percent
Contrasting Components:
Well drained soils without a fragipan: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.2 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 12 to 25 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 36 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The root systems of plants may be damaged by frost action.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
• The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

RsD2—Rittman silt loam, 12 to 20 percent slopes, eroded

Setting
Landform: Till plain
Position on the landform: Backslope
Size of areas: About 1.0 to 113 acres
Map Unit Composition

Rittman soils: 90 percent
Contrasting Components:
 Well drained soils without a fragipan: 10 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 3.4 inches to a depth of 20 inches
Cation-exchange capacity of the surface layer: 12 to 25 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan: 18 to 36 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• The root systems of plants may be damaged by frost action.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and
damage may result. The low strength of the soil may create unsafe conditions for log trucks.

• The slope may restrict the use of some mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

TeB—Teegarden silt loam, 2 to 6 percent slopes

Setting

Landform: Till plain
Position on the landform: Summit, shoulder, backslope
Size of areas: About 1.0 to 53 acres

Map Unit Composition

Teegarden soils: 90 percent
Contrasting Components:
 Somewhat poorly drained soils without a fragipan: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 4.1 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 5.0 to 13 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 30 inches; Bedrock (paralithic)—60 to 120 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loess over till over residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and
building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields

- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets

- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: F-3

Hydric soil: No

TeC—Teegarden silt loam, 6 to 15 percent slopes

Setting

Landform: Till plain

Position on the landform: Backslope, shoulder, summit, and footslope

Size of areas: About 0.5 to 271 acres

Map Unit Composition

Teegarden soils: 90 percent

Contrasting Components:

- Gilpin soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e

Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.5 inches to a depth of 25 inches

Cation-exchange capacity of the surface layer: 5.0 to 13 meq per 100 grams

Depth class: Very deep

Depth to root restrictive feature: Fragipan—18 to 30 inches; Bedrock (paralithic)—60 to 120 inches

Depth to the top of the seasonal high water table: 1.0 to 2.0 feet

Kind of water table: Perched

Ponding: None

Drainage class: Moderately well drained

Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loess over till over residuum weathered from interbedded sedimentary rock
Permeability: Moderate above the fragipan; slow in the fragipan
Potential frost action: Moderate
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
- The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

TeC2—Teegarden silt loam, 6 to 15 percent slopes, eroded

Setting

Landform: Till plain
Position on the landform: Shoulder, backslope
Size of areas: About 1.5 to 372 acres

Map Unit Composition

Teegarden soils: 90 percent
Contrasting Components:
 Gilpin soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 4.5 inches to a depth of 25 inches
Cation-exchange capacity of the surface layer: 5.0 to 13 meq per 100 grams
Depth class: Very deep
Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Erosion has removed part of the surface soil, and the remaining surface soil is less productive and more difficult to manage.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: F-3
Hydric soil: No

ToA—Tioga loam, 0 to 2 percent slopes, occasionally flooded

Setting
Landform: Flood plain
Position on the landform: Flood-plain step
Size of areas: About 0.5 to 614 acres

Map Unit Composition

Tioga soils: 90 percent
Contrasting Components:
• Orrville soils: 5 percent
• Poorly drained soils: 5 percent
Map Unit Interpretive Groups

Land capability classification: 1
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 8.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 12 to 28 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: Occasional
Organic matter content in the surface layer: 2.0 to 6.0 percent
Parent material: Loamy alluvium
Permeability: Moderate to rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
• Measures that protect the soil from scouring and minimize the loss of crop residue by floodwaters are needed.
• Small grain crops may be damaged by flooding in winter and spring.

Pastureland
• Forage production can be improved by seeding grass-legume mixtures that are tolerant of flooding.
• Sediment left on forage plants after a flood event may reduce palatability and forage intake by the grazing animal.

Woodland
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Flooding may result in damage to haul roads and increased maintenance costs.
• Flooding restricts the safe use of roads by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• Under normal weather conditions, this soil is subject to occasional flooding. The flooding may result in physical damage and costly repairs to buildings. This soil is generally unsuited to homesites. Special design of some structures, such as farm outbuildings, may be needed to prevent damage caused by flooding.
• Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.

Septic Tank Absorption Fields
• This soil is generally unsuited to septic tank absorption fields. The flooding in areas
of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Rapidly moving floodwaters may damage some components of septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Special design of roads and bridges is needed to prevent the damage caused by flooding.

Component Interpretive Groups

Pasture and hayland suitability group: A-5
Hydric soil: No

Ua—Udorthents, loamy, 2 to 25 percent slopes

Setting

Landform: Hill, terrace, and till plain
Size of areas: About 3.0 to 120 acres

Map Unit Composition

Udorthents: 85 percent
Contrasting Components:
Areas that have not been excavated: 10 percent
Urban land: 5 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

General Description

Udorthents have been randomly altered by construction activities in developing major highway right-of-ways or commercial areas. Also included are rail yards in rural areas and small landfills and gravel pits that have been closed and reclaimed.

Soil Properties and Qualities

Available water capacity: About 5.5 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: Variable
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6 feet
Ponding: None
Drainage class: Somewhat excessively drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 5.0 percent
Permeability: Slow in surface layer; slow to moderately rapid below surface layer
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight
Use and Management Considerations

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low pH in the soil may cause a nutrient imbalance in seedlings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope increases unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Pasture and hayland suitability group: B-1
Hydric soil: Unranked

Ub—Udorthents, refuse substratum, 2 to 25 percent slopes

Setting

Landform: Till plain, terrace, and hill
Size of areas: About 2.0 to 170 acres

Map Unit Composition

Udorthents: 90 percent
Contrasting Components:
Areas that have not been excavated: 10 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

General Description
These areas were mostly very deep, excessively drained to moderately well drained soils used as sites for sanitary landfills. The soils have been cut, filled and graded. About 2 feet of soil material is used to cap compacted refuse and other buried debris. Due to extensive mixing of the unconsolidated soil material, soil texture can be highly variable and soil profile development is absent or weak.

Soil Properties and Qualities
Available water capacity: About 2.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: Variable
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6 feet
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 4.0 percent
Permeability: Slow in surface layer; slow to moderately rapid below surface layer
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Channery loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight

Use and Management Considerations

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• The root systems of plants may be damaged by frost action.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The low pH in the soil may cause a nutrient imbalance in seedlings.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
The slope may restrict the use of some mechanical planting equipment.
Rock fragments in the soil obstruct the use of mechanical planting equipment.

Building Sites
The slope influences the use of machinery and the amount of excavation required.
Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
Pasture and hayland suitability group: A-6
Hydric soil: Unranked

Uc—Udorthents-Pits complex, 0 to 70 percent slopes

Setting
Landform: Till plain, terrace, and hill
Size of areas: About 0.5 to 166 acres

Map Unit Composition
Udorthents: 60 percent
Pits: 30 percent
Contrasting Components:
Moderately deep and deep soils: 5 percent
Water: 5 percent

Map Unit Interpretive Groups
Land capability classification: None assigned
Prime farmland: Not prime farmland

General Description
Udorthents are unconsolidated soil materials that have been excavated, mixed and redeposited as spoil in active or recent surface mining operations. They commonly are composed of a high content of rock fragments poorly mixed with weathered and non-weathered fine-earth materials. The spoil is dumped in cone-shaped or ridged piles 10 to 70 feet high to the side of the mining pit being dug.

Soil Properties and Qualities
Udorthents
Available water capacity: About 5.5 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: Variable
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6 feet
Ponding: None
Drainage class: Somewhat excessively drained
Flooding: None
Organic matter content in the surface layer: 0.0 to 5.0 percent
Permeability: Slow in surface layer; slow to moderately rapid below surface layer
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery sandy loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight

Definition of Pits

Pits are the nearly level areas between Udorthents and the vertical high walls created during surface mining operations.

Use and Management Considerations Affecting Udorthents

Pastureland
- This soil is generally not recommended for pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low pH in the soil may cause a nutrient imbalance in seedlings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.
- Because of the slope, the use of mechanical planting equipment is not practical.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting Pits

Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups

Udorthents
Pasture and hayland suitability group: E-2
Hydric soil: Unranked
Pits
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

UkC2—Upshur-Berks complex, 6 to 15 percent slopes, eroded

Setting

Landform: Hill
Position on the landform: Summit, backslope, shoulder
Size of areas: About 1.5 to 101 acres

Map Unit Composition

Upshur soils: 70 percent
Berks soils: 20 percent
Contrasting Components:
 Guernsey soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Upshur
Available water capacity: About 5.4 inches to a depth of 44 inches
Cation-exchange capacity of the surface layer: 14 to 20 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 3.7 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 3.0 percent
Parent material: Residuum weathered from clayey shale
Permeability: Moderately slow or slow above the bedrock
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silty clay loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight

Berks
Available water capacity: About 1.9 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic): 20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Upshur Soil

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Erosion has removed part of the surface soil, and the remaining surface soil is less productive and more difficult to manage.
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- Because of the content of clay, this soil becomes sticky when wet. The stickiness increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.
- Because of the stickiness of the soil, the use of equipment for site preparation is restricted to the drier periods.
• Burning may destroy organic matter.

Building Sites
• The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
• Severe shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures generally require special design and construction techniques or intensive maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.
• In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
• Slippage may result in damage to effluent distribution lines and increased maintenance costs.
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
• Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Berks Soil

Cropland
• The rooting depth of crops is restricted by bedrock.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Erosion has removed part of the surface soil, and the remaining surface soil is less productive and more difficult to manage.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.

Pastureland
• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• The rooting depth of plants may be restricted by bedrock.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Bedrock may interfere with the construction of haul roads and log landing sites.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
• Because of the moderate content of rock fragments, excavation may be more difficult and cutbanks may become unstable. Excavations and trench walls may require reinforcement.
• The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.
• The high content of large stones affects the ease of excavation and grading.

Component Interpretive Groups

Upshur
Pasture and hayland suitability group: A-6
Hydric soil: No

Berks
Pasture and hayland suitability group: F-1
Hydric soil: No

UkD2—Upshur-Berks complex, 15 to 25 percent slopes, eroded

Setting

Landform: Hill
Position on the landform: Backslope
Size of areas: About 2.0 to 82 acres
Map Unit Composition

Upshur soils: 70 percent
Berks soils: 20 percent
Contrasting Components:
 Guernsey soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 6e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Upshur
Available water capacity: About 7.0 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 14 to 20 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 72 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 0.5 to 3.0 percent
Parent material: Residuum weathered from clayey shale
Permeability: Moderately slow or slow above the bedrock
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silty clay loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight

Berks
Available water capacity: About 1.7 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Upshur Soil

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
• Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.
• The root systems of plants may be damaged by frost action.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
• Because of the content of clay, this soil becomes sticky when wet. The stickiness increases the cost of constructing haul roads and log landings.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• The slope may restrict the use of some mechanical planting equipment.
• The stickiness of the soil reduces the efficiency of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.
• Because of the stickiness of the soil, the use of equipment for site preparation is restricted to the drier periods.
• Burning may destroy organic matter.

Building Sites
• The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
• Severe shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures generally require special design and construction techniques or intensive maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
• Slippage may result in damage to effluent distribution lines and increased maintenance costs.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
• Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.
Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Berks Soil

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- The rooting depth of plants may be restricted by bedrock.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- Bedrock may interfere with the construction of haul roads and log landing sites.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- The slope may restrict the use of some mechanical planting equipment.
- Rock fragments in the soil obstruct the use of mechanical planting equipment.
- The slope restricts the use of equipment for preparing this site for planting and seeding.
- Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
- The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Upshur
- Pasture and hayland suitability group: A-2
- Hydric soil: No

Berks
- Pasture and hayland suitability group: F-1
- Hydric soil: No

UkE2—Upshur-Berks complex, 25 to 40 percent slopes, eroded

Setting
- Landform: Hill
- Position on the landform: Backslope
- Size of areas: About 5.0 to 222 acres

Map Unit Composition

- Upshur soils: 70 percent
- Berks soils: 20 percent
- Contrasting Components:
 - Guernsey soils: 10 percent

Map Unit Interpretive Groups

- Land capability classification: 7e
- Prime farmland: Not prime farmland

Soil Properties and Qualities

Upshur
- Available water capacity: About 6.0 inches to a depth of 50 inches
- Cation-exchange capacity of the surface layer: 14 to 20 meq per 100 grams
- Depth class: Deep or very deep
- Depth to root restrictive feature: Bedrock (paralithic)—40 to 72 inches
- Depth to the top of the seasonal high water table: Greater than 4.2 feet
- Ponding: None
- Drainage class: Well drained
- Flooding: None
- Organic matter content in the surface layer: 0.5 to 3.0 percent
- Parent material: Residue weathered from clayey shale
- Permeability: Moderately slow or slow above the bedrock
- Potential frost action: High
- Shrink-swell potential: High
- Surface layer texture: Silty clay loam
- Potential for surface runoff: Very high
- Wind erosion hazard: Slight

Berks
- Available water capacity: About 1.7 inches to a depth of 22 inches
- Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Use and Management Considerations Affecting Upshur Soil

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- The slope may restrict the use of some farm equipment.
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
- Using a system of conservation tillage when pastures are renovated conserves soil moisture.
- This soil provides poor summer pasture.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- Because of the content of clay, this soil becomes sticky when wet. The stickiness increases the cost of constructing haul roads and log landings.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
- Because of the slope, the use of mechanical planting equipment is not practical.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.
• Because of the stickiness of the soil, the use of equipment for site preparation is restricted to the drier periods.
• Burning may destroy organic matter.

Building Sites
• The hazard of slippage increases the risk of mass soil movement. Sites subject to slippage are generally unsuited to building site development.
• In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
• Because of the high potential for slippage, this soil is generally unsuited to septic tank absorption fields.

Local Roads and Streets
• Because of the high potential for slippage, this soil is generally unsuited to use for local roads and streets.

Use and Management Considerations Affecting the Berks Soil

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• The slope may restrict the use of some farm equipment.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• The rooting depth of plants may be restricted by bedrock

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• Because of the slope, the use of mechanical planting equipment is not practical.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.
• Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
• The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
Septic Tank Absorption Fields
• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Upshur
Pasture and hayland suitability group: B-2
Hydric soil: No

Berks
Pasture and hayland suitability group: F-2
Hydric soil: No

Ur—Urban land, 0 to 15 percent slopes

Setting
Landform: Till plain, terrace, and hill
Size of areas: About 5.0 to 410 acres

Map Unit Composition
Urban land: 90 percent
Contrasting Components:
Natural soils not disturbed by excavation or construction: 10 percent

Map Unit Interpretive Groups
Land capability classification: None assigned
Prime farmland: Not prime farmland

Definition of Urban land
Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Use and Management Considerations
Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

UtB—Urban land-Canfield complex, 2 to 6 percent slopes

Setting
Landform: Till plain
Position on the landform: Summit
Size of areas: About 2.0 to 1,001 acres
Map Unit Composition

Urban land and similar components: 60 percent
Canfield and similar components: 30 percent
Contrasting Components:
 - Ravenna soils: 5 percent
 - Zepernick soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

Definition of Urban land

Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Soil Properties and Qualities

Canfield
Available water capacity: About 5.0 inches to a depth of 28 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan: 18 to 30 inches
Depth to the top of the seasonal high water table: 1.2 to 2.3 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations Affecting Urban land

Onsite investigation is needed to determine the suitability for specific uses.

Use and Management Considerations Affecting the Canfield Soil

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Urban land
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

Canfield
Pasture and hayland suitability group: Not rated
Hydric soil: No

UtC—Urban land-Canfield complex, 6 to 12 percent slopes

Setting
Landform: Till plain
Position on the landform: Backslope and shoulder
Size of areas: About 2.0 to 436 acres

Map Unit Composition

Urban land: 60 percent
Canfield soils: 30 percent
Contrasting Components:
 Steeper areas: 10 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

Definition of Urban land
Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Soil Properties and Qualities

Canfield
Available water capacity: About 4.3 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 30 inches
Depth to the top of the seasonal high water table: 1.2 to 2.3 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy till
Permeability: Moderate above fragipan; slow in fragipan
Potential frost action: High
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations Affecting Urban land

Onsite investigation is needed to determine the suitability for specific uses.

Use and Management Considerations Affecting the Canfield Soil

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
- Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.
- The moderate permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Urban land
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked

Canfield
Pasture and hayland suitability group: Not rated
Hydric soil: No

UvB—Urban land-Chili complex, 2 to 6 percent slopes

Setting
Landform: Stream terrace and kame
Position on the landform: Tread on terrace; summit and shoulder on kame
Size of areas: About 5.0 to 503 acres

Map Unit Composition
Urban land: 60 percent
Chili soils: 30 percent
Contrasting Components:
Conotton soils: 5 percent
Steeper areas: 5 percent

Map Unit Interpretive Groups

Land capability classification: None assigned
Prime farmland: Not prime farmland

Definition of Urban land

Urban land is a miscellaneous area where the original soils have been removed or altered during excavation and construction activities, often resulting in random soil mixing. The soil surface is largely covered by streets, structures and other engineered installations. Generally the infiltration of precipitation on urban land is very limited.

Soil Properties and Qualities

Chili
Available water capacity: About 6.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 16 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Glaciofluvial outwash
Permeability: Moderately rapid
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations Affecting Urban land

Onsite investigation is needed to determine the suitability for specific uses.

Use and Management Considerations Affecting the Chili Soil

Building Sites
• Because of the high content of sand or gravel in the soil, the resistance to sloughing is reduced in shallow excavations and cutbanks are susceptible to caving.
• This soil is well suited to use as building sites.

Septic Tank Absorption Fields
• The excessive permeability limits the proper treatment of the effluent from septic systems in areas of this soil. The poorly treated effluent may pollute the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Component Interpretive Groups

Urban land
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked
Chili
Pasture and hayland suitability group: Not rated
Hydric soil: No

VaA—Valley silt loam, 0 to 2 percent slopes

Setting
Landform: Till plain
Position on the landform: Footslope and toeslope
Size of areas: About 1.0 to 113 acres

Map Unit Composition
Valley soils and similar components: 80 percent
Similar components: Soils with less clay and more silt in the subsoil
Contrasting Components:
 - Lorain soils: 10 percent
 - Fitchville soils: 5 percent
 - Olmsted soils: 5 percent

Map Unit Interpretive Groups
Land capability classification: 3w
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 8.6 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 15 to 22 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: Brief
Depth of ponding: 0.0 to 0.5 feet
Drainage class: Poorly drained
Flooding: None
Organic matter content in the surface layer: 3.0 to 11.0 percent
Parent material: Glaciolacustrine deposits over till
Permeability: Very slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations
Cropland
 • The root system of winter grain crops may be damaged by frost action.
 • Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
 • Controlling traffic can minimize soil compaction.
 • The rooting depth of crops may be restricted by the high clay content.
A combination of surface and subsurface drainage helps to remove excess water. The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements. Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Ponding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.

Building Sites
- Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: C-2
Hydric soil: Yes
VbA—Valley silty clay loam, 0 to 2 percent slopes

Setting
Landform: Till plain
Position on the landform: Footslope and toeslope
Size of areas: About 1.5 to 25 acres

Map Unit Composition
Valley soils and similar components: 80 percent
Similar components: Soils with less clay and more silt in the subsoil
Contrasting Components:
 Lorain soils: 10 percent
 Fitchville soils: 5 percent
 Olmsted soils: 5 percent

Map Unit Interpretive Groups
Land capability classification: 3w
Prime farmland: Not prime farmland

Soil Properties and Qualities
Available water capacity: About 8.7 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 15 to 22 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: Brief
Depth of ponding: 0.0 to 0.5 feet
Drainage class: Poorly drained
Flooding: None
Organic matter content in the surface layer: 3.0 to 11.0 percent
Parent material: Glaciolacustrine deposits over till
Permeability: Very slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silty clay loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations
Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- A combination of surface and subsurface drainage helps to remove excess water.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Including deep-rooted cover crops in the rotation is important for improving soil
structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Ponding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.
- A loss of soil productivity may occur following an episode of fire.

Building Sites
- Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

*Pasture and hayland suitability group: C-2
Hydric soil: Yes*

VcA—Valley-Lorain silt loams, 0 to 2 percent slopes

Setting

*Landform: Till plain
Position on the landform: Footslope and toeslope
Size of areas: About 1.5 to 166 acres*
Map Unit Composition

Valley and similar components: 45 percent
Lorain and similar components: 35 percent
 Similar components: Soils with less clay and more silt in the subsoil
Contrasting Components:
 Fitchville soils: 10 percent
 Ravenna soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3w
Prime farmland: Not prime farmland

Soil Properties and Qualities

Valley
Available water capacity: About 8.6 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 15 to 22 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: Brief
Depth of ponding: 0.0 to 0.5 feet
Drainage class: Poorly drained
Flooding: None
Organic matter content in the surface layer: 3.0 to 11.0 percent
Parent material: Glaciolacustrine deposits over till
Permeability: Very slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Lorain
Available water capacity: About 7.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 14 to 26 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 62 inches
Depth to the top of the seasonal high water table: 0.0 to 0.5 feet
Kind of water table: Apparent
Ponding: Long
Depth of ponding: 0.0 to 0.5 feet
Drainage class: Very poorly drained
Flooding: None
Organic matter content in the surface layer: 4.0 to 8.0 percent
Parent material: Silty and clayey glaciolacustrine deposits
Permeability: Moderately slow to very slow
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silt loam
Potential for surface runoff: Negligible
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers
Use and Management Considerations Affecting the Valley Soil

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- A combination of surface and subsurface drainage helps to remove excess water.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Ponding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.

Building Sites
- Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
Use and Management Considerations Affecting the Lorain Soil

Cropland
- The root system of winter grain crops may be damaged by frost action.
- Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- A combination of surface and subsurface drainage helps to remove excess water.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
- The root systems of plants may be damaged by frost action.
- Restricting grazing during wet periods can minimize compaction.

Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- Standing water can inhibit the growth of some species of seedlings by restricting root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Ponding restricts the safe use of roads by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.

Building Sites
- Because water tends to pond on this soil, the period when excavations can be made may be restricted and intensive construction site development and building maintenance may be needed. The soil is generally unsuited to building site development.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- Because of ponding, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Ponding affects the ease of excavation and grading and limits the bearing capacity of this soil.
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
Component Interpretive Groups

Valley
Pasture and hayland suitability group: C-2
Hydric soil: Yes

Lorain
Pasture and hayland suitability group: C-2
Hydric soil: Yes

VnB—Vandergrift silt loam, 2 to 6 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope and footslope
Size of areas: About 1.5 to 214 acres

Map Unit Composition

Vandergrift soils and similar components: 90 percent
Similar components: Moderately deep soils
Contrasting Components:
 Gilpin soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 2e
Prime farmland: All areas are prime farmland

Soil Properties and Qualities

Available water capacity: About 7.4 inches to a depth of 56 inches
Cation-exchange capacity of the surface layer: 9.5 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 80 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Calcareous and noncalcareous interbedded shale and siltstone residuum
Permeability: Slow above the bedrock
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland
• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• The root system of winter grain crops may be damaged by frost action.
• Controlling traffic can minimize soil compaction.
• The rooting depth of crops may be restricted by the high clay content.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• Subsurface drainage helps to lower the seasonal high water table.
• Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
• Erosion control is needed when pastures are renovated.
• The root systems of plants may be damaged by frost action.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Severe shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures generally require special design and construction techniques or intensive maintenance.
• In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
Component Interpretive Groups

Pasture and hayland suitability group: A-6
Hydric soil: No

VnC—Vandergrift silt loam, 6 to 15 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope and footslope
Size of areas: About 1.5 to 80 acres

Map Unit Composition

Vandergrift soils and similar components: 90 percent
Similar components: Moderately deep soils
Contrasting Components:
 Gilpin soils: 10 percent

Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Available water capacity: About 7.9 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 9.5 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 80 inches
Depth to the top of the seasonal high water table: 1.0 to 2.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Calcareous and noncalcareous interbedded shale and siltstone residuum
Permeability: Slow above the bedrock
Potential frost action: High
Shrink-swell potential: High
Surface layer texture: Silt loam
Potential for surface runoff: Very high
Wind erosion hazard: Slight
Distinctive soil property: Clayey layers

Use and Management Considerations

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- The rooting depth of crops may be restricted by the high clay content.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- Subsurface drainage helps to lower the seasonal high water table.
Including deep-rooted cover crops in the rotation is important for improving soil structure and providing pathways in the clayey subsoil to facilitate the movement of water into subsurface drains.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.
- The root systems of plants may be damaged by frost action.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.
- Soil wetness may limit the use of this soil by log trucks.
- The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
- The slope may restrict the use of some mechanical planting equipment.
- The stickiness of the soil reduces the efficiency of mechanical planting equipment.

Building Sites
- The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Severe shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures generally require special design and construction techniques or intensive maintenance.
- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- Slippage may result in damage to effluent distribution lines and increased maintenance costs.
The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems. Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern. The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
Slippage may result in damage to roads and increase the cost of design, construction, and maintenance. Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets. Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture. The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil. The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength. Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups
Pasture and hayland suitability group: A-6
Hydric soil: No

W—Water

Setting
Landform: None assigned
Size of areas: About 0.5 to 396 acres

Map Unit Composition
Water and similar components: 100 percent

Map Unit Interpretive Groups
Land capability classification: None assigned
Prime farmland: Not prime farmland

Definition of Water
Water includes creeks, rivers, lakes, and ponds that are water bodies in most years at least during the period warm enough for plants to grow; most areas persist throughout the year.

Use and Management Considerations
Onsite investigation is needed to determine the suitability for specific uses.

Component Interpretive Groups
Pasture and hayland suitability group: Not rated
Hydric soil: Unranked
WaA—Wadsworth silt loam, 0 to 2 percent slopes

Setting

Landform: Till plain
Position on the landform: Summit and toeslope
Size of areas: About 1.5 to 30 acres

Map Unit Composition

Wadsworth soils: 90 percent
Contrasting Components:
 Rittman soils: 5 percent
 Wetter soils: 5 percent

Map Unit Interpretive Groups

Land capability classification: 3w
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 4.2 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 14 to 20 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 30 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Till
Permeability: Moderately slow above fragipan; slow or very slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
- Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
- The root system of winter grain crops may be damaged by frost action.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
- The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
- Subsurface drainage helps to lower the seasonal high water table.
- The rooting depth of crops is restricted by dense soil material.

Pastureland
- Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.
• Restricting grazing during wet periods can minimize compaction.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.

Septic Tank Absorption Fields
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: C-1
Hydric soil: No

WaB—Wadsworth silt loam, 2 to 6 percent slopes

Setting

Landform: Till plain
Position on the landform: Shoulder, summit, backslope, and footslope
Size of areas: About 1.0 to 91 acres

Map Unit Composition

Wadsworth soils: 90 percent
Contrasting Components:
 Rittman soils: 5 percent
 Wetter soils: 5 percent
Map Unit Interpretive Groups

Land capability classification: 3e
Prime farmland: Prime farmland if drained

Soil Properties and Qualities

Available water capacity: About 4.7 inches to a depth of 27 inches
Cation-exchange capacity of the surface layer: 14 to 20 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Fragipan—18 to 30 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Perched
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Till
Permeability: Moderately slow above fragipan; slow or very slow in fragipan
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations

Cropland

• Grassed waterways can be used in some areas to slow and direct the movement of water and reduce erosion.
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• Incorporating crop residue or other organic matter into the surface layer increases the capacity of the soil to hold and retain moisture. Plants may suffer from moisture stress because of the limited available water capacity.
• The root system of winter grain crops may be damaged by frost action.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.
• The movement of water into subsurface drains is restricted. Drainage guides can be used to determine tile spacing requirements.
• Subsurface drainage helps to lower the seasonal high water table.
• The rooting depth of crops is restricted by dense soil material.

Pastureland

• Erosion control is needed when pastures are renovated.
• Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.
• Using a system of conservation tillage when pastures are renovated conserves soil moisture.
• This soil provides poor summer pasture.
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.
• Restricting grazing during wet periods can minimize compaction.
Woodland
- A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Soil wetness may limit the use of this soil by log trucks.
- Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
- The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
- Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
- The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.

Component Interpretive Groups

Pasture and hayland suitability group: C-1
Hydric soil: No

WkE—Westmoreland-Berks complex, 25 to 40 percent slopes

Setting
Landform: Hill
Position on the landform: Backslope
Size of areas: About 2.0 to 179 acres

Map Unit Composition
Westmoreland soils: 55 percent
Berks soils: 35 percent
Contrasting Components:
 Hazleton: 10 percent
Map Unit Interpretive Groups

Land capability classification: 6e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Westmoreland
Available water capacity: About 6.6 inches to a depth of 50 inches
Cation-exchange capacity of the surface layer: 15 to 25 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 120 inches
Depth to the top of the seasonal high water table: Greater than 4.2 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loamy colluvium and residuum weathered from sandstone and siltstone
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Berks
Available water capacity: About 1.8 inches to a depth of 24 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (lithic)—20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 2.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Westmoreland Soil

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- The slope may restrict the use of some farm equipment.
- Removing excess water can reduce the possibility of soil slippage.
- Slippage may cause uneven slopes, which can affect equipment use and the grazing patterns of animals.
- Slips may affect fencing patterns and increase the cost of maintaining fences and buried water pipelines.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.

The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.

The low strength of the soil increases the cost of constructing haul roads and log landings.

The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.

The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.

Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.

Because of the slope, the use of mechanical planting equipment is not practical.

Rock fragments in the soil obstruct the use of mechanical planting equipment.

The slope restricts the use of equipment for preparing this site for planting and seeding.

Burning may destroy organic matter.

Building Sites

The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields

The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.

The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets

Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Berks Soil

Pastureland

Avoiding overgrazing can reduce the hazard of erosion.

Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.

The slope may restrict the use of some farm equipment.

Plants may suffer moisture stress during the drier summer months because of the limited available water capacity.

Using a system of conservation tillage when pastures are renovated conserves soil moisture.

This soil provides poor summer pasture.

The rooting depth of plants may be restricted by bedrock.

Woodland

If the soil is disturbed, the slope increases the hazard of erosion.

The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.

The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• Because of the slope, the use of mechanical planting equipment is not practical.
• Rock fragments in the soil obstruct the use of mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.
• Stones restrict the use of equipment during site preparation for planting or seeding.

Building Sites
• The depth to bedrock and hardness of the bedrock greatly reduce the ease of excavation and increase the difficulty in constructing foundations and installing utilities.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• Because of the moderate content of rock fragments, excavation may be more difficult and cutbanks may become unstable. Excavations and trench walls may require reinforcement.

Septic Tank Absorption Fields
• Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
• The depth to bedrock and hardness of the bedrock reduce the ease of excavation and increase the difficulty of constructing roads.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Because of the slope, designing local roads and streets is difficult.
• The high content of large stones affects the ease of excavation and grading.

Component Interpretive Groups

Westmoreland
Pasture and hayland suitability group: A-3
Hydric soil: No

Berks
Pasture and hayland suitability group: F-2
Hydric soil: No

WkF—Westmoreland-Berks complex, 40 to 70 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope
Size of areas: About 0.5 to 1,354 acres

Map Unit Composition

Westmoreland soils: 55 percent
Berks soils: 35 percent
Contrasting Components:
 Hazleton: 10 percent
Map Unit Interpretive Groups

Land capability classification: 7e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Westmoreland
Available water capacity: About 7.8 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 150 to 230 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 120 inches
Depth to the top of the seasonal high water table: Greater than 6.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 70.0 to 99.0 percent
Parent material: Loamy colluvium and residuum weathered from sandstone and siltstone
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Slightly decomposed plant material
Potential for surface runoff: High
Wind erosion hazard: Slight

Berks
Available water capacity: About 1.6 inches to a depth of 22 inches
Cation-exchange capacity of the surface layer: 5.0 to 15 meq per 100 grams
Depth class: Moderately deep
Depth to root restrictive feature: Bedrock (paralithic): 20 to 40 inches
Depth to the top of the seasonal high water table: Greater than 1.8 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Residuum weathered from interbedded sedimentary rock
Permeability: Moderate or moderately rapid above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Channery silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Westmoreland Soil

Pastureland
- This soil is generally not recommended for pasture.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
- The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
- The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
The potential for slippage may interfere with the construction and use of haul roads and log landings and creates unsafe operating conditions.

The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.

Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.

Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.

Because of the slope, the use of mechanical planting equipment is not practical.

Building Sites

The potential for slippage may interfere with excavation and building site development. For foundations and other structures and buried utility lines, special design and construction may be needed to help prevent structural damage caused by slippage.

The engineering properties of this soil are generally unfavorable for supporting heavy loads. Special design of footings and foundations may be needed to prevent the structural damage caused by low soil strength.

The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields

Slippage may result in damage to effluent distribution lines and increased maintenance costs.

The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.

Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets

Slippage may result in damage to roads and increase the cost of design, construction, and maintenance.

Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.

Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Berks Soil

Pastureland

This soil is generally not recommended for pasture.

Woodland

If the soil is disturbed, the slope increases the hazard of erosion.

The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.

The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.

The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.

Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.

Because of the slope, use of equipment to prepare this site for planting and seeding is not practical.

Because of the slope, the use of mechanical planting equipment is not practical.

Rock fragments in the soil obstruct the use of mechanical planting equipment.

Stones restrict the use of equipment during site preparation for planting or seeding.

Burning may destroy organic matter and increase sedimentation.

Building Sites

- The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
- The nature and depth of the soft bedrock in this soil reduces the ease of excavation and increases the difficulty in constructing foundations and installing utilities.

Septic Tank Absorption Fields

- Because of the limited depth to bedrock, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets

- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Westmoreland

- *Pasture and hayland suitability group: H-1*
- *Hydric soil: No*

Berks

- *Pasture and hayland suitability group: H-1*
- *Hydric soil: No*

WmC—Westmoreland-Coshocton silt loams, 8 to 15 percent slopes

Setting

- *Landform: Hill*
- *Position on the landform: Footslope, shoulder, and summit*
- *Size of areas: About 0.5 to 605 acres*

Map Unit Composition

- Westmoreland soils: 55 percent
- Coshocton soils: 30 percent
- Contrasting Components:
 - Berks soils: 5 percent
 - Guernsey soils: 5 percent
 - Hazleton: 5 percent

Map Unit Interpretive Groups

- *Land capability classification: 3e*
- *Prime farmland: Not prime farmland*
Soil Properties and Qualities

Westmoreland
Available water capacity: About 7.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 15 to 25 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 120 inches
Depth to the top of the seasonal high water table: Greater than 5.0 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loamy colluvium and residuum weathered from sandstone and siltstone
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Coshocton
Available water capacity: About 9.0 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 120 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Westmoreland Soil

Cropland
- Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
- Controlling traffic can minimize soil compaction.
- Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
- Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
- Erosion control is needed when pastures are renovated.

Woodland
- If the soil is disturbed, the slope increases the hazard of erosion.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.

Building Sites
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Coshocton Soil

Cropland
• Using a system of conservation tillage and planting cover crops reduce the runoff rate and help to minimize soil loss by erosion.
• The root system of winter grain crops may be damaged by frost action.
• Controlling traffic can minimize soil compaction.
• Maintaining or increasing the content of organic matter in the soil helps to prevent crusting, improves tilth, and increases the rate of water infiltration.

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.
• The root systems of plants may be damaged by frost action.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope may restrict the use of some mechanical planting equipment.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. This soil is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs may be required to ensure satisfactory performance.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines and seepage of poorly treated effluent is a concern.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Westmoreland
Pasture and hayland suitability group: A-1
Hydric soil: No

Coshocton
Pasture and hayland suitability group: A-6
Hydric soil: No

WmD—Westmoreland-Coshocton silt loams, 15 to 25 percent slopes

Setting

Landform: Hill
Position on the landform: Backslope and shoulder
Size of areas: About 0.5 to 21 acres
Map Unit Composition

Westmoreland soils: 55 percent
Coshocton soils: 30 percent
Contrasting Components:
 Berks soils: 5 percent
 Guernsey soils: 5 percent
 Hazleton: 5 percent

Map Unit Interpretive Groups

Land capability classification: 4e
Prime farmland: Not prime farmland

Soil Properties and Qualities

Westmoreland
Available water capacity: About 7.5 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 15 to 25 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic)—40 to 120 inches
Depth to the top of the seasonal high water table: Greater than 5.4 feet
Ponding: None
Drainage class: Well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 4.0 percent
Parent material: Loamy colluvium and residuum weathered from sandstone and siltstone
Permeability: Moderate above the bedrock
Potential frost action: Moderate
Shrink-swell potential: Low
Surface layer texture: Silt loam
Potential for surface runoff: Medium
Wind erosion hazard: Slight

Coshocton
Available water capacity: About 8.1 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 10 to 18 meq per 100 grams
Depth class: Deep or very deep
Depth to root restrictive feature: Bedrock (paralithic): 40 to 120 inches
Depth to the top of the seasonal high water table: 1.5 to 2.5 feet
Kind of water table: Perched
Ponding: None
Drainage class: Moderately well drained
Flooding: None
Organic matter content in the surface layer: 1.0 to 3.0 percent
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Permeability: Moderately slow or slow
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: High
Wind erosion hazard: Slight

Use and Management Considerations Affecting the Westmoreland Soil

Pastureland
- Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.

Building Sites
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.

Septic Tank Absorption Fields
• The limited depth to bedrock reduces the filtering capacity of the soil and greatly increases the difficulty of proper installation of the effluent distribution lines.
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.

Local Roads and Streets
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Use and Management Considerations Affecting the Coshocton Soil

Pastureland
• Avoiding overgrazing can reduce the hazard of erosion.
• Maintaining healthy plants and vegetative cover can reduce the hazard of erosion.
• Erosion control is needed when pastures are renovated.
• The root systems of plants may be damaged by frost action.

Woodland
• If the soil is disturbed, the slope increases the hazard of erosion.
• The slope increases excavation costs, poses safety hazards, and creates a potential for erosion during construction of haul roads and log landings.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Soil wetness may limit the use of this soil by log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.
• The slope creates unsafe operating conditions and reduces the operating efficiency of harvesting and mechanical planting equipment.
• The slope may restrict the use of some mechanical planting equipment.
• The slope restricts the use of equipment for preparing this site for planting and seeding.
• Burning may destroy organic matter.

Building Sites
• The seasonal high water table may restrict the period when excavations can be made and may require a higher degree of construction site development and building maintenance. It is poorly suited to building site development and structures may need special design to avoid damage from wetness.
• The slope influences the use of machinery and the amount of excavation required. Special building practices and designs are required to ensure satisfactory performance.
• Moderate shrinking and swelling of the soil may crack foundations and basement walls. Foundations and other structures may require some special design and construction techniques or maintenance.

Septic Tank Absorption Fields
• The restricted permeability of this soil limits the absorption and proper treatment of the effluent from septic systems.
• Because of the slope, special design and installation techniques are needed for the effluent distribution lines.
• The seasonal high water table in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Costly measures may be needed to lower the water table in the area of the absorption field.

Local Roads and Streets
• Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
• Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
• The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
• The low bearing strength of this soil is generally unfavorable for supporting heavy loads. Special design of local roads and streets is needed to prevent the structural damage caused by low soil strength.
• Because of the slope, designing local roads and streets is difficult.

Component Interpretive Groups

Westmoreland
Pasture and hayland suitability group: A-2
Hydric soil: No

Coshocton
Pasture and hayland suitability group: A-2
Hydric soil: No
WoA—Wick silt loam, 0 to 2 percent slopes, frequently flooded

Setting
Landform: Flood plain
Position on the landform: Flood-plain step
Size of areas: About 1.0 to 590 acres

Map Unit Composition
Wick and similar components: 90 percent
Similar components: Soils with less silt and more sand in the subsoil
Contrasting Components:
Somewhat poorly drained soils: 4 percent
Zepernick soils: 4 percent
Carlisle soils: 2 percent

Map Unit Interpretive Groups
Land capability classification: 5w
Prime farmland: Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season

Soil Properties and Qualities
Available water capacity: About 10.3 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 33 to 34 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: At or near the surface
Kind of water table: Apparent
Ponding: None
Drainage class: Very poorly drained
Floodling: Frequent
Organic matter content in the surface layer: 2.0 to 4.0 percent
Parent material: Silty alluvium
Permeability: Moderately slow or moderate
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations
Pastureland
• Forage production can be improved by seeding grass-legume mixtures that are tolerant of flooding.
• Sediment left on forage plants after a flood event may reduce palatability and forage intake by the grazing animal.
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.
• Restricting grazing during wet periods can minimize compaction.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• Standing water can inhibit the growth of some species of seedlings by restricting root respiration.
The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
- The low strength of the soil increases the cost of constructing haul roads and log landings.
- Flooding may result in damage to haul roads and increased maintenance costs.
- Soil wetness may limit the use of this soil by log trucks.
- Flooding restricts the safe use of roads by log trucks.

Building Sites
- The frequent flooding in areas of this soil greatly increases the risk of damage associated with floodwaters. Because of the flooding, this soil is generally unsuited to building site development.
- In some areas the high content of clay in the subsurface layer increases the difficulty of digging, filling, and compacting the soil material in shallow excavations.

Septic Tank Absorption Fields
- This soil is generally unsuited to septic tank absorption fields. The flooding in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Rapidly moving floodwaters may damage some components of septic systems.
- Because of the seasonal high water table, this soil is generally unsuited to use as a site for septic tank absorption fields.

Local Roads and Streets
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Special design of roads and bridges is needed to prevent the damage caused by flooding.

Component Interpretive Groups

*Pasture and hayland suitability group: C-3
Hydric soil: Yes

ZeA—Zepernick silt loam, 0 to 2 percent slopes, occasionally flooded

Setting

Landform: Flood plain (fig. 13)
Position on the landform: Flood-plain step
Size of areas: About 1.5 to 792 acres

Map Unit Composition

Zepernick soils and similar components: 85 percent
- Similar components: Soils with less silt and more sand in the subsoil
Contrasting Components:
- Wick soils: 13 percent
- Moderately well drained soils: 2 percent

Map Unit Interpretive Groups

*Land capability classification: 2w
Prime farmland: Prime farmland if drained*
Soil Properties and Qualities

Available water capacity: About 12.2 inches to a depth of 60 inches
Cation-exchange capacity of the surface layer: 8.0 to 18 meq per 100 grams
Depth class: Very deep
Depth to root restrictive feature: Greater than 80 inches
Depth to the top of the seasonal high water table: 0.5 to 1.0 feet
Kind of water table: Apparent
Ponding: None
Drainage class: Somewhat poorly drained
Flooding: Occasional
Organic matter content in the surface layer: 2.0 to 5.0 percent
Parent material: Silty alluvium
Permeability: Moderately slow or moderate
Potential frost action: High
Shrink-swell potential: Moderate
Surface layer texture: Silt loam
Potential for surface runoff: Low
Wind erosion hazard: Slight

Use and Management Considerations

Cropland
• The root system of winter grain crops may be damaged by frost action.
• Careful selection and application of chemicals and fertilizers help to minimize the possibility of groundwater contamination.
• Controlling traffic can minimize soil compaction.
• Measures that protect the soil from scouring and minimize the loss of crop residue by floodwaters are needed.
• Small grain crops may be damaged by flooding in winter and spring.
• Subsurface drainage helps to lower the seasonal high water table.

Pastureland
• Forage production can be improved by seeding grass-legume mixtures that are tolerant of flooding.
• Sediment left on forage plants after a flood event may reduce palatability and forage intake by the grazing animal.
• Excess water should be removed, or grass or legume species that are adapted to wet soil conditions should be planted.
• The root systems of plants may be damaged by frost action.
• Restricting grazing during wet periods can minimize compaction.

Woodland
• A seasonal high water table can inhibit the growth of some species of seedlings by reducing root respiration.
• The low strength of the soil may cause the formation of ruts, which can result in unsafe conditions and damage to equipment.
• The low strength of the soil increases the cost of constructing haul roads and log landings.
• Flooding may result in damage to haul roads and increased maintenance costs.
• Soil wetness may limit the use of this soil by log trucks.
• Flooding restricts the safe use of roads by log trucks.
• Because of low soil strength, harvesting equipment may be difficult to operate and damage may result. The low strength of the soil may create unsafe conditions for log trucks.

Building Sites
• Under normal weather conditions, this soil is subject to occasional flooding. The
flooding may result in physical damage and costly repairs to buildings. This soil is generally unsuited to homesites. Special design of some structures, such as farm outbuildings, may be needed to prevent damage caused by flooding.

Septic Tank Absorption Fields
- This soil is generally unsuited to septic tank absorption fields. The flooding in areas of this soil greatly limits the absorption and proper treatment of the effluent from septic systems. Rapidly moving floodwaters may damage some components of septic systems.

Local Roads and Streets
- Because of shrinking and swelling, this soil may not be suitable for use as base material for local roads and streets.
- Local roads and streets may be damaged by frost action, which is caused by the freezing and thawing of soil moisture.
- The seasonal high water table affects the ease of excavation and grading and reduces the bearing capacity of this soil.
- Special design of roads and streets is needed to prevent the structural damage caused by low soil strength.
- Special design of roads and bridges is needed to prevent the damage caused by flooding.

Component Interpretive Groups

Pasture and hayland suitability group: C-3
Hydric soil: No
Prime Farmland

Prime farmland is one of several kinds of important farmland defined by the U.S. Department of Agriculture. It is of major importance in meeting the Nation’s short- and long-range needs for food and fiber. Because the supply of high-quality farmland is limited, the U.S. Department of Agriculture recognizes that responsible levels of government, as well as individuals, should encourage and facilitate the wise use of our Nation’s prime farmland.

Prime farmland, as defined by the U.S. Department of Agriculture, is land that has the best combination of physical and chemical characteristics for producing food, feed, forage, fiber, and oilseed crops and is available for these uses. It could be cultivated land, pastureland, woodland, or other land, but it is not urban or built-up land or water areas. The soil qualities, growing season, and moisture supply are those needed for the soil to economically produce sustained high yields of crops when proper management, including water management, and acceptable farming methods are applied. In general, prime farmland has an adequate and dependable supply of moisture from precipitation or irrigation, a favorable temperature and growing season, acceptable acidity or alkalinity, and few or no rocks. It is permeable to water and air. It is not excessively erodible or saturated with water for long periods, and it either is not frequently flooded during the growing season or is protected from flooding. Slope ranges mainly from 0 to 6 percent. More detailed information about the criteria for prime farmland is available at the local office of the Natural Resources Conservation Service.

About 103,000 acres in the county, about 30 percent of the total acreage in the county, are mapped in soil map units that meet the requirements for prime farmland as defined by the Natural Resources Conservation Service.

Most of the prime farmland in the county is used as cropland. Urbanization in and around cities and along interstate corridors accounts for the majority of prime farmland lost to non-agricultural uses.

A recent trend in land use in some parts of Columbiana County has been the loss of some prime farmland to industrial and urban uses. The loss of prime farmland to other uses puts pressure on marginal lands, which generally are more erodible, droughty, and less productive and cannot be easily cultivated.

The map units in Columbiana County that are considered prime farmland are listed in table 5 (Prime Farmland) and the Interpretive Groups table. These lists do not constitute a recommendation for a particular land use. On some soils included in the lists, measures that overcome a hazard or limitation, such as flooding, wetness, and droughtiness, are needed. Onsite evaluation is needed to determine whether or not the hazard or limitation has been overcome by corrective measures. The extent of each listed map unit is shown in table 4 (Acreage and Proportionate Extent of the Map Units). The location is shown on the detailed soil maps. The soil qualities that affect use and management are described under the heading “Detailed Soil Map Units”.

Important Farmland
Unique Farmland

Unique farmland is land other than prime farmland that is used for the production of specific high-value food and fiber crops. It has the special combination of soil qualities, location, growing season, and moisture supply needed for the economic production of sustained high yields of a specific high-quality crop when treated and managed by acceptable farming methods. Examples of such crops are tree fruits, berries, and vegetables.

Unique farmland has an adequate supply of available moisture for the specific crops for which it is used because of stored moisture, precipitation, or irrigation and has a combination of soil qualities, growing season, temperature, humidity, air drainage, elevation, aspect, and other factors, such as nearness to markets, that favors the production of a specific food or fiber crop.

Lists of unique farmland are developed as needed in cooperation with conservation districts and others.

Additional Farmland of Statewide Importance

Some areas other than areas of prime farmland and unique farmland are of statewide importance in the production of food, feed, fiber, forage, and oilseed crops. The criteria used in defining and delineating these areas are determined by the appropriate state agency or agencies. Generally, additional farmland of statewide importance includes areas that nearly meet the criteria for prime farmland and that economically produce high yields of crops when treated and managed by acceptable farming methods. Some areas can produce as high a yield as areas of prime farmland if conditions are favorable. In some states additional farmland of statewide importance may include tracts of land that have been designated for agriculture by state law.

Additional Farmland of Local Importance

This land consists of areas that are of local importance in the production of food, feed, fiber, forage, and oilseed crops and are not identified as having national or statewide importance. Where appropriate, this land is identified by local agencies. It may include tracts of land that have been designated for agriculture by local ordinance.

Lists of this land are developed as needed in cooperation with conservation districts and others.
Hydric Soils

The hydric soils in Columbiana County are listed in table 6 (Hydric Soils). The non-hydric soils with hydric components are listed in table 7 (Non-hydric Map Units with Hydric Components).

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin and others, 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995). Criteria for each of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation (fig. 14). These soils are within the aquic moisture regime. This is a moisture condition with a seasonal reducing environment that is virtually free of dissolved oxygen because the soil is saturated.

Figure 14.—The prolific hydrophytic vegetation of swamps accumulates under ponded water and becomes parent materials of Carlisle organic soils.
The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 1995). The criteria used are selected estimated soil properties that are described in “Soil Taxonomy” (Soil Survey Staff, 1999) and “Keys to Soil Taxonomy” (Soil Survey Staff, Ninth Edition 2003) and in the “Soil Survey Manual” (Soil Survey Division Staff, 1993).

If soils are wet enough for a duration long enough to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils in Columbiana County are specified in “Field Indicators of Hydric Soils in the United States” (Hurt and others, 1998).

Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

The map units in table 6 meet the definition of hydric soils. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; Hurt and others, 1998).

Map units that are dominantly hydric soils may have small areas, or components, of non-hydric soils in the higher positions on the landform, and map units dominantly non-hydric soils may have components of hydric soils in the lower positions on the landform.

The map units listed in table 7 (Non-hydric Map Units with Hydric Components), do not meet the definition of hydric soils. A minor portion of these map units, however, may be hydric soils. Onsite investigation is necessary to determine whether or not hydric soils occur and if so the location and extent of the included hydric soils.
This soil survey is an inventory and evaluation of the soils in the survey area. It can be used to adjust land uses to the limitations and potentials of natural resources and the environment. Also, it can help to prevent soil-related failures in land uses.

In preparing a soil survey, soil scientists, conservationists, engineers, and others collect extensive field data about the nature and behavioral characteristics of the soils. They collect data on erosion, droughtiness, flooding, and other factors that affect various soil uses and management. Field experience and collected data on soil properties and performance are used as a basis in predicting soil behavior.

Information in this section can be used to plan the use and management of soils for crops and pasture (fig. 15); as rangeland and forestland; as sites for buildings, sanitary facilities, highways and other transportation systems, and parks and other recreational facilities; for agricultural waste management; and as wildlife habitat. It can be used to identify the potentials and limitations of each soil for specific land uses and to help prevent construction failures caused by unfavorable soil properties.

Planners and others using soil survey information can evaluate the effect of specific land uses on productivity and on the environment in all or part of the survey area. The survey can help planners to maintain or create a land use pattern in harmony with the natural soil.

Contractors can use this survey to locate sources of sand and gravel, roadfill, and topsoil. They can use it to identify areas where bedrock, wetness, or very firm soil layers can cause difficulty in excavation.

Health officials, highway officials, engineers, and others may also find this survey useful. The survey can help them plan the safe disposal of wastes and locate sites for pavements, sidewalks, campgrounds, playgrounds, lawns, and trees and shrubs.

Interpretive Ratings

The interpretive tables in this survey rate the soils in the survey area for various uses. Many of the tables identify the limitations that affect specified uses and indicate the severity of those limitations. The ratings in these tables are both verbal and numerical.

Rating Class Terms

Rating classes are expressed in the tables in terms that indicate the extent to which the soils are limited by all of the soil features that affect a specified use or in terms that indicate the suitability of the soils for the use. Thus, the tables may show limitation classes or suitability classes. Terms for the limitation classes are *not limited, somewhat limited, and very limited*. The suitability ratings are expressed as *well suited, moderately suited, poorly suited, and unsuited* or as *good, fair, and poor*.

Numerical Ratings

Numerical ratings in the tables indicate the relative severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.00 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use and the point at which the soil feature is not a limitation. The limitations
appear in order from the most limiting to the least limiting. Thus, if more than one limitation is identified, the most severe limitation is listed first and the least severe one is listed last.

Crops and Pasture

Mitch Cattrell, District Conservationist, Natural Resources Conservation Service, prepared this section.

General management needed for crops and pasture is suggested in this section. The crops or pasture plants best suited to the soils, including some not commonly grown in the survey area are identified; the system of land capability classification used by the USDA Natural Resources Conservation Service is explained; and the estimated yields of the main crops and hay and pasture plants are listed for each soil. Soils with severe limitations that are not usually cropped or pastured do not receive a rating in the tables addressing such practices.

Planners of management systems for individual fields or farms should consider the detailed information given in the description of each soil under “Detailed Soil Map Units.” Specific information can be obtained from the local office of the Natural Resources Conservation Service office or the Ohio State University Extension.

Cropland Limitations and Hazards

The management concerns affecting the use of the detailed map units in the survey area for crops are shown in table 8 (Cropland Limitations and Hazards). The main concerns in managing nonirrigated cropland are controlling flooding, soil blowing and water erosion, preventing ground-water pollution, removing excess water,
reducing surface crusting, reducing compaction, and maintaining soil tilth, organic matter, and fertility.

Generally, a combination of several practices is needed to control soil blowing and water erosion. Conservation tillage, strip cropping, field windbreaks, tall grass barriers, contour farming, conservation cropping systems, crop residue management, diversions, and grassed waterways help to prevent excessive soil loss.

Surface and/or subsurface drainage is used to remove excess water, lower seasonal high water tables, and to reduce ponding.

A surface crust forms in tilled areas after hard rains and may inhibit seedling emergence. Regular additions of crop residue, manure, or other organic materials help to improve soil structure and minimize crusting.

Tilling within the proper range in moisture content minimizes compaction.

Measures that are effective in maintaining soil tilth, organic matter, and fertility include applying fertilizer, both organic and inorganic, including manure; incorporating crop residue or green manure crops into the soil; and using proper crop rotations.

Controlling erosion helps to prevent the loss of organic matter and plant nutrients and thus helps to maintain productivity. All soils used for nonirrigated crops respond well to applications of fertilizer.

Some of the limitations and hazards shown in the table cannot be easily overcome. These are flooding, ponding, slope, limited organic matter content, and depth to bedrock.

Flooding.—Flooding can damage winter grain and forage crops. A tillage method that partly covers crop residue and leaves a rough or ridged surface helps to prevent removal of crop residue by floodwater. Tilling and planting should be delayed in the spring until flooding is no longer a hazard.

Ponding.—Surface drains help to remove excess surface water and reduce damage from ponding.

Slope.—Where the slope is more than 25 percent, water erosion is excessive. The selection of crops and use of equipment is limited. Cultivation may be restricted.

Limited organic matter content.—Many soils that have a light colored surface layer have a low or moderately low organic matter content and weak or moderate structure. Regularly adding crop residue, manure, and other organic matter materials to the soil maintains or improves the organic matter content and the soil structure.

Depth to bedrock.—Rooting depth and available moisture may be limited by bedrock within a depth of 40 inches.

Additional limitations and hazards are as follows:

Potential for ground-water pollution.—This is a hazard in soils with excessive permeability, moderately deep or shallow bedrock, or a water table within the profile.

Limited available water capacity, poor tilth, restricted permeability, and surface crusting.—These limitations can be overcome by incorporating green manure crops, manure, or crop residue into the soil; applying a system of conservation tillage; and using conservation cropping systems.

Frost action.—Frost action can damage deep rooted legumes and some small grains.

Sandy layers.—Deep leaching of nutrients and pesticides may result from sandy layers. Crops generally respond better to smaller, more frequent applications of fertilizer and lime than to one large application.

Clodding.—Clods may inhibit germination, reduce water infiltration and increase runoff.

Subsidence of the muck.—Subsidence or shrinking occurs as a result of oxidation in the muck after the soil is drained. Control of the water table by subirrigation through subsurface drain lines reduces the hazards of subsidence, burning, and soil blowing.

High clay content.—The high clay content in the soil reduces rooting depth and water movement.
Root restrictive layers.—Root restrictive layers limit root growth and water movement.

Excessive alkalinity.—High pH in the upper part of the soil may inhibit plant growth and reduce availability of potassium and micronutrients.

Excessive acidity.—Low pH in the upper part of the soil may increase concentrations of aluminum and manganese and may injure plants.

Gravelly surface.—This limitation causes rapid wear of tillage equipment. It cannot be easily overcome.

Stony surface.—Stones or boulders on the surface can hinder normal tillage unless they are removed.

Following is an explanation of the criteria used to determine the limitations or hazards for cropland.

Easily eroded.—The surface K factor multiplied by the relative value of the slope is more than 2 (same as prime farmland criteria).

Erosion hazard.—The relative value of the slope is greater than 2.

Frequent flooding.—The component of the map unit is frequently flooded.

Occasional flooding.—The component of the map unit is occasionally flooded.

Ponding.—Ponding duration is assigned to the component of the map unit.

Ponded for extended periods.—Very long ponding duration is assigned to the component of the map unit.

Gravelly surface.—The surface texture has flaggy, very flaggy, extremely flaggy, very gravelly, extremely gravelly, or very channery modifier.

Stony surface.—The surface texture has bouldery, very bouldery, extremely bouldery, stony, very stony, extremely stony, cobbly, very cobbly, or extremely cobbly modifier.

Sandy layers.—The family particle size is sandy, sandy or sandy-skeletal, sandy over loamy, sandy over clayey, sandy-skeletal over clayey, or sandy-skeletal over loamy; or the subgroup is Arenic or Psammentic; or the suborder is Psamments.

Depth to bedrock.—Bedrock is at a depth of less than 40 inches.

High potential for ground water pollution.—The soil has hard bedrock within the profile, or permeability is more than 6 inches per hour within the soil.

Moderate potential for ground water pollution.—The soil has an apparent water table within a depth of 4 feet or moderately rapid permeability between 24 and 60 inches.

Poor tilth.—The component of the map unit is severely eroded, has less than 1 percent organic matter in the surface layer, or 35 percent or more clay in the surface layer.

Fair tilth.—The component of the map unit has a silty clay loam or clay loam surface layer and less than 35 percent clay or moderately eroded and a silt loam or loam surface texture.

Excessive acidity.—The upper range of the soil pH is less than 4.5 within 40 inches.

Excessive alkalinity.—The lower range of the soil pH is more than 7.4 within 40 inches.

Restricted permeability.—Permeability is 0.2 inches per hour or less within the soil profile and a seasonal high water table is within 18 inches.

Seasonal high water table.—The lower water table depth is less than 1.5 feet.

Excessive slope.—The upper slope range of the component of the map unit is more than 25 percent.

Surface crusting.—The organic matter content of the surface layer is less than or equal to 3 percent and the texture is silt loam or silty clay loam loam.

Surface compaction.—The component of the map unit has a silt loam, silty clay loam, clay loam, clay, or silty clay surface layer.
Frost action.—The component of the map unit has a high potential frost action.
Part of surface removed.—The surface layer of the component of the map unit is moderately eroded.
Most of surface removed.—The surface layer of the component of the map unit is severely eroded.
Subsidence of the muck.—The organic matter content of the surface layer of the component of the map unit is greater than or equal to 20 percent.
Wind erosion.—The upper range of the slope is less than or equal to 25 percent and the wind erodibility group is 1, 2, or 3.
Clodding.—The relative value of the total clay in the surface layer is greater than 32 percent.
Root restrictive layer.—Fragipan or dense material within 40 inches.
High clay content.—A layer within 40 inches of the surface has clay content that averages between 40 and 60 percent.
Very high clay content.—A layer within 40 inches of the surface has clay content that averages more than 60 percent.

Managing Cropland

The management systems needed on cropland are those that protect or improve the soil, help to control erosion, and minimize the water pollution caused by soil sediment, plant nutrients, and plant residues carried off-site by water runoff. Water erosion is the major hazard on most of the soils used for crops and pasture in Columbiana County. It is a problem on most soils with slopes greater than 2 percent. As the slope increases, the hazard of erosion and the difficulty in controlling erosion also increases.

Loss of the surface layer through erosion is damaging for two reasons. First, productivity is reduced as the surface layer is lost and part of the less fertile subsoil is incorporated into the plow layer and seedling root zone. Loss of the topsoil is especially damaging on soils that have a restrictive layer in the subsoil that limits the depth of the root zone, such as the fragipan in Canfield, Omulga, Ravenna and Wadsworth soils or the bedrock in Berks soils. Secondly, erosion on farmland results in the sedimentation of streams and lakes. Control of erosion minimizes this pollution and improves the quality of water for recreation and fish and wildlife.

Erosion control practices provide a protective surface cover, help control runoff, and increase the rate of water infiltration. A cropping system that keeps plant cover on the surface for extended periods generally can keep soil losses to an amount that does not reduce productivity of the soil. On most dairy farm cropland with soils over 2 percent slopes, forage crops of grass/legume hay are included in the conservation cropping system for erosion control. The forage crops also add nitrogen and organic matter to the soil and improve soil tilth.

Minimum tillage and no-tillage systems that leave crop residues on the soil surface are beneficial to nearly all soils in the county. On the strongly sloping through moderately steep soils, no-tillage cropping is effective in controlling erosion, increasing water infiltration, and improving soil tilth. Incorporating a reduced tillage cropping system with other conservation practices provides excellent erosion control. Reduced tillage systems are less effective on the flatter, poorly drained soils such as Frenchtown and Valley.

Contour farming, contour strip cropping, and strip cropping across irregular slopes also help to control erosion in the survey area. Contour farming and contour strip cropping is best suited to gently sloping to moderately steep soils that have smooth, uniform slopes such as Berks, Gilpin, and Guernsey soils found primarily in the southern part of the county. Strip cropping across irregular slopes common to the glacial soils such as Canfield and Rittman is also a good practice.
Conservation cropping systems, reduced tillage, and contour farming are all good erosion control practices. These practices in conjunction with each other and other measures such as cover crops and structural measures such as grassed waterways will provide excellent erosion control. Information about erosion control measures for each kind of soil in the survey area is available at the local office of the Natural Resources Conservation Service.

Soil wetness is an important management concern on about 12 percent of Columbiana County. Seasonal wetness in soils such as Homeworth and Doles, can delay field preparation and planting in the springtime. Better drained soils, like Canfield and Omulga, may have wetter minor components in the management unit that cause management problems. Wetter components are commonly sited in small depressions or be along drainageways. The effectiveness and maintenance of both surface and subsurface drainage systems vary with the kind of soil.

Drainage is a major consideration in managing crops and pasture. Management of drainage in conformance with regulations influencing wetlands may require special permits and extra planning.

Natural fertility is low or medium on most upland soils. The soils on flood plains, such as Lobdell, Orrville, and Zepernick have a higher content of available plant nutrients. Soils associated with glacial till generally have higher natural fertility than the upland residual soils in the southern part of the survey area.

Many soils on the upland are very strongly acid to moderately acid unless the surface has been limed. Applications of ground limestone are needed to raise the pH level sufficiently for the production of alfalfa and other crops that grow best on nearly neutral sites.

The application of lime and fertilizer should be based on the results of soil tests, the needs of the crop, and the expected level of yields. The Ohio State University Extension can help determine the kind and amount of lime and fertilizer needed and the proper method of application.

Soil tilth is an important factor affecting seed germination and the infiltration of water into the soil. Soils that have good tilth are granular and porous.

Most of the cropland soils in this survey area have a silt loam surface layer that is light in color and low in organic matter content. A surface crust forms during periods of heavy rainfall. The crust is hard when dry and nearly impervious to water. It reduces the rate of water infiltration and increases the runoff rate. Regular additions of crop residues, manure, and other organic material can improve soil structure and minimize crusting. Fall plowing is generally not a good practice because a crust forms in the winter and spring. If plowed in the fall, many of these soils are nearly as dense and hard at planting time as they were before they were plowed. More than 92 percent of the cropland in the survey area consists of sloping soils that are subject to erosion if they are plowed in the fall.

Managing Pasture and Hayland

In 1997, there were 26,500 head of cattle and calves in the county (USDA National Agricultural Statistics Service, 1999). Most of the hay land is grown in rotations with grain crops and is dominated by alfalfa-grass mixtures. Permanent pasture accounts for nearly all of the 58,400 acres. Pasturelands are mostly native grasses. Pasturelands are generally not mechanically harvested. Hay land is harvested either as baled hay or silage.

Because nearly 60 percent of the total farm income in the survey area is derived from the sale of dairy products and livestock, a good forage program is important. A successful livestock enterprise depends on a forage program that provides large quantities of high-quality feed. Such a program can provide as much as 66 percent of the feed for dairy cattle. On much of the pastureland in Columbiana County, renovation, brush control, and measures that prevent overgrazing are needed.
The soils in the survey area vary widely in their ability to produce grasses and legumes because of differences in depth to bedrock or to other limiting layers, internal drainage, available water capacity, and other properties. The forage species selected for planting should be those that are suited to the different kinds of soils.

The nearly level and gently sloping, deep and very deep, well drained soils should be planted to the highest producing crops, such as alfalfa hay mixes. Sod forming grasses, such as perennial ryegrass and bluegrass minimize erosion of steeper soils. Alfalfa can be seeded with cool season grasses in areas where the soils are at least two feet deep and are well drained. The more poorly drained soils are better suited to clover-grass mixtures or to pure stands of either.

The forage species that are selected for planting should be suited not only to the soil but also for the intended use. They should be those that provide the maximum quality and versatility in the forage program. Legumes generally produce higher quality feed than grasses. As a result, they should be grown to the maximum extent possible. The taller legumes, such as alfalfa and red clover, are more versatile than legumes that are used primarily for grazing. Orchardgrass, timothy, and perennial ryegrass are best adapted for pasture and hayland mixes in Columbiana County.

Warm season grasses planted in the spring have the potential to alleviate mid-summer grazing deficiencies of cool-season grasses, although these are now commonly grown in the survey area. They grow well during the warm summer months. The greatest growth occurs from mid June to early September.

Species such as switchgrass, big bluestem, and Caucasian bluestem are adapted to the survey area. Warm season grasses do require a higher level of grazing management if they are to persist.

Renovation of existing forage stands on areas of steeper soils can increase yields and protect the soils from excessive erosion. This is especially beneficial on residual soils on steep slopes such as Berks, Gilpin and Hazleton. Adding legumes to these stands along with lime and fertilizer provides high quality feed.

Additional information about pasture and hayland management is available from local offices of the Natural Resources Conservation Service and the Ohio State University Extension.

Crop Yield Index

Table 9 is the Crop Yield Index for Columbiana County. The yield index reflects the yield potential of a soil in relation to other soils in the county. It is based on the most productive soil, GrB–Glenford silt loam, 2 to 6 percent slopes receiving a rating of 100, and other soils are ranked against this standard.

The yields used to calculate the index values are based on using good management practices.

To calculate estimated yields, use the yield index number as a percentage, and multiply it by the crop yield in the table header. For example, to calculate estimated corn yield for CcB–Canfield silt loam, 2 to 6 percent slopes, multiply 0.94 by the corn yield in the header ‘Corn’, which is 125. 125 x 0.94 — 117.5 bushels of corn estimated for CcB–Canfield silt loam, 2 to 6 percent slopes.

To use this yield index in the future to calculate estimated yields, use current yield data.

Additional information on calculating estimated yields can be obtained from the local office of the Natural Resources Conservation Service or the Ohio State University Extension.

Land Capability Classification

Land capability classification shows, in a general way, the suitability of soils for most kinds of field crops. Crops that require special management are excluded. The soils are grouped according to their limitations for field crops, the risk of damage if
they are used for crops, and the way they respond to management. The criteria used in grouping the soils do not include major and generally expensive land forming that would change slope, depth, or other characteristics of the soils, nor do they include possible but unlikely major reclamation projects. Capability classification is not a substitute for interpretations designed to show suitability and limitations of groups of soils for woodland, or for engineering purposes.

In the capability system, soils are generally grouped at three levels—capability class, subclass, and unit.

Capability classes, the broadest groups, are designated by the numbers 1 through 8. The numbers indicate progressively greater limitations and narrower choices for practical use. The classes are defined as follows:

- **Class 1** soils have slight limitations that restrict their use.
- **Class 2** soils have moderate limitations that restrict the choice of plants or that require moderate conservation practices.
- **Class 3** soils have severe limitations that restrict the choice of plants or that require special conservation practices, or both.
- **Class 4** soils have very severe limitations that restrict the choice of plants or that require very careful management, or both.
- **Class 5** soils are subject to little or no erosion but have other limitations, impractical to remove, that restrict their use mainly to pasture, woodland, or wildlife habitat.
- **Class 6** soils have severe limitations that make them generally unsuitable for cultivation and that restrict their use mainly to pasture, woodland, or wildlife habitat.
- **Class 7** soils have very severe limitations that make them unsuitable for cultivation and that restrict their use mainly to grazing, woodland, or wildlife habitat.
- **Class 8** soils and miscellaneous areas have limitations that preclude commercial plant production and that restrict their use to recreational purposes, wildlife habitat, watershed, or esthetic purposes.

Capability subclasses are soil groups within one class. They are designated by adding a small letter, e, w, s, or c, to the class numeral, for example, 2e. The letter e shows that the main hazard is the risk of erosion unless close-growing plant cover is maintained; w shows that water in or on the soil interferes with plant growth or cultivation (in some soils the wetness can be partly corrected by artificial drainage); s shows that the soil is limited mainly because it is shallow, droughty, or stony; and c, used in only some parts of the United States, shows that the chief limitation is climate that is very cold or very dry.

In class 1 there are no subclasses because the soils of this class have few limitations. Class 5 contains only the subclasses indicated by w, s, or c because the soils in class 5 are subject to little or no erosion. They have other limitations that restrict their use to pasture, woodland, wildlife habitat, or recreation.

The acreage of soils in each capability class or subclass is shown in Table 10-Capability Classes and Subclasses. The capability classification of map units in this survey area is given in the “Detailed Soil Map Units” and “Interpretive Groups” sections.

Pasture and Hayland Suitability Groups

The pasture and hayland suitability group symbol for each soil is listed in each map unit description and in the “Interpretive Groups” section. Soils assigned to the same suitability group require the same general management and have about the same potential productivity. The pasture and hayland suitability groups are organized by soil characteristics and limitations. The groups are described in the following paragraphs.

Soils assigned to group A have few limitations affecting the management and growth of climatically adapted plants.
Soils in group A-1 are deep or very deep and are well drained or moderately well drained. The available water capacity ranges from moderate to very high. Slopes range from 0 to 18 percent. Plants on these soils respond well to additions of lime. Frequent applications may be needed to maintain an adequate pH level. A low pH level in the subsoil shortens the life of some deep-rooted legumes.

Soils in group A-2 are deep or very deep and are well drained or moderately well drained. The available water capacity ranges from moderate to very high. Slopes range from 18 to 25 percent. Plants on these soils respond well to additions of lime. Frequent applications may be needed to maintain an adequate pH level. A low pH level in the subsoil shortens the life of some deep-rooted legumes. The slope may interfere with clipping, mowing, and spraying for weed control. The slope also increases the hazard of erosion if the areas are overgrazed or cultivated for reseeding. The soils in this group are suited to no-till reseeding and interseeding.

Soils in group A-3 are deep or very deep and are well drained or moderately well drained. The available water capacity ranges from moderate to very high. Slopes range from 25 to 40 percent. These soils are not suited to pasture or hay, but some grass pasture is produced.

Soils in group A-4 are deep or very deep and are well drained or moderately well drained. They have stones and boulders on the surface that preclude the use of hay-making equipment. Slopes range from 0 to 40 percent.

Soils in group A-5 are well drained or moderately well drained and are subject to frost action. The available water capacity ranges from moderate to very high. Slopes range from 0 to 18 percent. Frost action can damage legume stands. Mixing fibrous-rooted grasses with the legumes and using proper grazing management methods help to prevent the damage caused by frost action (fig. 16).

Soils in group B have limited growth and production potential because of droughtiness.

Soils in group B-1 are deep or very deep and are well drained or moderately well drained. The available water capacity is low or very low. Slopes range from 0 to 25 percent. The limited available water capacity restricts forage growth and production.

Soils in group B-2 are deep or very deep and are well drained or moderately well drained. The available water capacity is low or very low. Slopes range from 25 to 40 percent. The limited available water capacity restricts forage growth and production.

Soils in group B-3 are well drained to somewhat poorly drained. They are subject to flooding. Slopes range from 0 to 6 percent.

Soils in group B-4 are deep or very deep and are well drained or moderately well drained. They are in areas of reclaimed mines. The available water capacity is low or very low. Slopes range from 0 to 25 percent. The substratum has a high content of rock fragments. The root zone ranges from 20 to 30 inches.

Soils in group C are wet because of a seasonal high water table.

Soils in group C-1 are deep or very deep and are somewhat poorly drained to very poorly drained. Slopes range from 0 to 12 percent. These soils normally respond well to subsurface drainage.

Soils in group C-2 are deep or very deep and are somewhat poorly drained to very poorly drained. They have a seasonal high water table, which restricts the growth of deep-rooted forage plants or species that have a taproot. Shallow-rooted species grow best on these soils. Subsurface drains are used to lower the seasonal high water table. The effectiveness of subsurface drainage is typically restricted by the
permeability of the subsoil, by a high content of clay in the subsoil, or by a fragipan. Slopes range from 0 to 12 percent.

Soils in group C-3 are somewhat poorly drained to very poorly drained and are subject to flooding. The soils have a seasonal high water table, which restricts the rooting depth of forage plants. Shallow-rooted species grow best on these soils. The available water capacity ranges from moderate to very high. Slopes range from 0 to 6 percent. Grazing is limited during periods of stream overflow.

Soils in group D have a high content of organic matter.

Soils in group D-1 formed entirely or partially in organic material. Slopes range from 0 to 2 percent.

Soils in group E are shallow soils in which root growth is restricted to a depth of less than 20 inches.

Soils in group E-1 are shallow or very shallow. The available water capacity is low or very low. Slopes range from 0 to 25 percent. The limited available water capacity restricts forage production. These soils are well suited to native warm-season grasses.

Soils in group E-2 are shallow or very shallow or have a high bulk density and cobbles and stones in the upper part. The available water capacity is low or very low. Slopes range from 25 to 40 percent. Shallow-rooted species should be selected for planting in areas of these soils.

Soils in group E-3 have a high bulk density and cobbles and stones in the upper part. The available water capacity is low or very low. Slopes range from 0 to 25 percent.

Soils in group F have a root zone that extends to a depth of 20 to 40 inches. These soils are better suited to forage species that do not have a taproot than to other species.

Soils in group F-1 are moderately deep and are well drained or moderately well drained. Slopes range from 0 to 25 percent.

Soils in group F-2 are moderately deep and are well drained or moderately well drained. Slopes range from 25 to 40 percent. These soils are generally not suited to hay.

Figure 16.—Hay and grain grown in strips help conserve the soil on this Coshocton silt loam, 6 to 15 percent slopes. This map unit is in pasture and hayland interpretive group A-6.
Soils in group F-3 are well drained or moderately well drained. They are moderately deep to a fragipan. Slopes range from 0 to 25 percent.

Soils in group F-4 are well drained or moderately well drained. They are moderately deep to a fragipan. Slopes range from 25 to 40 percent.

Soils in group F-5 are well drained or moderately well drained. Rooting depth is restricted in the subsoil by a high bulk density, a high content of clay, slow permeability, or a combination of these factors. Slopes range from 0 to 25 percent.

Soils in group F-6 are well drained or moderately well drained. Rooting depth is restricted in the subsoil by a high bulk density, a high content of clay, slow permeability, or a combination of these factors. Slopes range from 25 to 40 percent.

Soils in group F-7 are somewhat poorly drained to very poorly drained. A high content of clay in the subsoil and very slow permeability restrict the rooting depth of forage plants. Slopes range from 0 to 12 percent.

Soils in group G have chemical properties that are unfavorable for many climatically adapted plants.

Soils in group G-1 are well drained or moderately well drained and are shallow or moderately deep to toxic spoil from surface mining operations. The available water capacity is low or very low in the root zone. Slopes range from 0 to 25 percent.

Soils in group G-2 are well drained or moderately well drained and are shallow or moderately deep to toxic spoil from surface mining operations. Slopes range from 25 to 40 percent.

Soils in group H are toxic or are too steep for forage production.

Soils in group H-1 are toxic as a result of surface mining operations or have slopes of 40 percent or more. These soils are generally not suited to pasture and hay.

Woodland Productivity and Management

James T. Elze, Service Forester, Ohio Department of Natural Resources, helped prepare this section.

Approximately 43 percent of Columbiana County is wooded. The wooded acreage is mainly privately owned tracts, most of which are owned by non-farmers. About 3 percent of the county’s total woodland is in state owned lands such as Highlandtown Wildlife Area, Yellow Creek State Forest, and Beaver Creek State Park. The most extensive wooded areas are in the steeper southern parts of the county.

Deciduous forests are the dominant forests of the county. Only about 1 percent of the forest area is in coniferous woodland types and most of that area was planted. Two woodland type groups share nearly equal area and importance and are referred to as mixed northern hardwoods and oak-hickory. The dominant woodland species are red and white oaks, hickory, white ash, yellow-poplar, black cherry, red and sugar maple, and beech. Most of the wooded areas occur on moderately steep to very steep soils that formed in material weathered from sandstone, shale and siltstone. Gilpin, Berks, Westmoreland and Hazleton soils are common in these areas. Much of the woodland is on the slopes along streams and drainageways. Some tracts that formerly were used for hay and pasture are reverting to woodland.

Some of the woodland in the county reflects the results of poor management. Poor harvesting techniques have removed the best timber and left diseased, damaged, and low value trees on many of the good woodland sites. In many wooded areas, grapevines are killing and deforming valuable trees, thus lowering woodland productivity. Cattle have been allowed to graze in some wooded areas, damaging individual trees and woodland productivity by destroying leaf litter and desirable seedlings, damaging roots, and compacting the soil. Livestock exclusion can restore pastured woodland to a higher level of production.

Recommendations on woodland management can be obtained from local offices of the USDA’s Natural Resources Conservation Service and the Ohio Department of Natural Resources, Division of Forestry.
The tables in this section can help forest owners or managers plan the use of soils for wood crops. They show the potential productivity of the soils for wood crops and rate the soils according to the limitations that affect various aspects of forest management.

Woodland Productivity

In table 12 (Woodland Productivity), the *potential productivity* of merchantable or *common trees* on a soil is expressed as a site index and as a volume number. The *site index* is the average height, in feet, that dominant and codominant trees of a given species attain in a specified number of years. The site index applies to fully stocked, even-aged, unmanaged stands. Commonly grown trees are those that forest managers generally favor in intermediate or improvement cuttings. They are selected on the basis of growth rate, quality, value, and marketability. More detailed information regarding site index is available in the “National Forestry Manual,” which is available in local offices of the Natural Resources Conservation Service or on the Internet.

The *volume of wood fiber*, a number, is the yield likely to be produced by the most important tree species. This number, expressed as cubic feet per acre per year and calculated at the age of culmination of the mean annual increment (CMAI), indicates the amount of fiber produced in a fully stocked, even-aged, unmanaged stand (fig. 17).

Trees to manage are those that are preferred for planting, seeding, or natural regeneration and those that remain in the stand after thinning or partial harvest.

![Figure 17.—Managing woodland for timber affords the best prospects to gain economic returns for some soils in Columbiana County. This timber is growing on Berks channery silt loam, 25 to 40 percent slopes.](image)
Woodland Management

In table 13 (Woodland Harvesting Activities) and table 14 (Woodland Regeneration Activities), interpretive ratings are given for various aspects of forest management. The ratings are both verbal and numerical (fig. 18).

Some rating class terms indicate the degree to which the soils are suited to a specified forest management practice. *Well suited* indicates that the soil has features that are favorable for the specified practice and has no limitations. Good performance can be expected, and little or no maintenance is needed. *Moderately suited* indicates that the soil has features that are moderately favorable for the specified practice. One or more soil properties are less than desirable, and fair performance can be expected. Some maintenance is needed. *Poorly suited* indicates that the soil has one or more properties that are unfavorable for the specified practice. Overcoming the unfavorable properties requires special design, extra maintenance, and costly alteration.

Unsuited indicates that the expected performance of the soil is unacceptable for the specified practice or that extreme measures are needed to overcome the undesirable soil properties.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the specified forest management practice (1.00) and the point at which the soil feature is not a limitation (0.00).

Rating class terms for fire damage and seedling mortality are expressed as *low*, *moderate*, and *high*. Where these terms are used, the numerical ratings indicate gradations between the point at which the potential for fire damage or seedling mortality is highest (1.00) and the point at which the potential is lowest (0.00).

Figure 18.—These logs are ready for transport to a sawmill. The timber is grown on steeper Gilpin soils adjacent to this log landing site on Gilpin silt loam, 2 to 6 percent slopes.
The paragraphs that follow indicate the soil properties considered in rating the soils for forest management practices. More detailed information about the criteria used in the ratings is available in the “National Forestry Manual,” which is available in local offices of the Natural Resources Conservation Service or on the Internet (http://nsscnt.nssc.ncrs.usda.gov/nfm/).

For **limitations affecting construction of haul roads and log landings**, the ratings are based on slope, flooding, permafrost, plasticity index, the hazard of soil slippage, content of sand, the Unified classification, rock fragments on or below the surface, depth to a restrictive layer that is indurated, depth to a water table, and ponding. The limitations are described as slight, moderate, or severe. A rating of *slight* indicates that no significant limitations affect construction activities, *moderate* indicates that one or more limitations can cause some difficulty in construction, and *severe* indicates that one or more limitations can make construction very difficult or very costly.

The ratings of **suitability for log landings** are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, ponding, flooding, and the hazard of soil slippage. The soils are described as well suited, moderately suited, or poorly suited to use as log landings.

Ratings in the column **suitability for roads (natural surface)** are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, ponding, flooding, and the hazard of soil slippage. The soils are described as well suited, moderately suited, or poorly suited to this use.

Ratings in the column **suitability for harvest equipment operability** are based on slope, rock fragments on the surface, plasticity index, content of sand, the Unified classification, depth to a water table, and ponding. The soils are described as well suited, moderately suited, or poorly suited to this use.

Ratings in the column **suitability for mechanical planting** are based on slope, depth to a restrictive layer, rock fragments on or below the surface, depth to a water table, and ponding. The soils are described as well suited, poorly suited, or unsuited to this management activity. The part of the soil from the surface to a depth of about 3 feet is considered in the ratings.

Ratings in the column **suitability for mechanical site preparation** are based on slope, depth to a restrictive layer, plasticity index, rock fragments on or below the surface, depth to a water table, and ponding. The soils are described as well suited, poorly suited, or unsuited to this management activity. The part of the soil from the surface to a depth of about 1 foot is considered in the ratings.

Ratings in the column **potential for damage to soil by fire** are based on texture of the surface layer, content of rock fragments and organic matter in the surface layer, thickness of the surface layer, and slope. The soils are described as having a low, moderate, or high potential for this kind of damage. The ratings indicate an evaluation of the potential impact of prescribed fires or wildfires that are intense enough to remove the duff layer and consume organic matter in the surface layer.

Windbreaks and Environmental Plantings

Farm and homestead windbreaks are rows of trees or shrubs established adjacent to farm buildings, feedlots, and homes. These windbreaks are usually planted perpendicular to the prevailing winter wind. Planting multiple rows of various species provides the best protection from winds and results in more varied wildlife habitat. Field windbreaks are narrow plantings made at right angles to the prevailing wind and at specific intervals across the field. The interval depends on the erodibility of the soil.

Environmental plantings help to beautify and screen houses and other buildings and to abate noise. The plants, mostly evergreen shrubs and trees, are closely spaced. To ensure plant survival, a healthy planting stock of suitable species should be planted properly on a well prepared site and maintained in good condition.
Table 15 (Windbreaks and Environmental Plantings), shows the height that locally grown trees and shrubs are expected to reach in 20 years on various soils. The estimates in table 15 are based on measurements and observation of established plantings that have been given adequate care. They can be used as a guide in planning windbreaks and screens. Additional information on planning windbreaks and screens and planting and caring for trees and shrubs can be obtained from the local office of the Natural Resources Conservation Service, the Ohio Department of Natural Resources, Division of Forestry, or of the Ohio State University Extension or from a commercial nursery.

Recreational Development

D. Mitch Cattrell, District Conservationist, Natural Resources Conservation Service, helped prepared this section.

Columbiana County has a wealth of recreational opportunities available for nearly every interest. There are many areas of scenic, geologic, and historical interest. In 1974 Little Beaver Creek was the first in Ohio to be designated a “wild” river. It is also included in the National Wild and Scenic Rivers Program. Some recreational pursuits are private while the vast majority is public.

Private recreational activities are not limited to, but are dominated by public golf courses and campgrounds (fig. 19). Many campgrounds offer trails for various uses as well as play areas. These areas are all subject to intense use.

Most recreational areas are publicly owned and operated. Outdoor enthusiasts of fishing, hiking, and picnicking have numerous opportunities offered in Beaver Creek and Guilford Lake State Park. Hunters have hundreds of acres of public wildlife lands.
at Zepernick and Highlandtown areas as well as Yellow Creek and Beaver Creek State Forests. Fields for ball games are generally associated with the many municipal parks and school grounds throughout the county. The county park district also maintains the Scenic Vista Park and Leetonia/Lisbon Greenway multiple use bike trail. Recreation in Columbiana County is an important part of the local economy and accounts for a significant amount of land use. The soils of the county are generally well suited for recreational purposes and development.

The soils of the survey area are rated in table 16 (Recreational Development Part 1) and table 17 (Recreational Development Part 2) according to limitations that affect their suitability for recreation. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect the recreational uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

The ratings in the tables are based on restrictive soil features, such as wetness, slope, and texture of the surface layer. Susceptibility to flooding is considered. Not considered in the ratings, but important in evaluating a site, are the location and accessibility of the area, the size and shape of the area and its scenic quality, vegetation, access to water, potential water impoundment sites, and access to public sewer lines. The capacity of the soil to absorb septic tank effluent and the ability of the soil to support vegetation also are important. Soils that are subject to flooding are limited for recreational uses by the duration and intensity of flooding and the season when flooding occurs. In planning recreational facilities, onsite assessment of the height, duration, intensity, and frequency of flooding is essential.

The information in tables 16 and 17 can be supplemented by other information in this survey, for example, interpretations for building site development, construction materials, sanitary facilities, and water management.

Camp areas require site preparation, such as shaping and leveling the tent and parking areas, stabilizing roads and intensively used areas, and installing sanitary facilities and utility lines. Camp areas are subject to heavy foot traffic and some vehicular traffic. The ratings are based on the soil properties that affect the ease of developing camp areas and the performance of the areas after development. Slope, stoniness, and depth to bedrock or a cemented pan are the main concerns affecting the development of camp areas. The soil properties that affect the performance of the areas after development are those that influence trafficability and promote the growth of vegetation, especially in heavily used areas. For good trafficability, the surface of camp areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a fragipan, permeability, and toxic substances in the soil.

Picnic areas are subject to heavy foot traffic. Most vehicular traffic is confined to access roads and parking areas. The ratings are based on the soil properties that affect the ease of developing picnic areas and that influence trafficability and the
growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of picnic areas. For good trafficability, the surface of picnic areas should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a fragipan, permeability, and toxic substances in the soil.

Playgrounds require soils that are nearly level, are free of stones, and can withstand intensive foot traffic. The ratings are based on the soil properties that affect the ease of developing playgrounds and that influence trafficability and the growth of vegetation after development. Slope and stoniness are the main concerns affecting the development of playgrounds. For good trafficability, the surface of the playgrounds should absorb rainfall readily, remain firm under heavy foot traffic, and not be dusty when dry. The soil properties that influence trafficability are texture of the surface layer, depth to a water table, ponding, flooding, permeability, and large stones. The soil properties that affect the growth of plants are depth to bedrock or a fragipan, permeability, and toxic substances in the soil.

Paths and trails for hiking and horseback riding should require little or no slope modification through cutting and filling. The ratings are based on the soil properties that affect trafficability and erodibility. These properties are stoniness, depth to a water table, ponding, flooding, slope, and texture of the surface layer.

Off-road motorcycle trails require little or no site preparation. They are not covered with surfacing material or vegetation. Considerable compaction of the soil material is likely. The ratings are based on the soil properties that influence erodibility, trafficability, dustiness, and the ease of revegetation. These properties are stoniness, slope, depth to a water table, ponding, flooding, and texture of the surface layer.

Golf fairways are subject to heavy foot traffic and some light vehicular traffic. Cutting or filling may be required. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a fragipan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer. The suitability of the soil for traps, tees, roughs, and greens is not considered in the ratings.

Wildlife Habitat

Columbiana County attracts many different species of wildlife because of the diverse habitat types which can be found in the county. The county offers many acres of woodland, brushland, grassland, wetland, riparian, and cropland habitats. This diversity of habitats is created in large by the variety of soils and topography found in the county.

Major species of mammals found in the county would include the deer, woodchuck, rabbit, beaver, gray and fox squirrels, chipmunks, red and gray fox, mink, muskrat, opossum, raccoon, skunk, coyote and a variety of rodent species. Many species of birds are found in the county including crows, Canada geese, cardinals, blue jays, bluebirds, mourning doves, wild turkeys, wood ducks, mallards, grouse, pheasants, hawks, and owls (fig. 20).

The southeastern portion of the county, including the townships of Liverpool, St. Clair, Middleton, Madison, Yellow Creek, Washington, Elk Run, and Wayne are primarily wooded with steep slopes dominating the landscape. A large portion of this
area is wooded because of the topography and therefore supports the majority of the woodland species of wildlife. Beaver Creek State Forest, Yellow Creek State Forest, and Highlandtown Wildlife Area are found in these townships. These public areas provide access for fishing, hunting, hiking, and other outdoor activities.

The remainder of the county is more agricultural with fewer woodlands but more grasslands and wetland areas. The upland species of wildlife such as pheasants, killdeer, mourning doves, bluebirds, and quail are more likely to be found here than in the forested portions of the county.

The public areas of Zepernick Wildlife Area and Guilford State Park can be found in the western townships of West and Hanover.

The soils found in an area are vitally important in determining the species of vegetation found on a particular site as well as the quantity and quality of the particular vegetation (fig. 21). This fact is important for wildlife managers since the availability of the proper types of food and cover along with water will determine the species of wildlife found in that area. Wildlife habitat can be created or improved by planting appropriate vegetation or improving the fertility of the existing soils. Proper management of existing quality habitat is also very important.

Columbiana County supports a large amount of woodland. These woodlands contain oak, black cherry, hickory, walnut, and beech trees which provide food for many species of wildlife. Scattered conifer stands exist which provide areas of cover. Understory species such as flowering dogwood, serviceberry, spicebush, and tartarian honeysuckle provide additional wildlife habitat. Proper timber management in the future is needed to assure a proper food source for woodland species of wildlife.

Many of the original wetlands found in the county have long disappeared. Those wetland areas which remain are providing excellent habitat for many species of

Figure 20.—Short-eared owls scan the dormant fields on Fairpoint silty clay loam, 0 to 8 percent slopes for signs of prey.
wildlife which are wetland dependent. The cattails, bulrushes, rice cutgrasses, spike rushes, and reed canary grasses not only provide wildlife food and cover, they also filter and clean the water which passes through the wetland. Opportunities exist to enhance some of the previously altered wetlands thus improving the water quality, ground water recharge, and wildlife habitat.

The openland habitats can be improved for upland wildlife species. The pasture land, reclaimed strip mines, cropfields, and abandoned homesteads can be managed to provide valuable nesting and feeding areas for meadowlarks, bluebirds, pheasants, quail, rabbits, deer, and a variety of songbird species. Cropfields with adjacent fencerows of brush make ideal habitat. The addition of artificial nesting structures will improve nesting opportunities for cavity nesting species of wildlife.

Additional information on habitat management or species management for wildlife can be obtained from the nearest Division of Wildlife District Office.

Soils affect the kind and amount of vegetation that is available to wildlife as food and cover. They also affect the construction of water impoundments. The kind and abundance of wildlife depend largely on the amount and distribution of food, cover, and water. Wildlife habitat can be created or improved by planting appropriate vegetation, by maintaining the existing plant cover, or by promoting the natural establishment of desirable plants.

In table 18, the soils in the survey area are rated according to their potential for providing habitat for various kinds of wildlife. This information can be used in planning parks, wildlife refuges, nature study areas, and other developments for wildlife; in selecting soils that are suitable for establishing, improving, or maintaining specific elements of wildlife habitat; and in determining the intensity of management needed for each element of the habitat.
The potential of the soil is rated good, fair, poor, or very poor. A rating of *good* indicates that the element or kind of habitat is easily established, improved, or maintained. Few or no limitations affect management, and satisfactory results can be expected. A rating of *fair* indicates that the element or kind of habitat can be established, improved, or maintained in most places. Moderately intensive management is required for satisfactory results. A rating of *poor* indicates that limitations are severe for the designated element or kind of habitat. Habitat can be created, improved, or maintained in most places, but management is difficult and must be intensive. A rating of *very poor* indicates that restrictions for the element or kind of habitat are very severe and that unsatisfactory results can be expected. Creating, improving, or maintaining habitat is impractical or impossible.

The elements of wildlife habitat are described in the following paragraphs.

Grain and seed crops are domestic grains and seed-producing herbaceous plants. Soil properties and features that affect the growth of grain and seed crops are depth of the root zone, texture of the surface layer, available water capacity, wetness, slope, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of grain and seed crops are corn, wheat, oats, soybeans, and barley.

Grasses and legumes are domestic perennial grasses and herbaceous legumes. Soil properties and features that affect the growth of grasses and legumes are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, flooding, and slope. Soil temperature and soil moisture also are considerations. Examples of grasses and legumes are fescue, lovegrass, bromegrass, clover, and alfalfa.

Wild herbaceous plants are native or naturally established grasses and forbs, including weeds. Soil properties and features that affect the growth of these plants are depth of the root zone, texture of the surface layer, available water capacity, wetness, surface stoniness, and flooding. Soil temperature and soil moisture also are considerations. Examples of wild herbaceous plants are bluestem, goldenrod, beggarweed, wheatgrass, and grama.

Hardwood trees and woody understory produce nuts or other fruit, buds, catkins, twigs, bark, and foliage. Soil properties and features that affect the growth of hardwood trees and shrubs are depth of the root zone, available water capacity, and wetness. Examples of these plants are oak, poplar, cherry, sweetgum, apple, hawthorn, dogwood, hickory, blackberry, raspberry, and blueberry. Examples of fruit-producing shrubs that are suitable for planting on soils rated *good* are Russian-olive, autumn-olive, and crabapple.

Coniferous plants furnish browse and seeds. Soil properties and features that affect the growth of coniferous trees, shrubs, and ground cover are depth of the root zone, available water capacity, and wetness. Examples of coniferous plants are pine, spruce, fir, cedar, and juniper.

Wetland plants are annual and perennial wild herbaceous plants that grow on moist or wet sites. Submerged or floating aquatic plants are excluded. Soil properties and features affecting wetland plants are texture of the surface layer, wetness, reaction, salinity, slope, and surface stoniness. Examples of wetland plants are smartweed, wild millet, wildrice, saltgrass, cordgrass, rushes, sedges, and reeds.

Shallow water areas have an average depth of less than 5 feet. Some are naturally wet areas. Others are created by dams, levees, or other water-control structures. Soil properties and features affecting shallow water areas are depth to bedrock, wetness, surface stoniness, slope, and permeability. Examples of shallow water areas are marshes, waterfowl feeding areas, and ponds.

The habitat for various kinds of wildlife is described in the following paragraphs.

Habitat for openland wildlife consists of cropland, pasture, meadows, and areas that are overgrown with grasses, herbs, shrubs, and vines. These areas produce
Habitat for woodland wildlife consists of areas of deciduous and/or coniferous plants and associated grasses, legumes, and wild herbaceous plants. Wildlife attracted to these areas include wild turkey, ruffed grouse, woodcock, thrushes, woodpeckers, squirrels, gray fox, raccoon, and deer.

Habitat for wetland wildlife consists of open, marshy or swampy shallow water areas. Some of the wildlife attracted to such areas are ducks, geese, herons, shore birds, muskrat, mink, and beaver.

Engineering

This section provides information for planning land uses related to urban development and to water management. Soils are rated for various uses, and the most limiting features are identified. Ratings are given for building site development, sanitary facilities, construction materials, and water management. The ratings are based on observed performance of the soils and on the data in the tables described under the heading “Soil Properties.”

Information in this section is intended for land use planning, for evaluating land use alternatives, and for planning site investigations prior to design and construction. The information, however, has limitations. For example, estimates and other data generally apply only to that part of the soil between the surface and a depth of 5 to 7 feet. Because of the map scale, small areas of different soils may be included within the mapped areas of a specific soil.

The information is not site specific and does not eliminate the need for onsite investigation of the soils or for testing and analysis by personnel experienced in the design and construction of engineering works.

Government ordinances and regulations that restrict certain land uses or impose specific design criteria were not considered in preparing the information in this section. Local ordinances and regulations should be considered in planning, in site selection, and in design.

Soil properties, site features, and observed performance were considered in determining the ratings in this section. During the fieldwork for this soil survey, determinations were made about particle-size distribution, liquid limit, plasticity index, soil reaction, depth to bedrock, hardness of bedrock within 5 to 7 feet of the surface, soil wetness, depth to a water table, ponding, slope, likelihood of flooding, natural soil structure aggregation, and soil density. Data were collected about kinds of clay minerals, mineralogy of the sand and silt fractions, and the kinds of adsorbed cations. Estimates were made for erodibility, permeability, corrosivity, shrink-swell potential, available water capacity, and other behavioral characteristics affecting engineering uses.

This information can be used to evaluate the potential of areas for residential, commercial, industrial, and recreational uses; make preliminary estimates of construction conditions; evaluate alternative routes for roads, streets, highways, pipelines, and underground cables; evaluate alternative sites for sanitary landfills, septic tank absorption fields, and sewage lagoons; plan detailed onsite investigations of soils and geology; locate potential sources of gravel, sand, earthfill, and topsoil; plan drainage systems, irrigation systems, ponds, terraces, and other structures for soil and water conservation; and predict performance of proposed small structures and pavements by comparing the performance of existing similar structures on the same or similar soils.

The information in the tables, along with the soil maps, the soil descriptions, and other data provided in this survey, can be used to make additional interpretations.
Some of the terms used in this soil survey have a special meaning in soil science and are defined in the Glossary.

Construction Materials

Table 19 (Construction Materials Part 1) and table 20 (Construction Materials Part 2) give information about the soils as potential sources of gravel, sand, reclamation material, roadfill and topsoil. Normal compaction, minor processing, and other standard construction practices are assumed.

Gravel and sand are natural aggregates suitable for commercial use with a minimum of processing. They are used in many kinds of construction. Specifications for each use vary widely. In table 19, only the likelihood of finding material in suitable quantity is evaluated. The suitability of the material for specific purposes is not evaluated, nor are factors that affect excavation of the material. The properties used to evaluate the soil as a source of sand or gravel are gradation of grain sizes (as indicated by the Unified classification of the soil), the thickness of suitable material, and the content of rock fragments. If the bottom layer of the soil contains sand or gravel, the soil is considered a likely source regardless of thickness. The assumption is that the sand or gravel layer below the depth of observation exceeds the minimum thickness.

The soils are rated good, fair, or poor as potential sources of gravel and sand. A rating of good or fair means that the source material is likely to be in or below the soil. The bottom layer and the thickest layer of the soils are assigned numerical ratings. These ratings indicate the likelihood that the layer is a source of sand or gravel. The number 0.00 indicates that the layer is a poor source. The number 1.00 indicates that the layer is a good source. A number between 0.00 and 1.00 indicates the degree to which the layer is a likely source.

The soils are rated good, fair, or poor as potential sources of reclamation material, roadfill and topsoil. The features that limit the soils as sources of these materials are specified in the tables. The numerical ratings given after the specified features indicate the degree to which the features limit the soils as sources of topsoil, reclamation material, or roadfill. The lower the number, the greater the limitation.

Reclamation material is used in areas that have been drastically disturbed by surface mining or similar activities. When these areas are reclaimed, layers of soil material or unconsolidated geological material, or both, are replaced in a vertical sequence. The reconstructed soil favors plant growth. The ratings in the table do not apply to quarries and other mined areas that require an offsite source of reconstruction material. The ratings are based on the soil properties that affect erosion and stability of the surface and the productive potential of the reconstructed soil. These properties include the content of sodium, salts, and calcium carbonate; reaction; available water capacity; erodibility; texture; content of rock fragments; and content of organic matter and other features that affect fertility.

Roadfill is soil material that is excavated in one place and used in road embankments in another place. In this table, the soils are rated as a source of roadfill for low embankments, generally less than 6 feet high and less exacting in design than higher embankments.

The ratings are for the whole soil, from the surface to a depth of about 5 feet. It is assumed that soil layers will be mixed when the soil material is excavated and spread.

The ratings are based on the amount of suitable material and on soil properties that affect the ease of excavation and the performance of the material after it is in place. The thickness of the suitable material is a major consideration. The ease of excavation is affected by large stones, depth to a water table, and slope. How well the soil performs in place after it has been compacted and drained is determined by its
strength (as inferred from the AASHTO classification of the soil) and linear extensibility (shrink-swell potential).

Topsoil is used to cover an area so that vegetation can be established and maintained. The upper 40 inches of a soil is evaluated for use as topsoil. Also evaluated is the reclamation potential of the borrow area. The ratings are based on the soil properties that affect plant growth; the ease of excavating, loading, and spreading the material; and reclamation of the borrow area. Toxic substances, soil reaction, and the properties that are inferred from soil texture, such as available water capacity and fertility, affect plant growth. The ease of excavating, loading, and spreading is affected by rock fragments, slope, depth to a water table, soil texture, and thickness of suitable material. Reclamation of the borrow area is affected by slope, depth to a water table, rock fragments, depth to bedrock or a cemented pan, and toxic material.

The surface layer of most soils is generally preferred for topsoil because of its organic matter content. Organic matter greatly increases the absorption and retention of moisture and nutrients for plant growth.

Building Site Development

Soil properties influence the development of building sites, including the selection of the site, the design of the structure, construction, performance after construction, and maintenance. Table 21 (Building Site Development Part 1), and table 22 (Building Site Development Part 2) show the degree and kind of soil limitations that affect dwellings with and without basements, small commercial buildings, local roads and streets, shallow excavations, and lawns and landscaping.

The ratings in the tables are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect building site development. *Not limited* indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. *Somewhat limited* indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. *Very limited* indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Dwellings are single-family houses of three stories or less. For dwellings without basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. For dwellings with basements, the foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of about 7 feet. The ratings for dwellings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility. Compressibility is inferred from the Unified classification. The properties that affect the ease and amount of excavation include depth to a water table, ponding, flooding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.
Small commercial buildings are structures that are less than three stories high and do not have basements. The foundation is assumed to consist of spread footings of reinforced concrete built on undisturbed soil at a depth of 2 feet or at the depth of maximum frost penetration, whichever is deeper. The ratings are based on the soil properties that affect the capacity of the soil to support a load without movement and on the properties that affect excavation and construction costs. The properties that affect the load-supporting capacity include depth to a water table, ponding, flooding, subsidence, linear extensibility (shrink-swell potential), and compressibility (which is inferred from the Unified classification). The properties that affect the ease and amount of excavation include flooding, depth to a water table, ponding, slope, depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, and the amount and size of rock fragments.

Local roads and streets have an all-weather surface and carry automobile and light truck traffic all year. They have a subgrade of cut or fill soil material; a base of gravel, crushed rock, or soil material stabilized by lime or cement; and a surface of flexible material (asphalt), rigid material (concrete), or gravel with a binder. The ratings are based on the soil properties that affect the ease of excavation and grading and the traffic-supporting capacity. The properties that affect the ease of excavation and grading are depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, depth to a water table, ponding, flooding, the amount of large stones, and slope. The properties that affect the traffic-supporting capacity are soil strength (as inferred from the AASHTO group index number), subsidence, linear extensibility (shrink-swell potential), the potential for frost action, depth to a water table, and ponding.

Shallow excavations are trenches or holes dug to a maximum depth of 5 or 6 feet for graves, utility lines, open ditches, or other purposes. The ratings are based on the soil properties that influence the ease of digging and the resistance to sloughing. Depth to bedrock or a cemented pan, hardness of bedrock or a cemented pan, the amount of large stones, and dense layers influence the ease of digging, filling, and compacting. Depth to the seasonal high water table, flooding, and ponding may restrict the period when excavations can be made. Slope influences the ease of using machinery. Soil texture, depth to the water table, and linear extensibility (shrink-swell potential) influence the resistance to sloughing.

Lawns and landscaping require soils on which turf and ornamental trees and shrubs can be established and maintained. Irrigation is not considered in the ratings. The ratings are based on the soil properties that affect plant growth and trafficability after vegetation is established. The properties that affect plant growth are reaction; depth to a water table; ponding; depth to bedrock or a cemented pan; the available water capacity in the upper 40 inches; the content of salts, sodium, or calcium carbonate; and sulfidic materials. The properties that affect trafficability are flooding, depth to a water table, ponding, slope, stoniness, and the amount of sand, clay, or organic matter in the surface layer.

Sanitary Facilities

Table 23 (Sanitary Facilities Part 1) and table 24 (Sanitary Facilities Part 2) show the degree and kind of soil limitations that affect septic tank absorption fields, sewage lagoons, sanitary landfills, and daily cover for landfill. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally
cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Septic tank absorption fields are areas in which effluent from a septic tank is distributed into the soil through subsurface tiles or perforated pipe. Only that part of the soil between depths of 24 and 60 inches is evaluated. The ratings are based on the soil properties that affect absorption of the effluent, construction and maintenance of the system, and public health. Permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, and flooding affect absorption of the effluent. Stones and boulders, ice, and bedrock or a cemented pan interfere with installation. Subsidence interferes with installation and maintenance. Excessive slope may cause lateral seepage and surfacing of the effluent in downslope areas.

Some soils are underlain by loose sand and gravel or fractured bedrock at a depth of less than 4 feet below the distribution lines. In these soils the absorption field may not adequately filter the effluent, particularly when the system is new. As a result, the ground water may become contaminated.

Sewage lagoons are shallow ponds constructed to hold sewage while aerobic bacteria decompose the solid and liquid wastes. Lagoons should have a nearly level floor surrounded by cut slopes or embankments of compacted soil. Nearly impervious soil material for the lagoon floor and sides is required to minimize seepage and contamination of ground water. Considered in the ratings are slope, permeability, depth to a water table, ponding, depth to bedrock or a cemented pan, flooding, large stones, and content of organic matter.

Soil permeability is a critical property affecting the suitability for sewage lagoons. Most porous soils eventually become sealed when they are used as sites for sewage lagoons. Until sealing occurs, however, the hazard of pollution is severe. Soils that have a permeability rate of more than 2 inches per hour are too porous for the proper functioning of sewage lagoons. In these soils, seepage of the effluent can result in contamination of the ground water. Ground-water contamination is also a hazard if fractured bedrock is within a depth of 40 inches, if the water table is high enough to raise the level of sewage in the lagoon, or if floodwater overtops the lagoon.

A high content of organic matter is detrimental to proper functioning of the lagoon because it inhibits aerobic activity. Slope, bedrock, and cemented pans can cause construction problems, and large stones can hinder compaction of the lagoon floor. If the lagoon is to be uniformly deep throughout, the slope must be gentle enough and the soil material must be thick enough over bedrock or a cemented pan to make land smoothing practical.

A trench sanitary landfill is an area where solid waste is placed in successive layers in an excavated trench. The waste is spread, compacted, and covered daily with a thin layer of soil excavated at the site. When the trench is full, a final cover of soil material at least 2 feet thick is placed over the landfill. The ratings in the table are based on the soil properties that affect the risk of pollution, the ease of excavation, trafficability, and revegetation. These properties include permeability, depth to bedrock or a cemented pan, depth to a water table, ponding, slope, flooding, texture, stones and boulders, highly organic layers, soil reaction, and content of salts and sodium. Unless otherwise stated, the ratings apply only to that part of the soil within a depth of about 6 feet. For deeper trenches, onsite investigation may be needed.

Hard, nonrippable bedrock, creviced bedrock, or highly permeable strata in or directly below the proposed trench bottom can affect the ease of excavation and the hazard of ground-water pollution. Slope affects construction of the trenches and the movement of surface water around the landfill. It also affects the construction and performance of roads in areas of the landfill.
Soil texture and consistence affect the ease with which the trench is dug and the ease with which the soil can be used as daily or final cover. They determine the workability of the soil when dry and when wet. Soils that are plastic and sticky when wet are difficult to excavate, grade, or compact and are difficult to place as a uniformly thick cover over a layer of refuse.

The soil material used as the final cover for a trench landfill should be suitable for plants. It should not have excess sodium or salts and should not be too acid. The surface layer generally has the best workability, the highest content of organic matter, and the best potential for plants. Material from the surface layer should be stockpiled for use as the final cover.

In an area sanitary landfill, solid waste is placed in successive layers on the surface of the soil. The waste is spread, compacted, and covered daily with a thin layer of soil from a source away from the site. A final cover of soil material at least 2 feet thick is placed over the completed landfill. The ratings in the table are based on the soil properties that affect trafficability and the risk of pollution. These properties include flooding, permeability, depth to a water table, ponding, slope, and depth to bedrock or a cemented pan.

Flooding is a serious problem because it can result in pollution in areas downstream from the landfill. If permeability is too rapid or if fractured bedrock, or the water table is close to the surface, the leachate can contaminate the water supply. Slope is a consideration because of the extra grading required to maintain roads in the steeper areas of the landfill. Also, leachate may flow along the surface of the soils in the steeper areas and cause difficult seepage problems.

Daily cover for landfill is the soil material that is used to cover compacted solid waste in an area sanitary landfill. The soil material is obtained offsite, transported to the landfill, and spread over the waste. The ratings in the table also apply to the final cover for a landfill. They are based on the soil properties that affect workability, the ease of digging, and the ease of moving and spreading the material over the refuse daily during wet and dry periods. These properties include soil texture, depth to a water table, ponding, rock fragments, slope, depth to bedrock or a cemented pan, reaction, and content of salts, sodium, or lime.

Loamy or silty soils that are free of large stones and excess gravel are the best cover for a landfill. Clayey soils may be sticky and difficult to spread; sandy soils are subject to wind erosion.

Slope affects the ease of excavation and of moving the cover material. Also, it can influence runoff, erosion, and reclamation of the borrow area.

After soil material has been removed, the soil material remaining in the borrow area must be thick enough over bedrock, a cemented pan, or the water table to permit revegetation. The soil material used as the final cover for a landfill should be suitable for plants. It should not have excess sodium, salts, or lime and should not be too acid.

Agricultural Waste Management

Soil properties are important considerations in areas where soils are used as sites for the treatment and disposal of organic waste and wastewater. Selection of soils with properties that favor waste management can help to prevent environmental damage.

Table 25 (Agricultural Waste Management) shows the degree and kind of soil limitations affecting the treatment of agricultural waste, including municipal and food-processing wastewater and effluent from lagoons or storage ponds. Municipal wastewater is the waste stream from a municipality. It contains domestic waste and may contain industrial waste. It may have received primary or secondary treatment. It is rarely untreated sewage. Food-processing wastewater results from the preparation...
of fruits, vegetables, milk, cheese, and meats for public consumption. In places it is high in content of sodium and chloride. In the context of these tables, the effluent in lagoons and storage ponds is from facilities used to treat or store food-processing wastewater or domestic or animal waste. Domestic and food-processing wastewater is very dilute, and the effluent from the facilities that treat or store it commonly is very low in content of carbonaceous and nitrogenous material; the content of nitrogen commonly ranges from 10 to 30 milligrams per liter. The wastewater from animal waste treatment lagoons or storage ponds, however, has much higher concentrations of these materials, mainly because the manure has not been diluted as much as the domestic waste. The content of nitrogen in this wastewater generally ranges from 50 to 2,000 milligrams per liter. When wastewater is applied, checks should be made to ensure that nitrogen, heavy metals, and salts are not added in excessive amounts.

The ratings in the tables are for waste management systems that not only dispose of and treat organic waste or wastewater but also are beneficial to crops (application of manure and food-processing waste, application of sewage sludge, and disposal of wastewater by irrigation) and for waste management systems that are designed only for the purpose of wastewater disposal and treatment (overland flow of wastewater, rapid infiltration of wastewater, and slow rate treatment of wastewater).

The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect agricultural waste management. Not limited indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. Somewhat limited indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. Very limited indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Application of manure and food-processing waste not only disposes of waste material but also can improve crop production by increasing the supply of nutrients in the soils where the material is applied. Manure is the excrement of livestock and poultry, and food-processing waste is damaged fruit and vegetables and the peelings, stems, leaves, pits, and soil particles removed in food preparation. The manure and food-processing waste are either solid, slurry, or liquid. Their nitrogen content varies. A high content of nitrogen limits the application rate. Toxic or otherwise dangerous wastes, such as those mixed with the lye used in food processing, are not considered in the ratings.

The ratings are based on the soil properties that affect absorption, plant growth, microbial activity, erodibility, the rate at which the waste is applied, and the method by which the waste is applied. The properties that affect absorption include permeability, depth to a water table, ponding, the sodium adsorption ratio, depth to bedrock or a fragipan, and available water capacity. The properties that affect plant growth and microbial activity include reaction, the sodium adsorption ratio, and bulk density. The wind erodibility group, the soil erodibility factor K, and slope are considered in estimating the likelihood that wind erosion or water erosion will transport the waste material from the application site. Stones, cobbles, a water table, ponding, and flooding can hinder the application of waste.

Application of sewage sludge not only disposes of waste material but also can improve crop production by increasing the supply of nutrients in the soils where the
material is applied. In the context of this table, sewage sludge is the residual product of the treatment of municipal sewage. The solid component consists mainly of cell mass, primarily bacteria cells that developed during secondary treatment and have incorporated soluble organics into their own bodies. The sludge has small amounts of sand, silt, and other solid debris. The content of nitrogen varies. Some sludge has constituents that are toxic to plants or hazardous to the food chain, such as heavy metals and exotic organic compounds, and should be analyzed chemically prior to use.

The content of water in the sludge ranges from about 98 percent to less than 40 percent. The sludge is considered liquid if it is more than about 90 percent water, slurry if it is about 50 to 90 percent water, and solid if it is less than about 50 percent water.

The ratings in the table are based on the soil properties that affect absorption, plant growth, microbial activity, erodibility, the rate at which the sludge is applied, and the method by which the sludge is applied. The properties that affect absorption, plant growth, and microbial activity include permeability, depth to a water table, ponding, the sodium adsorption ratio, depth to bedrock or a fragipan, available water capacity, reaction, and bulk density. The wind erodibility group, the soil erodibility factor K, and slope are considered in estimating the likelihood that wind erosion or water erosion will transport the waste material from the application site. Stones, cobbles, a water table, ponding, and flooding can hinder the application of sludge.

Disposal of wastewater by irrigation not only disposes of municipal wastewater and wastewater from food-processing plants, lagoons, and storage ponds but also can improve crop production by increasing the amount of water available to crops. The ratings in the table are based on the soil properties that affect the design, construction, management, and performance of the irrigation system. The properties that affect design and management include the sodium adsorption ratio, depth to a water table, ponding, available water capacity, permeability, slope, and flooding. The properties that affect construction include stones, cobbles, depth to bedrock or a fragipan, depth to a water table, and ponding. The properties that affect performance include depth to bedrock or a fragipan, bulk density, the sodium adsorption ratio, reaction, and the cation-exchange capacity, which is used to estimate the capacity of a soil to adsorb heavy metals.

Overland flow of wastewater is a process in which wastewater is applied to the upper reaches of sloped land and allowed to flow across vegetated surfaces, sometimes called terraces, to runoff-collection ditches. The length of the run generally is 150 to 300 feet. The application rate ranges from 2.5 to 16.0 inches per week. It commonly exceeds the rate needed for irrigation of cropland. The wastewater leaves solids and nutrients on the vegetated surfaces as it flows downslope in a thin film. Most of the water reaches the collection ditch, some is lost through evapotranspiration, and a small amount may percolate to the ground water.

The ratings in the table are based on the soil properties that affect absorption, plant growth, microbial activity, and the design and construction of the system. Reaction and the cation-exchange capacity affect absorption. Reaction, and the sodium adsorption ratio affect plant growth and microbial activity. Slope, permeability, depth to a water table, ponding, flooding, depth to bedrock or a fragipan, stones, and cobbles affect design and construction.

Rapid infiltration of wastewater is a process in which wastewater applied in a level basin at a rate of 4 to 120 inches per week percolates through the soil. The wastewater may eventually reach the ground water. The application rate commonly exceeds the rate needed for irrigation of cropland. Vegetation is not a necessary part of the treatment; hence, the basins may or may not be vegetated. The thickness of the soil material needed for proper treatment of the wastewater is more than 72 inches.
As a result, geologic and hydrologic investigation is needed to ensure proper design and performance and to determine the risk of ground-water pollution.

The ratings in the table are based on the soil properties that affect the risk of pollution and the design, construction, and performance of the system. Depth to a water table, ponding, flooding, and depth to bedrock or a fragipan affect the risk of pollution and the design and construction of the system. Slope, stones, and cobbles also affect design and construction. Permeability and reaction affect performance.

Slow rate treatment of wastewater is a process in which wastewater is applied to land at a rate normally between 0.5 inch and 4.0 inches per week. The application rate commonly exceeds the rate needed for irrigation of cropland. The applied wastewater is treated as it moves through the soil. Much of the treated water may percolate to the ground water, and some enters the atmosphere through evapotranspiration. The applied water generally is not allowed to run off the surface. Waterlogging is prevented either through control of the application rate or through the use of tile drains, or both.

The ratings in the table are based on the soil properties that affect absorption, plant growth, microbial activity, erodibility, and the application of waste. The properties that affect absorption include the sodium adsorption ratio, depth to a water table, ponding, available water capacity, permeability, depth to bedrock or a cemented pan, reaction, the cation-exchange capacity, and slope. Reaction, the sodium adsorption ratio, and bulk density affect plant growth and microbial activity. The wind erodibility group, the soil erodibility factor K, and slope are considered in estimating the likelihood of wind erosion or water erosion. Stones, cobbles, a water table, ponding, and flooding can hinder the application of waste.

Water Management

Table 26 (Water Management Part 1) and **table 27** (Water Management Part 2) give information on the soil properties and site features that affect water management. The degree and kind of soil limitations are given for pond reservoir areas; embankments, dikes, and levees; aquifer-fed excavated ponds; grassed waterways; terraces and diversions; and drainage. The ratings are both verbal and numerical. Rating class terms indicate the extent to which the soils are limited by all of the soil features that affect these uses. *Not limited* indicates that the soil has features that are very favorable for the specified use. Good performance and very low maintenance can be expected. *Somewhat limited* indicates that the soil has features that are moderately favorable for the specified use. The limitations can be overcome or minimized by special planning, design, or installation. Fair performance and moderate maintenance can be expected. *Very limited* indicates that the soil has one or more features that are unfavorable for the specified use. The limitations generally cannot be overcome without major soil reclamation, special design, or expensive installation procedures. Poor performance and high maintenance can be expected.

Numerical ratings in the tables indicate the severity of individual limitations. The ratings are shown as decimal fractions ranging from 0.01 to 1.00. They indicate gradations between the point at which a soil feature has the greatest negative impact on the use (1.00) and the point at which the soil feature is not a limitation (0.00).

Pond reservoir areas hold water behind a dam or embankment. Soils best suited to this use have low seepage potential in the upper 60 inches (fig. 22). The seepage potential is determined by the permeability of the soil and the depth to fractured bedrock or other permeable material. Excessive slope can affect the storage capacity of the reservoir area.

Embankments, dikes, and levees are raised structures of soil material, generally less than 20 feet high, constructed to impound water or to protect land against overflow. Embankments that have zoned construction (core and shell) are not
considered. In this table, the soils are rated as a source of material for embankment fill. The ratings apply to the soil material below the surface layer to a depth of about 5 feet. It is assumed that soil layers will be uniformly mixed and compacted during construction.

The ratings do not indicate the ability of the natural soil to support an embankment. Soil properties to a depth even greater than the height of the embankment can affect performance and safety of the embankment. Generally, deeper onsite investigation is needed to determine these properties.

Soil material in embankments must be resistant to seepage, piping, and erosion and have favorable compaction characteristics. Unfavorable features include less than 5 feet of suitable material and a high content of stones or boulders, organic matter, or salts or sodium. A high water table affects the amount of usable material. It also affects trafficability.

Aquifer-fed excavated ponds are pits or dugouts that extend to a ground-water aquifer or to a depth below a permanent water table. Excluded are ponds that are fed only by surface runoff and embankment ponds that impound water 3 feet or more above the original surface. Excavated ponds are affected by depth to a permanent water table, permeability of the aquifer, and quality of the water as inferred from the salinity of the soil. Depth to bedrock and the content of large stones affect the ease of excavation.

Grassed waterways are natural or constructed channels, generally broad and shallow, that conduct surface water to outlets at a nonerosive velocity. Large stones, wetness, slope, and depth to bedrock or a cemented pan affect the construction of grassed waterways. A hazard of water erosion, low available water capacity, restricted rooting depth, toxic substances such as salts and sodium, and restricted permeability adversely affect the growth and maintenance of the grass after construction.

Figure 22.—Many soils formed in glacial till parent materials in Columbiana County, such as this Canfield soil, are well suited to ponding water.
Terraces and diversions are embankments or a combination of channels and ridges constructed across a slope to control erosion and conserve moisture by intercepting runoff. Slope, wetness, large stones, and depth to bedrock or a cemented pan affect the construction of terraces and diversions. A restricted rooting depth, a severe hazard of wind erosion or water erosion, an excessively coarse texture, and restricted permeability adversely affect maintenance.

Drainage is the removal of excess surface and subsurface water from the soil (fig. 23). How easily and effectively the soil is drained depends on the depth to bedrock, a cemented pan, or other layers that affect the rate of water movement; permeability; depth to a high water table or depth of standing water if the soil is subject to ponding; slope; susceptibility to flooding; subsidence of organic layers; and the potential for frost action. Excavating and grading and the stability of ditchbanks are affected by depth to bedrock or a cemented pan, large stones, slope, and the hazard of cutbanks caving. The productivity of the soil after drainage is adversely affected by extreme acidity or by toxic substances in the root zone, such as salts, sodium, and sulfur. Availability of drainage outlets is not considered in the ratings.

Figure 23.—Water moves through soil and bedrock preferentially along connected voids of structure surfaces and fracture lines. The icicles evidence that pattern of preferential flow in the local bedrock under Westmoreland and Berks soils.
Soil Properties

Data relating to soil properties are collected during the course of the soil survey. Soil properties are ascertained by field examination of the soils in accordance with established standard procedures. During the survey, many shallow borings are made and soil characteristics examined to identify and classify the soils and to delineate them on the soil maps. Estimates of soil properties are based on field examinations and on laboratory tests. Tests verify field observations, verify properties that cannot be estimated accurately by field observation, and help to characterize key soils.

Samples are taken from some typical soil profiles and tested in the laboratory to determine particle-size distribution, reaction, organic matter content, calcium carbonate content, extractable cations, plasticity, and compaction characteristics. In addition to the data from Columbiana County, laboratory data are available from nearby or adjacent counties that have many of the same soils. These results are retained at the School of Natural Resources, Ohio State University, Columbus, Ohio; the Ohio Department of Natural Resources, Division of Soil and Water Conservation, Columbus, Ohio; and the USDA-Natural Resources Conservation Service, State Office, Columbus, Ohio.

The estimates of soil properties are shown in table 28 (Engineering Index Properties), table 29 (Physical Properties of the Soils), table 30 (Chemical Properties of the Soils), table 31 (Water Features), and table 32 (Soil Features).

Engineering Index Properties

Table 28 (Engineering Index Properties) gives estimates of the engineering classifications and the range of index properties for the layers of each soil in Columbiana County.

Depth to the upper and lower boundaries of each layer is indicated.

USDA Texture is given in the standard terms used by the U.S. Department of Agriculture. These terms are defined according to percentages of sand, silt, and clay in the fraction of the soil that is less than 2 millimeters in diameter (fig. 24). “Loam”, for example, is soil that is 7 to 27 percent clay, 28 to 50 percent silt, and less than 52 percent sand. If content of particles coarser than sand is 15 percent or more, an appropriate modifier is added, for example, “gravelly.” Textural terms are defined in the Glossary.

Classification of the soils is an engineering classification determined according to the Unified soil classification system (ASTM, 2005) and the system adopted by the American Association of State Highway and Transportation Officials (AASHTO, 2004). The Unified system classifies soils according to properties that affect their use as construction material. Soils are classified according to particle-size distribution of the fraction less than 3 inches in diameter and according to plasticity index, liquid limit, and organic matter content. Sandy and gravelly soils are identified as GW, GP, GM, GC, SW, SP, SM, and SC; silty and clayey soils as ML, CL, OL, MH, CH, and OH; and highly organic soils as PT. Soils exhibiting engineering properties of two groups can have a dual classification, for example, CL-ML.

The AASHTO system classifies soils according to those properties that affect roadway construction and maintenance. In this system, the fraction of a mineral soil
that is less than 3 inches in diameter is classified in one of seven groups from A-1 through A-7 on the basis of particle-size distribution, liquid limit, and plasticity index. Soils in group A-1 are coarse grained and low in content of fines (silt and clay). At the other extreme, soils in group A-7 are fine grained. Highly organic soils are classified in group A-8 on the basis of visual inspection.

Rock fragments larger than 10 inches in diameter and 3 to 10 inches in diameter are indicated as a percentage of the total soil on a dry-weight basis. The percentages are estimates determined mainly by converting volume percentage in the field to weight percentage.

Percentage (of soil particles) passing designated sieves is the percentage of the soil fraction less than 3 inches in diameter based on an ovendry weight. The sieves, numbers 4, 10, 40, and 200 (USA Standard Series), have openings of 4.76, 2.00, 0.420, and 0.074 millimeters, respectively. Estimates are based on laboratory tests of soils sampled in the survey area and in nearby areas and on estimates made in the field.

Liquid limit and plasticity index (Atterberg limits) indicate the plasticity characteristics of a soil. The estimates are based on test data from the survey area or from nearby areas and on field examination.

The estimates of particle-size distribution, liquid limit, and plasticity index are generally rounded to the nearest 5 percent. Thus, if the ranges of gradation and Atterberg limits extend a marginal amount (1 or 2 percentage points) across classification boundaries, the classification in the marginal zone is generally omitted in the table.

Physical Properties

Table 29 (Physical Properties of the Soils) shows estimates of some physical characteristics and features that affect soil behavior. These estimates are given for
the layers of each soil in the Columbiana County. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Particle size is the effective diameter of a soil particle as measured by sedimentation, sieving, or micrometric methods. Particle sizes are expressed as classes with specific effective diameter class limits. The broad classes are sand, silt, and clay, ranging from the larger to the smaller. Sand as a soil separate consists of mineral soil particles that are 0.05 millimeter to 2 millimeters in diameter. Silt as a soil separate consists of mineral soil particles that are 0.002 to 0.05 millimeters in diameter.

The content of sand, silt, and clay affects the physical behavior of a soil. Particle size is important for engineering and agronomic interpretations, for determination of soil hydrologic qualities, and for soil classification.

Clay as a soil separate consists of mineral soil particles that are less than 0.002 millimeter in diameter. In table 29, the estimated clay content of each soil layer is given as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The amount and kind of clay affect the fertility and physical condition of the soil and the ability of the soil to adsorb cations and to retain moisture. Clays influence shrink-swell potential, permeability, plasticity, the ease of soil dispersion, and other soil properties. The amount and kind of clay in a soil also affect tillage and earthmoving operations.

Moist bulk density is the weight of soil (oven-dry) per unit volume. Volume is measured when the soil is at field moisture capacity, that is, the moisture content at 1/10- or 1/100-bar (33kPa or 10kPa) moisture tension. Weight is determined after the soil is dried at 105 degrees C. In the table, the estimated moist bulk density of each soil horizon is expressed in grams per cubic centimeter of soil material that is less than 2 millimeters in diameter. Bulk density data are used to compute shrink-swell potential, available water capacity, total pore space, and other soil properties. The moist bulk density of a soil indicates the pore space available for water and roots. Depending on soil texture, a bulk density of more than 1.4 can restrict water storage and root penetration. Moist bulk density is influenced by texture, kind of clay, content of organic matter, and soil structure.

Permeability (K_{sat}) refers to the ability of a soil to transmit water or air. The term “permeability,” as used in soil surveys, indicates saturated hydraulic conductivity (K_{sat}). The estimates in the Table indicate the rate of water movement, in inches per hour, when the soil is saturated. They are based on soil characteristics observed in the field, particularly structure, porosity, and texture. Permeability is considered in the design of soil drainage systems and septic tank absorption fields.

Available water capacity refers to the quantity of water that the soil is capable of storing for use by plants. The capacity for water storage is given in inches of water per inch of soil for each soil layer. The capacity varies, depending on soil properties that affect retention of water. The most important properties are the content of organic matter, soil texture, bulk density, and soil structure. Available water capacity is an important factor in the choice of plants or crops to be grown and in the design and management of irrigation systems. Available water capacity is not an estimate of the quantity of water actually available to plants at any given time.

Shrink-swell potential is the potential for volume change in a soil with a loss or gain in moisture. Volume change occurs mainly because of the interaction of clay minerals with water and varies with the amount and type of clay minerals in the soil. The size of the load on the soil and the magnitude of the change in soil moisture content influence the amount of swelling of soils in place. Laboratory measurements of swelling of undisturbed clods were made for many soils. For others, swelling was
estimated on the basis of the kind and amount of clay minerals in the soil and on the basis of measurements of similar soils.

If the shrink-swell potential is rated moderate to very high, shrinking and swelling can cause damage to buildings, roads, and other structures. Special design is often needed.

Shrink-swell potential classes are based on the change in length of an unconfined clod as moisture content is increased from air-dry to field capacity. The classes are low, a change of 3 percent; moderate, 3 to 6 percent; high, more than 6 percent; and very high, greater than 9 percent.

Erosion factors are shown in table 29 as the K factor (Kw and Kf) and the T factor. Erosion factor K indicates the susceptibility of a soil to sheet and rill erosion by water. Factor K is one of six factors used in the Universal Soil Loss Equation (USLE) and the Revised Universal Soil Loss Equation (RUSLE) to predict the average annual rate of soil loss by sheet and rill erosion in tons per acre per year. The estimates are based primarily on percentage of silt, sand, and organic matter and on soil structure and permeability. Values of K range from 0.02 to 0.69. Other factors being equal, the higher the value, the more susceptible the soil is to sheet and rill erosion by water.

Erosion factor Kw indicates the erodibility of the whole soil. The estimates are modified by the presence of rock fragments.

Erosion factor Kf indicates the erodibility of the fine-earth fraction, or the material less than 2 millimeters in size.

Erosion factor T is an estimate of the maximum average annual rate of soil erosion by wind or water that can occur without affecting crop productivity over a sustained period. The rate is in tons per acre per year.

Wind erodibility groups are made up of soils that have similar properties affecting their susceptibility to wind erosion in cultivated areas. The soils assigned to group 1 are the most susceptible to wind erosion, and those assigned to group 8 are the least susceptible. The groups are as follows:

1. Coarse sands, sands, fine sands, and very fine sands.
2. Loamy coarse sands, loamy sands, loamy fine sands, loamy very fine sands, ash material, and sapric soil material.
3. Coarse sandy loams, sandy loams, fine sandy loams, and very fine sandy loams.
4. Clays, silty clays, noncalcareous clay loams, and silty clay loams that are more than 35 percent clay.
5. Noncalcareous loams and silt loams that are less than 20 percent clay and sandy clay loams, sandy clays, and hemic soil material.
6. Noncalcareous loams and silt loams that are more than 20 percent clay and noncalcareous clay loams that are less than 35 percent clay.
7. Silts, noncalcareous silty clay loams that are less than 35 percent clay, and fibric soil material.
8. Soils that are not subject to wind erosion because of rock fragments on the surface or because of surface wetness.

Chemical Properties

Table 30 (Chemical Properties of the Soils) shows estimates of some chemical characteristics and features that affect soil behavior. These estimates are given for the layers of each soil in Columbiana County. The estimates are based on field observations and on test data for these and similar soils.

Depth to the upper and lower boundaries of each layer is indicated.

Soil reaction is a measure of acidity or alkalinity. The pH of each soil horizon is based on many field tests. For many soils, values have been verified by laboratory
analyses. Soil reaction is important in selecting crops and other plants, in evaluating soil amendments for fertility and stabilization, and in determining the risk of corrosion.

Organic matter is the plant and animal residue in the soil at various stages of decomposition. In table 30, the estimated content of organic matter is expressed as a percentage, by weight, of the soil material that is less than 2 millimeters in diameter.

The content of organic matter in a soil can be maintained by returning crop residue to the soil. Organic matter has a positive effect on available water capacity, water infiltration, soil organism activity, and tilth. It is a source of nitrogen and other nutrients for crops and soil organisms.

Cation-exchange capacity is the total amount of extractable bases that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. Soils having a low cation-exchange capacity hold fewer cations and may require more frequent applications of fertilizer than soils having a high cation-exchange capacity. The ability to retain cations reduces the hazard of ground-water pollution.

Calcium carbonate equivalent is the percent of carbonates, by weight, in the fraction of the soil less than 2 millimeters in size. The availability of plant nutrients is influenced by the amount of carbonates in the soil. Incorporating nitrogen fertilizer into calcareous soils helps to prevent nitrite accumulation and ammonium-N volatilization.

Water Features

Table 31 (Water Features), gives estimates of various water features. The estimates are used in land use planning that involves engineering considerations.

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The four hydrologic soil groups are:

- **Group A.** Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

- **Group B.** Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

- **Group C.** Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

- **Group D.** Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas.

The *months* in the table indicate the portion of the year in which the feature is most likely to be a concern.

Water table refers to a saturated zone in the soil. *Table 31* indicates, by month, depth to the top (*upper limit*) and base (*lower limit*) of the saturated zone in most years. Estimates of the upper and lower limits are based mainly on observations of the water table at selected sites and on evidence of a saturated zone, namely grayish
colors or mottles (redoximorphic features) in the soil. A saturated zone that lasts for less than a month is not considered a water table.

Water tables are identified by kind. The two kinds are apparent and perched. Apparent water tables occur in some soils and begin at the upper surface of ground water or that level in the soil where the water is at atmospheric pressure. The saturated state continues downward for an indefinite depth. Perched water tables occur in some soils and are characterized by having a saturated layer of soil which is separated from any underlying saturated layers by an unsaturated layer.

Ponding is standing water in a closed depression. Unless a drainage system is installed, the water is removed only by percolation, transpiration, or evaporation. Table 31 indicates surface water depth and the duration and frequency of ponding. Duration is expressed as very brief if less than 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, rare, occasional, and frequent. None means that ponding is not probable; rare that it is unlikely but possible under unusual weather conditions (the chance of ponding is nearly 0 percent to 5 percent in any year); occasional that it occurs, on the average, once or less in 2 years (the chance of ponding is 5 to 50 percent in any year); and frequent that it occurs, on the average, more than once in 2 years (the chance of ponding is more than 50 percent in any year).

Flooding is the temporary inundation of an area caused by overflowing streams, by runoff from adjacent slopes, or by tides (fig. 25). Water standing for short periods after rainfall or snowmelt is not considered flooding, and water standing in swamps and marshes is considered ponding rather than flooding.

Duration and frequency are estimated. Duration is expressed as extremely brief if 0.1 hour to 4 hours, very brief if 4 hours to 2 days, brief if 2 to 7 days, long if 7 to 30 days, and very long if more than 30 days. Frequency is expressed as none, very rare, rare, occasional, frequent, and very frequent. None means that flooding is not probable; very rare that it is very unlikely but possible under extremely unusual weather conditions (the chance of flooding is less than 1 percent in any year); rare that it is unlikely but possible under unusual weather conditions (the chance of flooding is 1 to 5 percent in any year); occasional that it occurs infrequently under normal weather conditions (the chance of flooding is 5 to 50 percent in any year); frequent that it is likely to occur often under normal weather conditions (the chance of flooding is more than 50 percent in any year but is less than 50 percent in all months in any year); and very frequent that it is likely to occur very often under normal weather conditions (the chance of flooding is more than 50 percent in all months of any year).

The information is based on evidence in the soil profile, namely thin strata of gravel, sand, silt, or clay deposited by floodwater; irregular decrease in organic matter content with increasing depth; and little or no horizon development.

Also considered are local information about the extent and levels of flooding and the relation of each soil on the landscape to historic floods. Information on the extent of flooding based on soil data is less specific than that provided by detailed engineering surveys that delineate flood-prone areas at specific flood frequency levels.

Soil Features

Table 32 (Soil Features) gives estimates of various soil features. The estimates are used in land use planning that involves engineering considerations.

A restrictive layer is a nearly continuous layer that has one or more physical, chemical, or thermal properties that significantly impede the movement of water and air through the soil or that restrict roots or otherwise provide an unfavorable root environment. Examples are bedrock, cemented layers, dense layers, and frozen
layers. The table indicates the hardness and thickness of the restrictive layer, both of which significantly affect the ease of excavation. *Depth to top* is the vertical distance from the soil surface to the upper boundary of the restrictive layer.

Subsidence is the settlement of organic soils or of saturated mineral soils of very low density. Subsidence generally results from either desiccation and shrinkage or oxidation of organic material, or both, following drainage. Subsidence takes place gradually, usually over a period of several years. The table shows the expected initial subsidence, which usually is a result of drainage, and total subsidence, which results from a combination of factors.

Potential for frost action is the likelihood of upward or lateral expansion of the soil caused by the formation of segregated ice lenses (frost heave) and the subsequent collapse of the soil and loss of strength on thawing. Frost action occurs when moisture moves into the freezing zone of the soil. Temperature, texture, density, permeability, content of organic matter, and depth to the water table are the most important factors considered in evaluating the potential for frost action. It is assumed that the soil is not insulated by vegetation or snow and is not artificially drained. Silty and highly structured, clayey soils that have a high water table in winter are the most susceptible to frost action. Well drained, very gravelly, or very sandy soils are the least susceptible. Frost heave and low soil strength during thawing cause damage to pavements and other rigid structures.

Risk of corrosion pertains to potential soil-induced electrochemical or chemical action that corrodes or weakens uncoated steel or concrete. The rate of corrosion of uncoated steel is related to such factors as soil moisture, particle-size distribution, acidity, and electrical conductivity of the soil. The rate of corrosion of concrete is based mainly on the sulfate and sodium content, texture, moisture content, and acidity of the soil. Special site examination and design may be needed if the

Figure 25.—Orrville silt loam, 0 to 2 percent slopes, occasionally flooded soils under floodwater. Flooding is significant in many ways to the use and management of this soil.
combination of factors results in a severe hazard of corrosion. The steel or concrete in installations that intersect soil boundaries or soil layers is more susceptible to corrosion than the steel or concrete in installations that are entirely within one kind of soil or within one soil layer.

For uncoated steel, the risk of corrosion, expressed as low, moderate, or high, is based on soil drainage class, total acidity, electrical resistivity near field capacity, and electrical conductivity of the saturation extract.

For concrete, the risk of corrosion also is expressed as low, moderate, or high. It is based on soil texture, acidity, and amount of sulfates in the saturation extract.
Classification of the Soils

The taxonomic system of soil classification used by the National Cooperative Soil Survey has six categories (Soil Survey Staff, 1999, Soil Taxonomy). Beginning with the broadest, these categories are the order, suborder, great group, subgroup, family, and series. Classification is based on soil properties observed in the field or inferred from those observations or from laboratory measurements. Table 33 (Classification of the Soils-9th Edition of Keys to Soil Taxonomy) shows the classification of the soils in Columbiana County. Miscellaneous map units are not listed in this table. The categories are defined in the following paragraphs.

ORDER. Twelve soil orders are recognized. The differences among orders reflect the dominant soil-forming processes and the degree of soil formation. Each order is identified by a word ending in sol. An example is Alfisol.

SUBORDER. Each order is divided into suborders primarily on the basis of properties that influence soil genesis and are important to plant growth or properties that reflect the most important variables within the orders. The last syllable in the name of a suborder indicates the order. An example is Aquafs (Aqu, meaning humid, plus alf, from Alfisol).

GREAT GROUP. Each suborder is divided into great groups on the basis of close similarities in kind, arrangement, and degree of development of pedogenic horizons; soil moisture and temperature regimes; type of saturation; and base status. Each great group is identified by the name of a suborder and by a prefix that indicates a property of the soil. An example is Epiaqualfs (Epi, meaning minimal, plus aqualf, the suborder of the Alfisols that has an aquic moisture regime).

SUBGROUP. Each great group has a typic subgroup. Other subgroups are intergrades or extragrades. The typic subgroup is the central concept of the great group; it is not necessarily the most extensive. Intergrades are transitions to other orders, suborders, or great groups. Extragrades have some properties that are not representative of the great group but do not indicate transitions to any other taxonomic class. Each subgroup is identified by one or more adjectives preceding the name of the suborder. The adjective Aeric identifies one subgroup of the great group. An example is Aeric Epiaqualfs.

FAMILY. Families are established within a subgroup on the basis of physical and chemical properties and other characteristics that affect management. Generally, the properties are those of horizons below plow depth where there is much biological activity. Among the properties and characteristics considered are particle-size class, mineralogy class, cation-exchange activity class, soil temperature regime, soil depth, and reaction class. A family name consists of the name of a subgroup preceded by terms that indicate soil properties. An example is fine-loamy, mixed, superactive, mesic Aeric Epiaqualfs.

SERIES. The series consists of soils within a family that have horizons similar in color, texture, structure, reaction, consistence, mineral and chemical composition, and arrangement in the profile. An example is the Homeworth soil series.
Soil Series and Their Morphology

In this section, arranged in alphabetical order, each soil series correlated in the Columbiana County Soil Survey is described. Characteristics of the soil and the material in which it formed are identified for each soil series. A pedon, a small three-dimensional volume of soil that is typical of the series in the survey area is described. The detailed description of each soil horizon follows standards in the “Soil Survey Manual” (Soil Survey Division Staff, 1993). Many of the technical terms used in the descriptions are defined in “Soil Taxonomy” (Soil Survey Staff, 1999) and in “Keys to Soil Taxonomy” (Soil Survey Staff, 2003). Unless otherwise indicated, colors in the descriptions are for moist soil. Following the pedon description is the range of important characteristics of the soils in the series.

Amanda Series

Depth class: Very deep
Drainage class: Well drained
Landform: Till plain
Position on the landform: Shoulder, backslope
Parent material: Loamy till
Slope range: 35 to 70 percent
Associated soils: Canfield, Ravenna, Rittman, Zepernick
Taxonomic class: Fine-loamy, mixed, active, mesic Typic Hapludalfs

Typical Pedon

Amanda loam, 35 to 70 percent slopes; in Columbiana County, Ohio, Salem Township, about 0.5 miles east of Franklin Square, 847 feet east and 1,527 feet south of the northwest corner of sec. 23, T. 15 N., R. 3 W.

A—0 to 5 inches; dark grayish brown (10YR 4/2) loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; very friable; many fine and medium roots; t 10 percent intermixing of yellowish brown (10YR 5/6) B material; 5 percent pebbles; very strongly acid; abrupt smooth boundary.

BE—5 to 13 inches; yellowish brown (10YR 5/4) loam; weak fine subangular blocky structure; friable; many fine and medium roots; 5 percent intermixing of dark grayish brown (10YR 4/2) A material; 5 percent pebbles; very strongly acid; clear wavy boundary.

Bt1—13 to 22 inches; yellowish brown (10YR 5/6) silt loam; weak medium subangular blocky structure; friable; common fine and medium roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent pebbles; strongly acid; clear wavy boundary.

Bt2—22 to 32 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; friable; many medium roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; 5 percent pebbles; strongly acid; clear wavy boundary.

Bt3—32 to 40 inches; yellowish brown (10YR 5/6) gravelly silt loam; few fine prominent strong brown (7.5YR 5/8) irregular mottles from weathered fragments in the matrix; moderate medium subangular blocky structure; friable; common fine and medium roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 15 percent pebbles; strongly acid; clear wavy boundary.

Btx—40 to 50 inches; yellowish brown (10YR 5/4) gravelly silty clay loam; few fine prominent strong brown (7.5YR 5/8) irregular mottles from weathered fragments in the matrix; weak medium and coarse subangular blocky structure; firm; 20 percent brittle; few fine and medium roots; common faint yellowish brown (10YR
5/4) clay films on faces of peds; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds and in pores; 25 percent pebbles; moderately acid; gradual wavy boundary.

B’t1—50 to 60 inches; yellowish brown (10YR 5/4) loam; few fine prominent strong brown (7.5YR 5/8) irregular mottles from weathered fragments in the matrix; weak medium and coarse subangular blocky structure; firm; few fine and medium roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; common medium prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds and in pores; 10 percent pebbles; slightly effervescent; slightly alkaline; gradual wavy boundary.

B’t2—60 to 70 inches; yellowish brown (10YR 5/4) loam; few fine prominent strong brown (7.5YR 5/8) and very dark gray (10YR 3/1) irregular mottles from weathered fragments in the matrix; weak coarse subangular blocky structure; firm; few medium roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 10 percent pebbles; slightly effervescent; moderately alkaline; gradual wavy boundary.

C—70 to 80 inches; dark yellowish brown (10YR 4/4) loam; few fine prominent strong brown (7.5YR 5/8) irregular mottles from weathered fragments in the matrix; massive; friable; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 14 percent pebbles; neutral.

Range in Characteristics

Depth to bedrock: More than 80 inches

Thickness of the solum: 40 to 70 inches

Depth to carbonates: 40 to 72 inches

Kind of rock fragments: Sandstone, siltstone, shale, igneous

Reaction: Unless limed, very strongly acid to slightly alkaline in the solum

A horizon:
- Hue—10YR
- Value—4
- Chroma—1 or 2
- Texture of the fine earth fraction—loam
- Content of rock fragments—2 to 10 percent

E horizon (where present):
- Hue—10YR
- Value—5 or 6
- Chroma—3 or 4
- Texture of the fine earth fraction—loam or silt loam
- Content of rock fragments—2 to 10 percent

B horizon:
- Hue—7.5YR or 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam, loam, clay loam
- Content of rock fragments—2 to 25 percent

C horizon:
- Hue—10YR
- Value—4 or 5
- Chroma—3 or 4
- Texture of the fine earth fraction—loam, silt loam
- Content of rock fragments—5 to 14 percent
The Amanda pedon has a thicker argillic horizon, more rock fragments in the middle part of the Bt horizon, and the reaction in the lower part of the subsoil is less acid and depth to carbonates is shallower than is defined as typical for the series. This should not adversely affect use and management of the soil for most purposes.

Berks Series

Depth class: Moderately deep
Drainage class: Well drained
Landform: Hill
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from shale interbedded with fine grained sandstone and siltstone
Slope range: 2 to 70 percent
Associated soils: Coshocton, Gilpin, Guernsey, Westmoreland
Taxonomic class: Loamy-skeletal, mixed, active, mesic Typic Dystrudepts

Typical Pedon

Berks channery silt loam, 25 to 40 percent slopes; in Columbiana County, Ohio, Wayne Township, about 1.5 miles northwest of Highlandtown, 350 feet east and 100 feet south of the northwest corner of sec. 35, T. 13 N., R. 3 W.

Oe—0 to 1 inches; partially decayed leaf litter.
A—1 to 3 inches; very dark grayish brown (10YR 3/2) channery silt loam, dark grayish brown (10YR 4/2) dry; weak fine granular structure; very friable; many very fine roots; 20 percent channers; strongly acid; abrupt smooth boundary.
AB—3 to 8 inches; brown (10YR 4/3) channery silt loam; weak fine subangular blocky structure; friable; common very fine roots; 30 percent channers; very strongly acid; clear wavy boundary.
Bw—8 to 22 inches; yellowish brown (10YR 5/4) extremely channery silt loam; weak medium subangular blocky structure; friable; common very fine roots; 65 percent channers; strongly acid; clear wavy boundary.
R—22 inches; light olive brown (2.5Y 5/4) fractured siltstone; few very fine roots.

Range in Characteristics

Depth to bedrock: 20 to 40 inches
Thickness of the solum: 15 to 40 inches
Kind of rock fragments: Sandstone, siltstone, shale
Reaction: Unless limed, extremely acid to slightly acid throughout the profile

A horizon:
Hue—10YR
Value—3 or 4
Chroma—2 or 4
Texture of the fine earth fraction—silt loam
Content of rock fragments—15 to 30 percent

Ap horizon (where present):
Hue—10YR
Value—3 or 4
Chroma—2 or 4
Texture of the fine earth fraction—silt loam
Content of rock fragments—15 to 30 percent

Bw horizon:
Hue—7.5YR to 2.5Y
Columbiana County, Ohio

Value—4 to 6
Chroma—4 to 6
Texture of the fine earth fraction—loam, silt loam
Content of rock fragments—25 to 75 percent

C horizon (where present):
Hue—7.5YR to 2.5Y
Value—4 or 5
Chroma—3 or 4
Texture of the fine earth fraction—loam, silt loam
Content of rock fragments—50 to 89 percent

Bethesda Series

Depth class: Very deep
Drainage class: Well drained
Landform: Surface mine on hill
Position on the landform: Summit, shoulder, backslope, footslope
Parent material: Mixture of partly weathered fine earth and fragments of shale, siltstone, and sandstone from surface mining
Slope range: 25 to 70 percent
Associated soils: Berks, Gilpin, Mechanicsburg, Westmoreland
Taxonomic class: Loamy-skeletal, mixed, active, acid, mesic Typic Udorthents

Typical Pedon

Bethesda very channery silt loam, 25 to 70 percent slopes; in Columbiana County, Ohio, Elk Run Township, about 0.75 miles northwest of Elkton, 873 feet west and 875 feet south of the northeast corner of sec. 20, T. 11 N., R. 2 W.

A—0 to 2 inches; brown (10YR 4/3) very channery silt loam, pale brown (10YR 6/3) dry; weak fine granular structure; friable; common fine roots; 40 percent channers; strongly acid; abrupt smooth boundary.

C1—2 to 10 inches; dark yellowish brown (10YR 4/4) very channery silty clay loam; massive; friable; few fine roots; 45 percent channers; strongly acid; clear wavy boundary.

C2—10 to 35 inches; variegated dark grayish brown (2.5Y 4/2), 60 percent, and yellowish brown (10YR 5/4), 40 percent, extremely channery silty clay loam; massive; firm; few fine roots; 50 percent channers; 15 percent parachanners; strongly acid; clear wavy boundary.

C3—35 to 55 inches; variegated dark grayish brown (2.5Y 4/2), 80 percent, and brownish yellow (10YR 6/6), 20 percent, extremely channery silty clay loam; massive; firm; few fine roots; 60 percent channers; 20 percent parachanners; common soft fragments; strongly acid; clear wavy boundary.

C4—55 to 80 inches; variegated dark grayish brown (2.5Y 4/2), 80 percent, brownish yellow (10YR 6/6), 10 percent, and very dark gray (N 3/0), 10 percent, extremely channery silty clay loam; massive; firm; 55 percent channers; 20 percent parachanners; strongly acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of solum: 0 to 7 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Acid sandstone, siltstone and shale; some coal
Reaction: Unless limed, extremely acid to strongly acid throughout the profile
A horizon:
 Hue—10YR
 Value—4 or 5
 Chroma—2 to 4
 Texture of the fine earth fraction—silt loam
 Content of rock fragments—35 to 55 percent

Ap horizon (where present):
 Hue—10YR
 Value—4 or 5
 Chroma—3 or 4
 Texture of the fine earth fraction—silt loam, silty clay loam
 Content of rock fragments—35 to 55 percent

C horizon:
 Hue—7.5YR to 2.5Y or neutral
 Value—4 to 6
 Chroma—0 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, clay loam
 Content of rock fragments—35 to 80 percent (5 to 34 percent in thin upper subhorizons)

Bogart Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Stream terrace
Positions on the landform: Tread, riser
Parent material: Stratified glaciofluvial outwash deposits
Slope range: 0 to 12 percent
Associated soils: Chili, Conotton, Holly, Jimtown, Lobdell, Orrville
Taxonomic class: Fine-loamy, mixed, active, mesic Aquic Hapludalfs

Typical pedon

Bogart silt loam, 2 to 6 percent slopes; in Stark County, Ohio, Lake Township, section 20, T. 12 N., R. 8 W.

Ap—0 to 7 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak medium subangular blocky structure parting to moderate fine and medium granular; friable; many fine and common medium and coarse roots throughout; 10 percent pebbles; slightly acid; abrupt smooth boundary.

BE—7 to 16 inches; strong brown (7.5YR 5/6) silt loam; moderate fine and medium subangular blocky structure; friable; slightly plastic when wet; common fine roots throughout; 10 percent pebbles; strongly acid; gradual wavy boundary.

Bt1—16 to 22 inches; strong brown (7.5YR 5/6) silt loam; strong fine and medium subangular blocky structure; friable; common fine roots throughout; few distinct brown (7.5YR 5/4) clay films on vertical faces of peds; few fine prominent grayish brown (10YR 5/2) iron depletions throughout; 14 percent pebbles; strongly acid; gradual wavy boundary.

Bt2—22 to 28 inches; yellowish brown (10YR 5/4) gravelly clay loam; moderate medium and coarse subangular blocky structure; firm; few fine roots throughout; common faint light yellowish brown (10YR 6/4) clay films on all faces of peds; many medium distinct light brownish gray (10YR 6/2) and grayish brown (10YR 5/2) iron depletions throughout; many medium prominent reddish yellow (7.5YR 6/6) masses of iron oxide accumulation throughout; few medium distinct very dark
brown (10YR 2/2) iron-manganese stains on faces of peds; few clay enriched masses; 30 percent pebbles; strongly acid; gradual wavy boundary.

BC—28 to 42 inches; yellowish brown (10YR 5/4) very gravelly sandy loam; weak fine and medium subangular blocky structure; very friable; few fine roots throughout; very few faint light yellowish brown (10YR 6/4) clay films on surfaces along root channels; many medium distinct gray (10YR 6/1) iron depletions throughout; many medium prominent reddish yellow (7.5YR 6/6) masses of iron oxide accumulation throughout; few prominent black (N 2/0) manganese stains on pebbles; 60 percent pebbles in lower part of horizon; strongly acid; clear wavy boundary.

C—42 to 60 inches; yellowish brown (10YR 5/4) extremely gravelly sand; single grain; loose; 60 percent pebbles; moderately acid.

Range in characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 30 to 60 inches
Depth to carbonates: 58 to more than 80 inches
Kind of rock fragments: Igneous pebbles, sandstone, siltstone, shale, limestone
Reaction: Unless limed, very strongly acid to slightly acid in the solum; the substratum is strongly acid to slightly alkaline

A or Ap horizon:
- Hue—10YR
- Value—3 or 4
- Chroma—2 or 3
- Texture of the fine earth fraction—loam, silt loam
- Content of rock fragments—0 to 25 percent

Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—3 to 6
- Texture of the fine earth fraction—commonly stratifications of loam, silt loam, clay loam, sandy loam; less commonly stratifications of additional textures are present
- Content of rock fragments—0 to 50 percent

C horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—2 to 4
- Texture of the fine earth fraction—stratified or uniform loam, sandy loam, loamy sand; less commonly silt loam, silty clay loam, sand or strata of pebbles are present as thin substrata
- Content of rock fragments—0 to 60 percent

Calcutta Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Stream terrace
Position on the landform: Tread
Parent material: Loess over outwash over residuum
Slope range: 0 to 3 percent
Associated soils: Berks, Coshocton, Rainsboro, Tioga
Taxonomic class: Fine-silty, mixed, superactive, mesic Aeric Fragiaquults
Typical Pedon

Calcutta silt loam, 0 to 3 percent slopes; in Columbiana County, Ohio, Elk Run Township, about 2 miles southeast of Elkton, 2,382 feet west and 881 feet north of the southeast corner of sec. 26, T. 11 N., R. 2 W.

Oe—0 to 1 inch; very dark grayish brown (10YR 3/2) partially decayed leaf litter; abrupt wavy boundary.

A—1 to 5 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; friable; many fine and medium roots; few pebbles; extremely acid; abrupt smooth boundary.

BE—5 to 9 inches; grayish brown (10YR 5/2) silt loam; weak fine and medium subangular blocky structure; friable; common fine and medium roots; common fine and few medium prominent dark brown (7.5YR 3/2) rounded firm iron-manganese nodules in the matrix; extremely acid; clear wavy boundary.

Bt1—9 to 14 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; friable; common fine roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; 60 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; common fine prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; extremely acid; clear wavy boundary.

Bt2—14 to 21 inches; yellowish brown (10YR 5/4) silty clay loam; weak coarse prismatic structure parting to moderate medium platy; firm; few fine roots; common prominent gray (N 5/0) clay films on vertical faces of prisms and common distinct brown (7.5YR 5/4) clay films on faces of peds; 40 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 5 percent pebbles; 20 percent brittle; extremely acid; clear wavy boundary.

Btx1—21 to 27 inches; yellowish brown (10YR 5/4) silt loam; weak coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; common prominent gray (N 5/0) clay films on vertical faces of prisms and common distinct brown (7.5YR 5/4) clay films on faces of peds; 50 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 5 percent pebbles; 20 percent brittle; extremely acid; clear wavy boundary.

2Btx2—27 to 37 inches; yellowish brown (10YR 5/4) loam; weak very coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; common prominent gray (N 5/0) clay films on vertical faces of prisms and common distinct brown (7.5YR 5/4) clay films on faces of peds; 30 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interiors; common fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 5 percent pebbles; 70 percent brittle; extremely acid; clear wavy boundary.

2Btx3—37 to 46 inches; yellowish brown (10YR 5/4) loam; weak very coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; common prominent gray (N 5/0) clay films on vertical faces of prisms and common distinct brown (7.5YR 5/4) clay films on faces of peds; 20 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interiors; common fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 5 percent pebbles; 20 percent brittle; extremely acid; clear wavy boundary.
accumulation in the matrix; 10 percent pebbles; 70 percent brittle; extremely acid; clear wavy boundary.

2B’t1—46 to 50 inches; yellowish brown (10YR 5/4) loam; weak very coarse prismatic structure parting to moderate medium subangular blocky; very firm; few fine roots; common prominent gray (N 5/0) and common distinct brown (7.5YR 5/4) clay films on faces of peds; 20 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 10 percent pebbles; extremely acid; clear wavy boundary.

2B’t2—50 to 56 inches; brown (7.5YR 4/4) sandy loam; weak very coarse subangular blocky structure; friable; few fine roots; common prominent gray (N 5/0) and common faint brown (7.5YR 5/4) clay films on faces of peds; 10 percent medium prominent gray (10YR 6/1) iron depletions on faces of peds and in pores; common medium distinct strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; common fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 10 percent pebbles; extremely acid; clear wavy boundary.

2B’t3—56 to 66 inches; brown (7.5YR 4/4) gravelly sandy loam; weak very coarse subangular blocky structure parting to weak medium subangular blocky; friable; few fine roots; common faint brown (7.5YR 5/4) clay films on faces of peds; 15 percent pebbles; extremely acid; gradual wavy boundary.

2B’t4—66 to 76 inches; reddish brown (5YR 4/4) gravelly sandy loam; weak coarse subangular blocky structure; friable; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 30 percent pebbles; extremely acid; gradual wavy boundary.

2B’t5—76 to 80 inches; reddish brown (5YR 4/4) very gravelly sandy loam; weak coarse subangular blocky structure; friable; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 40 percent pebbles; extremely acid; gradual wavy boundary.

Range in Characteristics

- **Depth to bedrock:** More than 80 inches
- **Thickness of the solum:** 60 to more than 80 inches
- **Thickness of loess mantle:** Averages 20 to 36 inches
- **Depth to fragipan:** 20 to 30 inches
- **Depth to carbonates:** More than 80 inches
- **Kind of rock fragments:** Sandstone, siltstone, shale
- **Reaction:** Unless limed, extremely acid to moderately acid throughout the profile

A horizon:

- **Hue:** 10YR
- **Value:** 4
- **Chroma:** 1 or 2
- **Texture of the fine earth fraction:** silt loam
- **Content of rock fragments:** 0 to 2 percent

BE horizon:

- **Hue:** 10YR
- **Value:** 4 to 6
- **Chroma:** 2 to 6
- **Texture of the fine earth fraction:** silt loam
- **Content of rock fragments:** 0 to 2 percent
Bt horizon:
 Hue—7.5YR, 10YR
 Value—4 to 6
 Chroma—2 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam
 Content of rock fragments—0 to 2 percent

2Btx horizon:
 Hue—7.5YR, 10YR
 Value—4 to 6
 Chroma—2 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, loam, clay loam, sandy loam
 Content of rock fragments—2 to 40 percent

2B’t or 2BC horizon:
 Hue—5YR, 7.5YR, 10YR
 Value—4 to 6
 Chroma—2 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, loam, clay loam, sandy loam
 Content of rock fragments—2 to 40 percent

3BC horizon:
 Hue—7.5YR, 10YR, 2.5Y
 Value—4 to 6
 Chroma—2 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, clay loam, loam
 Content of rock fragments—5 to 50 percent

3C horizon:
 Hue—10YR, 2.5Y or neutral
 Value—4 to 6
 Chroma—0 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, clay loam, loam
 Content of rock fragments—5 to 59 percent

Canfield Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Till plain
Position on the landform: Summit, shoulder, backslope
Parent material: Loamy till
Slope range: 2 to 35 percent
Associated soils: Ravenna, Zepernick
Taxonomic class: Fine-loamy, mixed, active, mesic Oxyaquic Fragiudalfs

Typical Pedon

Canfield silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Salem Township, about 2 miles south of Salem, 1,875 feet south and 520 feet west of the northeast corner of sec. 18, T. 15 N., R. 3 W.

Ap—0 to 11 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many very fine roots; 2 percent pebbles; strongly acid; abrupt smooth boundary.
Bt1—11 to 17 inches; yellowish brown (10YR 5/6) silt loam; weak medium subangular blocky structure; friable; common very fine roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent pebbles; strongly acid; clear smooth boundary.

Bt2—17 to 22 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; friable; few very fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent medium prominent light brownish gray (10YR 6/2) irregular iron depletions in the matrix; few medium prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 5 percent pebbles; strongly acid; clear wavy boundary.

Btx1—22 to 28 inches; dark yellowish brown (10YR 4/4) loam; moderate very coarse prismatic structure parting to weak medium subangular blocky; firm; few very fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent medium distinct light brownish gray (10YR 6/2) clay depletions along faces of prisms; 15 percent medium distinct gray (10YR 6/1) and light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common medium prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 10 percent pebbles; 70 percent brittle; strongly acid; clear wavy boundary.

Btx2—28 to 45 inches; dark yellowish brown (10YR 4/4) loam; moderate very coarse prismatic structure; firm; common faint dark yellowish brown (10YR 4/4) clay films on faces of peds; 15 percent medium distinct gray (10YR 6/1) clay depletions along faces of prisms with a fine rind of strong brown (7.5YR 5/8) iron accumulation between the clay depletion and prism interior; 15 percent medium distinct gray (10YR 6/1) irregular iron depletions in the matrix; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 10 percent pebbles; 80 percent brittle; strongly acid; clear wavy boundary.

BC—45 to 58 inches; dark yellowish brown (10YR 4/4) loam; weak medium and coarse subangular blocky structure; friable; 15 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions and few fine prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 10 percent pebbles; strongly acid; clear wavy boundary.

C—58 to 80 inches; yellowish brown (10YR 5/4) loam; massive; firm; 10 percent medium distinct gray (10YR 6/1) irregular iron depletions in the matrix; common medium prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 10 percent pebbles; moderately acid.

Range in Characteristics

- **Depth to bedrock:** More than 80 inches
- **Thickness of the solum:** 45 to 60 inches
- **Depth to fragipan:** 18 to 30 inches
- **Depth to carbonates:** 50 to 100 inches
- **Kind of rock fragments:** Sandstone, shale, igneous
- **Reaction:** Unless limed, strongly or very strongly acid above the fragipan, very strongly acid to neutral in the fragipan, strongly acid to slightly alkaline below fragipan
Ap horizon:
- Hue—10YR
- Value—4
- Chroma—2 or 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—2 to 10 percent

E horizon (where present):
- Hue—10YR
- Value—4 to 6
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam, loam, fine sandy loam
- Content of rock fragments—2 to 10 percent

Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam, loam
- Content of rock fragments—2 to 10 percent

Btx horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, loam
- Content of rock fragments—5 to 20 percent

C horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—3 or 4
- Texture of the fine earth fraction—silt loam, loam, sandy loam
- Content of rock fragments—5 to 30 percent

During the Columbiana soil survey the classification of the Canfield series was reclassified as fine-loamy, mixed, mesic Aquic Fragiudalfs. Consequently, the map units for Columbiana County become taxadjuncts to the series. This should not adversely affect use and management of the soil for most purposes.

Carlisle Series

Depth class: Very Deep
Drainage class: Very poorly drained
Landform: Depression on ground moraine; outwash plain
Position on the landform: Toeslope
Parent material: Woody and herbaceous organic materials
Slope range: 0 to 2 percent
Associated soils: Canfield, Chili, Ravenna
Taxonomic class: Euic, mesic Typic Haplosaprists

Typical Pedon

Carlisle muck, 0 to 1 percent slopes; in Columbiana County, Ohio, Fairfield Township, about 0.75 miles east of Columbiana, about 1,140 feet north and 80 feet east of the southwest corner of sec. 2, T. 12 N., R. 2 W.
0a1—0 to 8 inches; black (10YR 2/1) broken face, very dark brown (10YR 2/2) rubbed muck; 8 percent fibers, less than 5 percent rubbed; 5 percent weakly decomposed wood fragments; weak fine granular structure; friable; moderately acid; abrupt smooth boundary.

0a2—8 to 30 inches; black (10YR 2/1) broken face, black (10YR 2/1) rubbed muck; 10 percent fibers, less than 5 percent rubbed; weak coarse granular structure; friable; 15 percent wood fragments ¼ to 2 inches in diameter; moderately acid; clear smooth boundary.

0a3—30 to 50 inches; black (10YR 2/1) broken face, black (10YR 2/1) rubbed muck; 30 percent fiber, 10 percent rubbed; massive; friable; 20 percent wood fragments ¼ to 2 inches in diameter; moderately acid; clear smooth boundary.

0a4—50 to 65 inches; black (10YR 2/1) broken face, black (10YR 2/1) rubbed muck; 20 percent fiber, 8 percent rubbed; massive; friable; 15 percent wood fragments ¼ to 2 inches in diameter; slightly acid; clear smooth boundary.

0a5—65 to 80 inches; black (10YR 2/1) broken face, black (10YR 2/1) rubbed muck; 40 percent fiber, 15 percent rubbed; massive; friable; few wood fragments ¼ to 2 inches in diameter; slightly acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the organic material: More than 60 inches
Depth to carbonates: 58 to more than 80 inches
Kind of fragments: Woody fragments
Reaction: Unless limed, very strongly acid to slightly alkaline above 60 inches

Surface tier:
Hue—5YR, 7.5YR, 10YR
Value—2
Chroma—1 or 2
Texture—sapric material
Content of woody fragments—5 to 30 percent

Subsurface tier:
Hue—5YR, 7.5YR, 10YR
Value—2 or 3
Chroma—0 to 3
Texture—sapric material
Content of woody fragments—15 to 30 percent

Bottom tier:
Hue—5YR, 7.5YR, 10YR
Value—2 or 3
Chroma—0 to 3
Texture—sapric material
Content of woody fragments—15 to 30 percent

Chili Series

Depth class: Very deep
Drainage class: Well drained
Landform: Stream terrace, kame
Position on the landform: Tread, riser on terrace; summit, shoulder, backslope, footslope on kame
Parent material: Glaciofluvial outwash
Slope range: 0 to 20 percent
Associated soils: Canfield, Conotton, Fitchville, Zepernick

Taxonomic class: Fine-loamy, mixed, active, mesic Typic Hapludalfs

Typical Pedon

Chili silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Fairfield Township, about 2.25 miles east of Columbiana, 1,774 feet south and 2,133 feet west of the northeast corner of sec. 12, T. 12 N., R. 2 W.

Ap—0 to 13 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many very fine roots; 5 percent pebbles; slightly acid; abrupt smooth boundary.

Bt1—13 to 18 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; friable; common very fine roots; common distinct brown (10YR 4/3) clay films on faces of peds; 10 percent pebbles; slightly acid; clear wavy boundary.

2Bt2—18 to 23 inches; brown (7.5YR 4/4) gravelly loam; moderate medium subangular blocky structure; friable; common very fine roots; common distinct brown (10YR 4/3) clay films on faces of peds; 30 percent pebbles; strongly acid; clear wavy boundary.

2Bt3—23 to 31 inches; brown (7.5YR 4/4) very gravelly sandy clay loam; weak medium subangular blocky structure; friable; common very fine roots; common distinct brown (10YR 4/3) clay films on faces of peds; 35 percent pebbles; strongly acid; clear wavy boundary.

2Bt4—31 to 41 inches; brown (7.5YR 4/4) gravelly sandy loam; weak medium subangular blocky structure; firm, few very fine roots; few distinct brown (10YR 4/3) clay films on faces of peds and bridging between sand grains; 30 percent pebbles; strongly acid; clear wavy boundary.

2Bt5—41 to 50 inches; brown (7.5YR 4/4) very gravelly sandy loam; weak medium subangular blocky structure; friable; few very fine roots; few distinct brown (10YR 4/3) clay films on faces of peds and bridging between sand grains; 50 percent pebbles; strongly acid; clear wavy boundary.

2C1—50 to 64 inches; strong brown (7.5YR 5/6) and yellowish brown (10YR 5/4) gravelly loamy sand; single grain; loose; 25 percent pebbles; strongly acid; gradual wavy boundary.

2C2—64 to 80 inches; dark yellowish brown (10YR 4/4) and brown (7.5YR 4/4) very gravelly loamy sand with a thin strata of sandy loam; single grain; loose; 50 percent pebbles; strongly acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 45 to 80 inches
Depth to carbonates: 60 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, very strongly acid to slightly acid in the A and Bt horizons. It is strongly acid to slightly acid in the BC, 2BC, C and 2C horizons and ranges to slightly alkaline below 60 inches.

Ap horizon:
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—2 to 4
 Texture of the fine earth fraction—silt loam
 Content of rock fragments—0 to 14 percent

A horizon:
 Hue—10YR
Value—2 or 3
Chroma—2 or 3
Texture of the fine earth fraction—loam
Content of rock fragments—0 to 14 percent

Bt or 2Bt horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—4 to 6
Texture of the fine earth fraction—silt loam, loam, sandy loam, clay loam, and sandy clay loam
Content of rock fragments—less than 20 inch depth—5 to 30 percent; between 20 and 40 inch depth—15 to 50 percent; below 40 inch depth—25 to 59 percent

C or 2C horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—2 to 6
Texture of the fine earth fraction—loamy sand or sand and commonly is stratified
Content of rock fragments—25 to 59 percent

Conotton Series

Depth class: Very deep
Drainage class: Well drained
Landform: Stream terrace, kame terrace
Position on the landform: Tread, riser
Parent material: Glaciofluvial outwash
Slope range: 2 to 15 percent
Associated soils: Chili, Hazleton, Tioga, Westmoreland
Taxonomic class: Loamy-skeletal, mixed, active, mesic Typic Hapludalfs

Typical Pedon

Conotton gravelly loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Middleton Township, about 0.75 miles south of Negley, 1,421 feet west and 1,126 feet south of the northeast corner of sec. 14 T. 7 N., R. 1. W.

Ap—0 to 10 inches; brown (10YR 4/3) gravelly loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; common fine and medium roots; 20 percent pebbles; moderately acid; abrupt smooth boundary.

BA—10 to 15 inches; 60 percent strong brown (7.5YR 5/6) and 40 percent brown (10YR 4/3) very gravelly loam; weak fine and medium subangular blocky structure; friable; few fine roots; 40 percent pebbles; moderately acid; clear wavy boundary.

Bt1—15 to 21 inches; strong brown (7.5YR 5/6) very gravelly sandy loam; weak fine subangular blocky structure; friable; few fine roots; few faint brown (7.5YR 5/4) clay films on faces of peds and bridging sand and pebbles; 35 percent pebbles; moderately acid; clear wavy boundary.

Bt2—21 to 30 inches; yellowish brown (10YR 5/6) very gravelly sandy loam; weak fine subangular blocky structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds and bridging sand and pebbles; 45 percent pebbles; moderately acid; gradual wavy boundary.

Bt3—30 to 37 inches; yellowish brown (10YR 5/6) very gravelly sandy loam; weak fine and medium subangular blocky structure; friable; few fine roots; common distinct
brown (7.5YR 4/4) clay films on faces of peds and bridging sand and pebbles; 50 percent pebbles; moderately acid; clear wavy boundary.

Bt4—37 to 50 inches; brown (7.5YR 4/4) very gravelly sandy loam; weak fine and medium subangular blocky structure; friable; few fine roots; common faint brown (7.5YR 4/4) clay films on faces of peds and bridging sand and pebbles; 55 percent pebbles; moderately acid; gradual wavy boundary.

Bt5—50 to 60 inches; brown (7.5YR 4/4) extremely gravelly sandy loam; weak fine subangular blocky structure; friable; few fine roots; few faint brown (7.5YR 4/4) clay films on faces of peds and bridging sand and pebbles; 60 percent pebbles; moderately acid; gradual wavy boundary.

Bt6—60 to 80 inches; brown (7.5YR 4/4) very gravelly sandy loam; few fine prominent yellowish brown (10YR 5/6) irregular mottles around rock fragments; weak fine subangular blocky structure; friable; few fine roots; few faint brown (7.5YR 4/4) clay films on faces of peds and bridging sand and pebbles; 55 percent pebbles; slightly acid; gradual wavy boundary.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 40 to more than 80 inches
Depth to carbonates: 65 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, strongly acid to slightly acid in the Ap, very strongly acid to moderately acid in the upper part and strongly acid or moderately acid in the lower part of the Bt, moderately acid to slightly alkaline in the C

A horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—2 or 3
Texture of the fine earth fraction—loam
Content of rock fragments—10 to 34 percent

Bt horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—loam, sandy loam
Content of rock fragments—35 to 59 percent

C horizon:
Hue—7.5 YR, 10YR
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—loamy sand, sand
Content of rock fragments—35 to 65 percent

Coshocton Series

Depth class: Deep or very deep
Drainage class: Moderately well drained
Landform: Hill
Position on the landform: Summit, shoulder, backslope, footslope
Parent material: Loamy colluvium and residuum weathered from interbedded shale, siltstone, and sandstone
Slope range: 2 to 25 percent
Associated soils: Gilpin, Guernsey, Westmoreland
Taxonomic class: Fine-loamy, mixed, active, mesic Aquultic Hapludalfs

Typical Pedon

Coshocton silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Center Township, about 2 miles north of Gavers, 1,460 feet south and 1,600 feet east of the northwest corner of sec. 33, T. 14 N., R. 3 W.

Ap—0 to 11 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; moderate medium granular structure; friable; many fine roots; 5 percent channers; strongly acid; abrupt smooth boundary.

Bt1—11 to 18 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; common very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent channers; strongly acid; clear wavy boundary.

Bt2—18 to 23 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; common very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 10 percent medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; common medium prominent yellowish red (5YR 5/6) irregular masses of iron accumulation in the matrix; 5 percent channers; strongly acid; clear wavy boundary.

Bt3—23 to 33 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; few very fine roots; common distinct pale brown (10YR 6/3) clay films on faces of peds; 10 percent medium prominent gray (10YR 6/1) clay depletions on vertical faces of peds; 15 percent medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; 10 percent channers; strongly acid; clear wavy boundary.

Bt4—33 to 40 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; common distinct pale brown (10YR 6/3) clay films on faces of peds; 10 percent medium prominent gray (10YR 6/1) clay depletions on vertical faces of peds; 15 percent medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; 10 percent channers; strongly acid; clear wavy boundary.

Bt5—40 to 45 inches; yellowish brown (10YR 5/6) silty clay loam; weak medium subangular blocky structure; friable; few faint yellowish brown (10YR 5/4) clay films on faces of peds; and few prominent gray (10YR 5/1) clay films on vertical faces of peds; 10 percent channers; strongly acid; clear wavy boundary.

C1—45 to 52 inches; yellowish brown (10YR 5/6) very channery silty clay loam; massive; firm; 5 percent fine distinct gray (10YR 6/1) irregular iron depletions in the matrix; common fine distinct very dark grayish brown (10YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 40 percent channers; strongly acid; clear wavy boundary.

C2—52 to 66 inches; yellowish brown (10YR 5/4) silty clay loam; massive; firm; 5 percent medium distinct gray (10YR 6/1) irregular iron depletions in the matrix; and few medium distinct brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 10 percent channers; strongly acid; gradual wavy boundary.

C3—66 to 70 inches; yellowish brown (10YR 5/4) channery silty clay loam; massive; firm; 5 percent medium distinct gray (10YR 6/1) irregular iron depletions; few medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 20 percent channers; strongly acid; abrupt smooth boundary.

R—70 inches; fractured sandstone bedrock.
Range in Characteristics

Depth to bedrock: 40 to greater than 80 inches
Thickness of solum: 30 to 50 inches
Depth to carbonates: None above the bedrock
Kind of rock fragments: Sandstone, siltstone and shale
Reaction: Unless limed, extremely acid to moderately acid in the Ap, extremely acid to strongly acid in the Bt, very strongly acid to moderately acid in the C.

Ap horizon:
- Hue—10YR
- Value—4
- Chroma—2 or 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—2 to 15 percent

A horizon:
- Hue—10YR
- Value—2 or 3
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—2 to 15 percent

Bt horizon (upper part):
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam, clay loam
- Content of rock fragments—2 to 15 percent

Bt horizon (lower part):
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 or 5
- Chroma—2 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam, loam, silty clay
- Content of rock fragments—10 to 34 percent

C horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 or 5
- Chroma—3 to 6
- Texture of the fine earth fraction—loam, silty clay loam, clay loam, silty clay
- Content of rock fragments—10 to 50 percent

Doles Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Stream terrace
Position on the landform: Tread
Parent material: Loess over silty colluvium or old alluvium
Slope range: 0 to 3 percent
Associated soils: Berks, Coshocton, Omulga, Tioga
Taxonomic class: Fine-silty, mixed, active, mesic Aeric Fragiaqualfs

Typical Pedon

Doles silt loam, 0 to 3 percent slopes; in Columbiana County, Ohio, Madison
Township, about 1.5 miles east of West Point, 1,120 feet west and 2,450 feet north of the southeast corner of sec. 10, T. 10 N., R. 2 W.

Ap—0 to 11 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; moderate fine and medium granular structure; friable; many fine and medium roots; few fine prominent very dark gray (N 3/0) friable iron-manganese nodules in the matrix; neutral; abrupt smooth boundary.

BE—11 to 15 inches; light brownish gray (2.5Y 6/2) silt loam; weak fine and medium subangular blocky structure; friable; common fine roots; few fine prominent brown (7.5YR 4/4) and strong brown (7.5YR 5/6) rounded firm masses of iron-manganese accumulation in the matrix; strongly acid; clear wavy boundary.

Bt—15 to 24 inches; yellowish brown (10YR 5/4) silt loam; moderate coarse and medium subangular structure; firm; common fine roots; common distinct gray (10YR 6/1) and few faint yellowish brown (10YR 5/4) clay films on faces of peds; common distinct light brownish gray (10YR 6/2) silt coats on faces of peds; 60 percent medium distinct gray (10YR 7/1) iron depletions on faces of peds; 10 percent fine distinct gray (10YR 6/1) irregular iron depletions in the matrix; few fine prominent strong brown (7.5YR 5/8) masses of iron accumulation lining pores; strongly acid; clear wavy boundary.

Btx1—24 to 30 inches; yellowish brown (10YR 5/4) silt loam; weak medium prismatic structure parting to weak fine and medium platy; firm; few fine roots; common prominent gray (N 5/0) and faint yellowish brown (10YR 5/4) clay films on faces of peds; few distinct gray (10YR 6/1) silt coats on faces of peds; 50 percent medium prominent gray (N 6/0) iron depletions lining pores; 5 percent fine and medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common fine prominent strong brown (7.5YR 5/8) masses of iron accumulation lining pores; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 40 percent brittle; strongly acid; clear wavy boundary.

Btx2—30 to 40 inches; yellowish brown (10YR 5/4) silt loam; moderate very coarse prismatic structure parting to weak fine and medium platy; very firm; few fine roots; common prominent gray (N 5/0) and few faint yellowish brown (10YR 5/4) clay films on faces of peds; 50 percent medium prominent gray (N 6/0) iron depletions lining pores and 5 percent fine and medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/8) masses of iron accumulation lining pores; common fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 5 percent channers; 60 percent brittle; very strongly acid; clear wavy boundary.

Btx3—40 to 48 inches; yellowish brown (10YR 5/6) silt loam; moderate very coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; common prominent gray (N 5/0) and few faint yellowish brown (10YR 5/4) clay films on faces of peds; 20 percent medium prominent gray (N 6/0) iron depletions lining pores; many medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix associated to pores; common fine prominent dark brown (7.5YR3/2) masses of iron-manganese accumulation lining pores; 2 percent channers; 60 percent brittle; strongly acid; clear wavy boundary.

Btx4—48 to 60 inches; yellowish brown (10YR 5/6) silt loam; weak very coarse prismatic structure parting to weak medium platy; very firm; few fine roots; common prominent gray (N 5/0) clay films on faces of peds; 15 percent medium prominent gray (N 6/0) iron depletions lining pores; many medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent channers; 60 percent brittle; strongly acid; clear wavy boundary.
2C1—60 to 72 inches; brownish yellow (10YR 6/6) silt loam; massive; firm; 10 percent medium prominent gray (N 6/0) iron depletions lining pores; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 2 percent channers; strongly acid; gradual wavy boundary.

2C2—72 to 77 inches; yellowish brown (10YR 5/6) silt loam; massive; firm; 10 percent medium prominent gray (N 6/0) iron depletions lining pores; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent channers; moderately acid; gradual wavy boundary.

2C3—77 to 80 inches; yellowish brown (10YR 5/6) silt loam; massive; firm; 15 percent medium prominent gray (N 6/0) iron depletions lining pores and in the matrix; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix associated to pores; many fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent channers; moderately acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 60 to 80 inches
* Thickness of loess mantle: Up to 30 inches
*Depth to fragipan: 20 to 30 inches
*Depth to carbonates: More than 80 inches
*Kind of rock fragments: Sandstone, siltstone and shale
Reaction: Unless limed, very strongly acid to moderately acid throughout the profile.

Ap horizon:
- Hue—10YR
- Value—4 or 5
- Chroma—2 or 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 5 percent

BE horizon:
- Hue—10YR, 2.5Y
- Value—4 to 6
- Chroma—1 to 4
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 5 percent

Bt or 2Bt horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—0 to 5 percent

Btx or 2Btx horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—2 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—0 to 10 percent

C and 2C horizon:
- Hue—7.5YR, 10YR
- Value—4 to 7
Chroma—1 to 6
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 14 percent

Ernest Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Hill
Position on the landform: Footslope
Parent material: Loamy colluvium weathered from interbedded sedimentary rock
Slope range: 6 to 25 percent
Associated soils: Berks, Coshocton, Gilpin, Hazleton, Westmoreland
Taxonomic class: Fine-loamy, mixed, superactive, mesic Aquic Fragiudults

Typical Pedon

Ernest silt loam, 8 to 15 percent slopes, in Beaver County, Pennsylvania, New Sewickley Township, on the east side of Route T596, 0.1 mile south of its junction with 78 spur (Big Knob Road), and 3.5 miles northeast of Rochester.

Ap—0 to 8 inches; dark grayish brown (10YR 4/2) silt loam, light gray (10YR 7/2) dry; moderate fine granular structure; very friable; 5 percent rock fragments; moderately acid; abrupt smooth boundary.

BE—8 to 12 inches; yellowish brown (10YR 5/6) silt loam; moderate fine subangular blocky structure; friable; 5 percent rock fragments; strongly acid; clear wavy boundary.

Bt1—12 to 17 inches; yellowish brown (10YR 5/6) silt loam; moderate fine and medium subangular blocky structure; friable; common thin clay films on faces of peds and in pores; 5 percent rock fragments; strongly acid; clear wavy boundary.

Bt2—17 to 24 inches; yellowish brown (10YR 5/4) silty clay loam; moderate medium subangular blocky structure; friable; common fine and medium distinct light brownish gray (2.5Y 6/2) iron depletions in the matrix; common fine and medium distinct olive yellow (2.5Y 6/6) iron masses in the matrix; many thin clay films on faces of peds and in pores; few fine black (10YR 3/1) coatings on ped faces; 10 percent rock fragments; very strongly acid; gradual wavy boundary.

Btx—24 to 44 inches; strong brown (7.5YR 5/6) silt loam; strong very coarse prismatic structure parting to weak thick and very thick platy structure; very firm; brittle; common gray (5Y 6/1) vertical seams on primary structure surfaces; many thin clay films on ped faces; common fine distinct gray (10YR 6/2) iron depletions on vertical faces of peds; 5 percent rock fragments; strongly acid; clear wavy boundary.

C—44 to 60 inches; yellowish brown (10YR 5/6) silt loam; massive; firm; common fine distinct light brownish gray (10YR 6/2) iron depletions in the matrix; 10 percent rock fragments; very strongly acid.

Range in characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 36 to greater than 80 inches
Depth to fragipan: 20 to 36 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale
Reaction: Unless limed, very strongly acid or strongly acid throughout the profile

A or Ap horizon:

Hue—10YR
Value—3 or 4
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 20 percent

E horizon (where present):
Hue—10YR
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 20 percent

Bt horizon:
Hue—7.5YR, 10YR
Value—4 to 6
Chroma—3 to 8
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 30 percent

Btx horizon:
Hue—7.5YR, 10YR
Value—4 to 6
Chroma—2 to 8
Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam
Content of rock fragments—5 to 40 percent

C horizon:
Hue—7.5YR, 10YR
Value—4 to 7
Chroma—2 to 6
Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam
Content of rock fragments—5 to 50 percent

Fairpoint Series

Depth class: Very Deep
Drainage class: Well drained
Landform: Surface mine on hill
Position on the landform: Summit, shoulder, backslope, footslope
Parent material: Mixture of partly weathered fine earth and fragments of shale, siltstone, sandstone, and coal from surface mining operations
Slope range: 0 to 70 percent
Associated soils: Berks, Canfield, Gilpin, Mechanicsburg, Westmoreland
Taxonomic class: Loamy-skeletal, mixed, active, nonacid, mesic Typic Udorthents

Typical Pedon

Fairpoint very channery silt loam, 8 to 25 percent slopes; in Columbiana County, Ohio, Wayne Township, about 1.75 miles northwest of Gavers, 100 feet south and 1,475 feet east of the northwest corner of sec. 8, T. 13 N., R. 3 W.

Ap—0 to 4 inches; dark grayish brown (10YR 4/2) very channery silt loam, light brownish gray (10YR 6/2) dry; weak fine granular structure; very friable; many fine roots; 35 percent channers; moderately acid; abrupt smooth boundary.

C1—4 to 14 inches; variegated dark grayish brown (2.5Y 4/2), 90 percent, and yellowish brown (10YR 5/6), 10 percent, very channery silty clay loam; massive;
Columbiana County, Ohio

firm; common fine roots; 45 percent channers; 10 percent parachanners; moderately acid; clear wavy boundary.

C2—14 to 25 inches; variegated dark grayish brown (2.5Y 4/2), 80 percent, and yellowish brown (10YR 5/6), 20 percent, very channery clay loam; massive; firm; few fine roots; 45 percent channers; 10 percent parachanners; neutral; clear wavy boundary.

C3—25 to 80 inches; variegated dark grayish brown (2.5Y 4/2), 60 percent, yellowish brown (10YR 5/6), 20 percent, and gray (N 5/0), 20 percent, very channery silty clay loam; massive; firm; 45 percent channers; 10 percent parachanners; neutral.

Range in Characteristics

Depth to bedrock: More than 60 inches
Thickness of solum: 0 to 8 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, coal
Reaction: Unless limed, moderately acid to neutral throughout the profile

A horizon:
Hue—10YR
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—35 to 55 percent

Ap horizon:
Hue—10YR
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—2 to 45 percent

C horizon:
Hue—7.5YR, 10YR, 2.5Y, or neutral
Value—3 to 6
Chroma—0 to 6
Texture of the fine earth fraction—silt loam, silty clay loam, clay loam
Content of rock fragments—35 to 70 percent; thin upper subhorizons may contain
20 to 34 percent rock fragments

Fitchville Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Stream terrace
Position on the landform: Tread
Parent material: Stratified glaciolacustrine sediments
Slope range: 0 to 6 percent
Associated soils: Canfield, Chili, Glenford, Wick, Zepernick
Taxonomic class: Fine-silty, mixed, superactive, mesic Aeric Endoaqualfs

Typical Pedon

Fitchville silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Knox Township, about 2 miles north of North Georgetown, 243 feet west and 591 feet south of the northeast corner of sec. 13, T. 17 N., R. 5 W.
Ap—0 to 8 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; friable; many fine and medium roots; 1 percent pebbles; strongly acid; abrupt smooth boundary.

Btg—8 to 12 inches; gray (10YR 5/1) silt loam; weak medium and coarse subangular blocky structure; friable; common fine roots; few faint gray (10YR 5/1) clay films on faces of peds and in pores; many medium prominent yellowish brown (10YR 5/6) masses of iron accumulation lining pores; 1 percent pebbles; strongly acid; clear wavy boundary.

Bt1—12 to 20 inches; yellowish brown (10YR 5/4) silty clay loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; many distinct gray (10YR 5/1) clay films on faces of peds and in pores; 30 percent medium distinct gray (10YR 5/1) iron depletions in the matrix; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding iron depletions; 1 percent pebbles; strongly acid; clear wavy boundary.

Bt2—20 to 25 inches; dark yellowish brown (10YR 4/4) silty clay loam; moderate coarse subangular blocky structure; firm; few fine roots; many prominent gray (N 5/0) clay films on faces of peds and in pores; 15 percent medium distinct gray (10YR 5/1) iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding iron depletions; 1 percent pebbles; moderately acid; clear wavy boundary.

Bt3—25 to 30 inches; light olive brown (2.5Y 5/4) silty clay loam; moderate coarse subangular blocky structure; firm; few fine roots; many prominent gray (N 5/0) clay films on faces of peds and in pores; 20 percent medium prominent gray (10YR 5/1) iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix surrounding iron depletions; 1 percent pebbles; moderately acid; gradual wavy boundary.

Bt4—30 to 36 inches; variegated yellowish brown (10YR 5/4), 70 percent, brown (7.5YR 4/4), 30 percent, loam; moderate coarse subangular blocky structure; firm; few fine roots; few faint yellowish brown (10YR 5/4) and common prominent gray (N 5/0) clay films on faces of peds and in pores; 20 percent medium prominent light brownish gray (10YR 6/2) irregular iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; 2 percent pebbles; moderately acid; gradual wavy boundary.

BC—36 to 50 inches; yellowish brown (10YR 5/4) silty clay loam; weak coarse subangular blocky structure; firm; few fine roots; few prominent gray (N 5/0) clay films on faces of peds and in pores; 20 percent medium prominent gray (N 5/0) irregular iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; slightly acid; gradual wavy boundary.

C1—50 to 70 inches; light olive brown (2.5Y 5/4) silty clay loam; massive; firm; 30 percent medium prominent gray (N 5/0) iron depletions lining pores; common medium prominent yellowish brown (10YR 5/6) masses of iron accumulation in the matrix associated to pores; neutral; gradual wavy boundary.

C2—70 to 80 inches; olive brown (2.5Y 4/4) silt loam; massive; firm; 40 percent medium prominent gray (N 5/0) iron depletions lining pores; common medium prominent yellowish brown (10YR 5/6) masses of iron accumulation in the matrix associated to pores; neutral.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 30 to 70 inches
Depth to carbonates: 60 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale
Reaction: Unless limed, very strongly acid to neutral in the solum; moderately acid to slightly alkaline in the substratum

Ap horizon:
- Hue—10YR
- Value—4 or 5
- Chroma—2
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 1 percent

BE horizon (where present):
- Hue—10YR
- Value—5
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—0 to 1 percent

Bt horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 or 5
- Chroma—1 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam; thin subhorizons of loam
- Content of rock fragments—0 to 2 percent

BC horizon (where present):
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam; thin strata of clay loam and loam
- Content of rock fragments—0 percent

C horizon:
- Hue—10YR, 2.5Y
- Value—4 to 6
- Chroma—2 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam; thin strata of loam, fine sandy loam, clay loam
- Content of rock fragments—0 to 5 percent

Fredericktown Series

Depth class: Very deep
Drainage class: Well drained
Landform: Stream terrace, kame terrace
Position on the landform: Tread, riser
Parent material: Glaciofluvial outwash with or without loess mantle
Slope range: 2 to 25 percent
Associated soils: Chili, Kensington
Taxonomic class: Fine-loamy, mixed, superactive, mesic Ultic Hapludalfs

Typical Pedon

Fredericktown silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, West Township, about 0.75 mile west of Bayard, 2,447 feet south and 2,016 feet east of the northwest corner of sec. 30, T. 16 N., R. 5 W.
Ap—0 to 12 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many fine and medium roots; common fine pores; 5 percent pebbles; slightly acid; abrupt smooth boundary.

Bt1—12 to 20 inches; yellowish brown (10YR 5/4) silt loam; weak fine and medium subangular blocky structure; friable; common fine roots; common fine pores; 10 percent brown (10YR 4/3) Ap material in worm and root channels; few faint yellowish brown (10YR 5/4) clay films on faces of peds; 2 percent pebbles; slightly acid; clear wavy boundary.

Bt2—20 to 25 inches; yellowish brown (10YR 5/6) gravelly silt loam; moderate medium subangular blocky structure; friable; common fine roots; common fine pores; few distinct brown (7.5YR 5/4) clay films on faces of peds; 15 percent pebbles; strongly acid; clear wavy boundary.

2Bt3—25 to 31 inches; yellowish brown (10YR 5/4) gravelly sandy loam; moderate medium subangular blocky structure; friable; few fine roots; few fine pores; common distinct brown (7.5YR 4/4) clay films bridging sand grains and coating rock fragments; 15 percent pebbles; 5 percent parapebbles; very strongly acid; clear wavy boundary.

2Bt4—31 to 45 inches; dark yellowish brown (10YR 4/4) gravelly coarse sandy loam; moderate medium subangular blocky structure; friable; few fine roots; common distinct brown (7.5YR 4/4) clay films bridging sand grains and coating rock fragments; 30 percent pebbles; 5 percent parapebbles; very strongly acid; clear wavy boundary.

2Bt5—45 to 50 inches; dark yellowish brown (10YR 4/4) gravelly loamy coarse sand; weak medium subangular blocky structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films bridging sand grains and coating rock fragments; 25 percent pebbles; 5 percent parapebbles; very strongly acid; gradual wavy boundary.

2Bt6—50 to 56 inches; dark yellowish brown (10YR 4/4) very gravelly loamy coarse sand; weak medium subangular blocky structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films bridging sand grains and coating rock fragments; 40 percent pebbles; 5 percent parapebbles; 10 percent small soft very dark gray (N 3/0) fragments of coal; strongly acid; clear wavy boundary.

2Bt7—56 to 62 inches; yellowish brown (10YR 5/4) gravelly loamy coarse sand; few fine distinct pale brown (10YR 6/3) and prominent strong brown (7.5YR 5/6) irregular mottles in the matrix; weak medium platy structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films bridging sand grains and coating rock fragments; 20 percent pebbles; 15 percent small soft very dark gray (N 3/0) fragments of coal; strongly acid; clear wavy boundary.

2Bt8—62 to 68 inches; variegated yellowish brown (10YR 5/4), 60 percent, and brown (7.5YR 4/4), 40 percent, gravelly loamy coarse sand; few fine distinct pale brown (10YR 6/3) and prominent strong brown (7.5YR 5/6) irregular mottles in the matrix; weak medium platy structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films bridging sand grains and coating rock fragments; 20 percent pebbles; 15 percent small soft very dark gray (N 3/0) fragments of coal; strongly acid; clear wavy boundary.

2Bt9—68 to 74 inches; dark yellowish brown (10YR 4/4) gravelly loamy coarse sand; weak fine and medium subangular blocky structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films bridging sand grains; 15 percent pebbles; strongly acid; clear wavy boundary.

2BC—74 to 80 inches; dark yellowish brown (10YR 4/4) very gravelly coarse sandy loam; weak fine and medium subangular blocky structure; friable; few fine roots; few distinct brown (7.5YR 4/4) clay films bridging sand grains and coating rock fragments; 40 percent pebbles; strongly acid.
Range in Characteristics

Depth to bedrock: More than 60 inches
Thickness of the solum: 60 to more than 80 inches
Depth to carbonates: 60 to more than 80 inches
Kind of rock fragments: Sandstone, shale
Reaction: Unless limed, strongly acid or very strongly acid in the A horizon; very strongly acid to slightly acid in the upper part of the Bt or 2Bt; very strongly acid to moderately acid in the lower part of the Bt or 2Bt; slightly acid to slightly alkaline in the C or 2C horizon

Ap horizon:
Hue—10YR
Value—4 or 5
Chroma—3 or 4
Texture of the fine earth fraction—loam, silt loam
Content of rock fragments—0 to 30 percent

Bt horizon (upper part):
Hue—7.5YR, 10YR, some subhorizons 5YR
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—silt loam, loam, sandy loam, clay loam, coarse sandy loam, loamy sand, loamy coarse sand
Content of rock fragments—2 to 30 percent

Bt horizon (lower part):
Hue—7.5YR, 10YR, some subhorizons 5YR
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—silt loam, loam, sandy loam, clay loam, coarse sandy loam, loamy sand, loamy coarse sand
Content of rock fragments—5 to 50 percent

BC horizon:
Hue—7.5YR, 10YR
Value—4 to 6
Chroma—3 or 4
Texture of the fine earth fraction—loam, sandy loam, coarse sandy loam, loamy sand
Content of rock fragments—5 to 50 percent

C horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—loamy sand, sand
Content of rock fragments—15 to 60 percent

Frenchtown Series

Depth class: Very deep
Drainage class: Poorly drained
Landform: Till Plain
Position on the landform: Footslope, toeslope
Parent material: Loamy till
Slope range: 0 to 2 percent
Associated soils: Canfield, Carlisle, Ravenna, Wick

Taxonomic class: Fine-loamy, mixed, active, mesic Typic Fragiaqualfs

Typical Pedon

Frenchtown silt loam, 0 to 2 percent slopes; in Columbiana County, Ohio, Perry Township, about 0.5 miles northwest of Salem, 2,175 feet west and 2,390 feet north of the southeast corner of sec. 25, T. 17 N., R. 4 W.

A—0 to 4 inches; very dark gray (10YR 3/1) silt loam, gray (10YR 5/1) dry; weak fine and medium granular structure; friable; many fine and medium roots; 1 percent pebbles; moderately acid; abrupt smooth boundary.

BA—4 to 8 inches; gray (10YR 5/1) silt loam; weak medium subangular blocky structure; friable; common fine roots; 20 percent intermixing of very dark gray (10YR 3/1) A material; common fine prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; 1 percent pebbles; moderately acid; clear wavy boundary.

BE—8 to 16 inches; grayish brown (10YR 5/2) silt loam; weak medium subangular blocky structure; friable; common fine roots; common fine prominent strong brown (7.5YR 4/6) masses of iron-manganese accumulation lining pores; 1 percent pebbles; strongly acid; gradual wavy boundary.

Btg1—16 to 20 inches; gray (10YR 6/1) silty clay loam; moderate medium subangular blocky structure; firm; few fine roots; common faint gray (10YR 5/1) clay films on faces of peds and in pores; many medium prominent irregular strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; 1 percent pebbles; strongly acid; gradual wavy boundary.

Btg2—20 to 24 inches; gray (10YR 6/1) clay loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; common faint gray (10YR 5/1) clay films on faces of peds and in pores; many medium prominent irregular strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; 2 percent pebbles; strongly acid; clear wavy boundary.

Btx1—24 to 29 inches; yellowish brown (10YR 5/4) silt loam; weak very coarse prismatic structure parting to moderate medium and coarse subangular blocky; very firm; few fine roots; many distinct gray (10YR 5/1) clay films on faces of peds and in pores; 20 percent medium distinct gray (10YR 6/1) iron depletions on vertical faces of peds; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interior; common fine prominent dark brown (7.5YR 3/2) rounded iron-manganese nodules in the matrix; 5 percent pebbles; 70 percent brittle; very strongly acid; gradual wavy boundary.

Btx2—29 to 33 inches; dark yellowish brown (10YR 4/4) silty clay loam; weak very coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; many distinct gray (10YR 5/1) clay films on faces of peds and in pores; 40 percent medium distinct gray (10YR 6/1) iron depletions on vertical faces of peds; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interior; common fine prominent dark brown (7.5YR 3/2) rounded iron-manganese nodules in the matrix; 5 percent pebbles; 70 percent brittle; very strongly acid; clear wavy boundary.

Btx3—33 to 45 inches; yellowish brown (10YR 5/4) silt loam; weak very coarse prismatic structure parting to weak medium and coarse subangular blocky; very firm; few fine roots; few distinct gray (10YR 5/1) clay films on vertical faces of peds; 30 percent medium distinct light brownish gray (10YR 6/2) iron depletions on vertical faces of peds; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interior; 10 percent pebbles; 70 percent brittle; very strongly acid; gradual wavy boundary.
BC—45 to 56 inches; yellowish brown (10YR 5/4) silt loam; weak coarse subangular blocky structure; firm; few fine roots; few distinct gray (10YR 5/1) clay films on vertical faces of peds; 30 percent medium distinct light brownish gray (10YR 6/2) iron depletions on faces of peds and in pores; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; 10 percent pebbles; very strongly acid; gradual wavy boundary.

C1—56 to 65 inches; yellowish brown (10YR 5/4) silt loam; massive; firm; 15 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding iron depletions; 10 percent pebbles; strongly acid; gradual wavy boundary.

C2—65 to 75 inches; yellowish brown (10YR 5/4) silt loam; massive; firm; 10 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding iron depletions; 10 percent pebbles; strongly acid; gradual wavy boundary.

C3—75 to 80 inches; yellowish brown (10YR 5/4) silty clay loam; massive; firm; 10 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding iron depletions; 10 percent pebbles; moderately acid.

Range in Characteristics

Depth to bedrock: More than 60 inches
Thickness of the solum: 40 to 80 inches
Depth to fragipan: 18 to 38 inches
Depth to Carbonates: More than 60 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, extremely acid to moderately acid above the Btx horizon, very strongly acid to slightly acid in the Btx and above the C horizon, and strongly acid to moderately alkaline in the C horizon

A horizon:
- Hue—10YR
- Value—2 or 3
- Chroma—1 or 2
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 5 percent

Ap horizon:
- Hue—10YR
- Value—4 or 5
- Chroma—1 or 2
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 5 percent

Btg horizon:
- Hue—10YR, 2.5Y, 5Y or is neutral
- Value—4 to 6
- Chroma—0 to 2
- Texture of the fine earth fraction—loam, silt loam, clay loam, silty clay loam
- Content of rock fragments—0 to 14 percent

Btx horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—loam, silt loam, clay loam, silty clay loam
Content of rock fragments—2 to 20 percent

BC horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—loam, silt loam, clay loam, silty clay loam
Content of rock fragments—2 to 30 percent

C horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—loam, silt loam, clay loam, silty clay loam
Content of rock fragments—5 to 30 percent

Gavers Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Hill
Position on the landform: Footslope
Parent material: Loess, colluvium and the underlying residuum from interbedded siltstone, clayey shale, some limestone
Slope range: 2 to 6 percent
Associated soils: Coshocton, Keene, Tioga
Taxonomic class: Fine-silty, mixed, superactive, mesic Aeric Endoaqualfs

Typical Pedon

Gavers silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Franklin Township, about 2 miles west of Gavers, 80 feet west and 2,360 feet south of the northeast corner of sec. 7, T. 13 N., R. 3 W.

Ap—0 to 8 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; moderate fine and medium granular structure; friable; common fine and medium roots; common fine and medium distinct dark brown (7.5YR 3/2) rounded strongly cemented iron-manganese nodules in the matrix; neutral; abrupt smooth boundary.

BE—8 to 12 inches; variegated 60 percent yellowish brown (10YR 5/6) and 40 percent light yellowish brown (10YR 6/4) silt loam; moderate fine and medium subangular blocky structure; friable; common fine and medium roots; 60 percent fine and medium distinct light brownish gray (10YR 6/2) clay depletions on faces of peds and in pores; few fine prominent yellowish red (5YR 5/6) threadlike masses of iron accumulation lining pores; few fine and medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; strongly acid; clear wavy boundary.

Bt1—12 to 17 inches; yellowish brown (10YR 5/6) silt loam; moderate fine and medium subangular blocky structure; firm; common fine and medium roots; few distinct gray (10YR 5/1) and faint yellowish brown (10YR 5/4) clay films on faces of peds and in pores; few distinct pale brown (10YR 6/3) silt coats in pores; many fine and medium prominent gray (10YR 6/1) irregular iron depletions in the matrix and on the surfaces of peds; few fine prominent yellowish red (5YR 5/6) threadlike masses of iron accumulation lining pores; few fine and medium distinct
strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix adjacent to pores; strongly acid; clear wavy boundary.

Bt2—17 to 24 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; firm; few fine roots; many prominent gray (10YR 5/1) clay films on faces of peds and in pores; few distinct pale brown (10YR 6/3) silt coats in pores; 15 percent fine and medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; common fine and medium prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix associated to pores; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; strongly acid; clear wavy boundary.

2Bt3—24 to 30 inches; yellowish brown (10YR 5/6) parachannery silt loam; moderate medium subangular blocky structure; firm; few fine roots; common prominent gray (10YR 5/1) and dark gray (N 4/0) clay films on faces of peds and in pores; 10 percent fine and medium distinct light brownish gray (10YR 6/2) clay depletions on faces of peds and in pores; 15 percent fine and medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; many fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent channers; 10 percent parachanners; slightly acid; clear wavy boundary.

2Bt4—30 to 42 inches; variegated yellowish brown (10YR 5/6), 80 percent, light olive brown (2.5Y 5/4), 20 percent silt loam; weak coarse and very coarse prismatic structure parting to moderate medium subangular blocky; very firm; few fine roots; common prominent gray (10YR 5/1) clay films on vertical and horizontal faces of peds; 5 percent fine and medium distinct light brownish gray (10YR 6/2) clay depletions on vertical faces of peds; 5 percent fine and medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; few fine prominent strong brown (7.5YR 5/8) masses of iron accumulation on vertical faces of peds; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on vertical and horizontal faces of peds; 5 percent channers; neutral; clear wavy boundary.

2Bt5—42 to 52 inches; variegated yellowish brown (10YR 5/6), 80 percent, light olive brown (2.5Y 5/4), 20 percent silty clay loam; weak coarse subangular blocky structure; very firm; few fine roots; common prominent gray (10YR 5/1) clay films on faces of peds; 5 percent fine and medium distinct light brownish gray (10YR 6/2) clay depletions on faces of peds and in pores; 10 percent fine and medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; common fine and medium prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; 10 percent channers; neutral; clear wavy boundary.

2Bt6—52 to 60 inches; light olive brown (2.5Y 5/4) channery silty clay loam; weak coarse subangular blocky structure; firm; few fine roots; common prominent gray (10YR 5/1) clay films on faces of peds; 10 percent fine and medium prominent light brownish gray (10YR 6/2) iron depletions in the matrix and lining pores; few fine and medium prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; 20 percent channers; neutral; clear wavy boundary.

2BC—60 to 78 inches; yellowish brown (10YR 5/6) channery loam; few fine and medium distinct light brownish gray (10YR 6/2) irregular mottles in the matrix; weak coarse subangular blocky structure; firm; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 15 percent channers; neutral; clear wavy boundary.

3C—78 to 80 inches; light olive brown (2.5Y 5/4) silty clay; few fine and medium prominent light brownish gray (10YR 6/2) and strong brown (7.5YR 5/8) irregular mottles in the matrix; massive; firm; slightly plastic and sticky; common fine and medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 5 percent channers; strongly effervescent; moderately alkaline.
Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 40 to 80 inches
Thickness of the loess mantle: 20 to 40 inches
Depth to carbonates: More than 60 inches
Kind of rock fragments: Sandstone, siltstone, shale, limestone
Reaction: Unless limed, strongly acid or moderately acid above the 2Bt horizon, moderately acid to neutral in the 2Bt; slightly acid to neutral in the 2BC horizon, and strongly acid to moderately alkaline in the 3C horizon

Ap horizon:
- Hue—10YR
- Value—4
- Chroma—2 or 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 2 percent

BE horizon (where present):
- Hue—10YR, 2.5Y
- Value—4 or 6
- Chroma—2 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—0 to 2 percent

Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—0 to 2 percent

2Bt horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 to 6
- Chroma—1 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—5 to 20 percent

2BC horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, loam, silty clay loam
- Content of rock fragments—5 to 20 percent

3C horizon:
- Hue—10YR, 2.5Y
- Value—4 to 6
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam, silty clay
- Content of rock fragments—5 to 34 percent

Germano Series

Depth class: Moderately deep
Drainage class: Well drained
Landform: Hill
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum from weakly cemented sandstone
Slope range: 6 to 25 percent
Associated soils: Berks, Coshocton, Gilpin, Westmoreland
Taxonomic class: Coarse-loamy, mixed, active, mesic Typic Hapludults

Typical Pedon

Germano fine sandy loam, 6 to 15 percent slopes; in Harrison County, Ohio, Rumley Township, about 0.1 mile north of New Rumley; 2,400 feet north and 2200 feet west of the southeast corner of section 14, T. 12 N., R. 5 W.

Ap—0 to 10 inches; brown (10YR 4/3) fine sandy loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many fine roots; 5 percent sandstone channers; slightly acid; abrupt smooth boundary.

Bt1—10 to 18 inches; yellowish brown (10YR 5/4) fine sandy loam; moderate medium subangular blocky structure; friable; few fine roots; few faint brown (7.5YR 5/4) clay films on faces of peds; 10 percent sandstone channers; 4 percent sandstone parachanners; moderately acid; clear wavy boundary.

Bt2—18 to 26 inches; yellowish brown (10YR 5/4) channery fine sandy loam; moderate medium subangular blocky structure; friable; few fine roots; few faint brown (7.5YR 5/4) clay films on faces of peds; 15 percent sandstone channers; 10 percent sandstone parachanners; strongly acid; clear wavy boundary.

C—26 to 33 inches; yellowish brown (10YR 5/4) very channery fine sandy loam; massive; friable; few fine roots; 45 percent sandstone channers; 10 percent sandstone parachanners; very strongly acid; clear wavy boundary.

Cr—33 to 43 inches; light yellowish brown (10YR 6/4) fractured weathered sandstone.

Range in Characteristics

Depth to bedrock: More than 40 inches
Depth to paralithic: 20 to 40 inches
Thickness of the solum: 20 to 40 inches
Depth to carbonates: None above the bedrock
Kind of rock fragments: Sandstone
Reaction: Unless limed, very strongly acid to moderately acid in the solum; extremely acid to strongly acid in the substratum

A or Ap horizon:
Hue—10YR
Value—2 to 4
Chroma—1 to 4
Texture of the fine earth fraction—fine sandy loam
Content of rock fragments—2 to 20 percent

Bt horizon:
Hue—7.5YR, 10YR
Value—4 to 6
Chroma—4 to 8
Texture of the fine earth fraction—fine sandy loam, sandy loam, coarse sandy loam, loam
Content of rock fragments—3 to 34 percent (of that 2 to 15 percent are soft fragments)

C horizon:
Hue—7.5YR, 10YR
Value—4 to 6
Chroma—3 to 6
Texture of the fine earth fraction—fine sandy loam, sandy loam, loamy sand
Content of rock fragments—20 to 80 percent (of that 5 to 35 percent are soft fragments)

Gilpin Series

Depth class: Moderately deep

Drainage class: Well drained
Landform: Hill

Position on the landform: Summit, shoulder, backslope

Parent material: Residuum weathered from interbedded shale, siltstone and sandstone

Slope range: 2 to 25 percent

Associated soils: Berks, Coshocton, Hazleton, Westmoreland

Taxonomic class: Fine-loamy, mixed, active, mesic Typic Hapludults

Typical Pedon

Gilpin silt loam, from an area of Gilpin-Coshocton complex, 6 to 15 percent slopes; in Columbiana County, Ohio, Hanover Township, about 0.5 miles southwest of Dungannon, 1,940 feet west and 1,230 feet north of southeast corner of sec. 35, T. 15 N., R. 4 W.

Ap—0 to 7 inches; brown (10YR 4/3) silt loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; friable; many fine and medium roots; 5 percent channers; strongly acid; abrupt smooth boundary.

Bt1—7 to 14 inches; yellowish brown (10YR 5/6) silt loam; moderate fine and medium subangular blocky structure; friable; common fine and medium roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent channers; strongly acid; clear wavy boundary.

Bt2—14 to 20 inches; yellowish brown (10YR 5/6) channery silty clay loam; moderate medium subangular blocky structure; firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 15 percent channers; strongly acid; clear wavy boundary.

C—20 to 28 inches; yellowish brown (10YR 5/4) very channery silty clay loam; massive; firm; few distinct brown (7.5YR 5/4) clay films on rock fragments; 55 percent channers; very strongly acid; clear wavy boundary.

Cr—28 to 38 inches; light olive brown (2.5Y 5/4) fractured, bedded shale.

Range in Characteristics

Depth to bedrock: 20 to 40 inches

Thickness of the solum: 18 to 36 inches

Depth to carbonates: None above the bedrock

Kind of rock fragments: Sandstone, siltstone, shale

Reaction: Unless limed, extremely acid to strongly acid throughout the profile

A horizon:
Hue—10YR
Value—3
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—5 to 10 percent

Ap horizon:
Hue—10YR
Value—3 or 4
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—5 to 10 percent

Bt horizon:
Hue—7.5YR, 10YR, 2.5Y
Value—4 or 5
Chroma—4 to 6
Texture of the fine earth fraction—silt loam, loam, silty clay loam
Content of rock fragments—5 to 34 percent

C horizon:
Hue—10YR, 2.5Y
Value—3 to 5
Chroma—3 to 5
Texture of the fine earth fraction—silt loam, loam, silty clay loam
Content of rock fragments—40 to 80 percent

Glenford Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Stream terrace
Position on the landform: Tread, riser
Parent material: Stratified glaciolacustrine deposits
Slope range: 2 to 12 percent
Associated soils: Valley, Canfield, Fitchville, Wadsworth
Taxonomic class: Fine-silty, mixed, superactive, mesic Aquic Hapludalfs

Typical Pedon

Glenford silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, West Township, about 1.5 miles east of East Rochester, 2,507 feet east and 308 feet north of the southwest corner of sec. 26, T. 16 N., R. 5 W.

Ap—0 to 8 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many fine and medium roots; few pebbles; slightly acid; abrupt smooth boundary.

BE—8 to 12 inches; yellowish brown (10YR 5/4) silt loam; weak fine and medium subangular blocky structure; friable; common fine and medium roots; few pebbles; strongly acid; clear wavy boundary.

Bt1—12 to 24 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; friable; few fine roots; common prominent brown (7.5YR 5/4) clay films on faces of peds and in pores; 30 percent medium prominent gray (10YR 6/1) iron depletions on faces of peds and in pores; common medium distinct strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few pebbles; strongly acid; clear wavy boundary.

Bt2—24 to 30 inches; yellowish brown (10YR 5/4) silty clay loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds and in pores; 30 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; common medium distinct strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; strongly acid; clear wavy boundary.

Bt3—30 to 45 inches; dark yellowish brown (10YR 4/4) loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; common distinct brown
(7.5YR 5/4) and gray (10YR 5/1) clay films on faces of peds and in pores; 30 percent medium distinct gray (10YR 6/1) iron depletions on faces of peds and in pores; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; strongly acid; clear wavy boundary.

BC—45 to 60 inches; yellowish brown (10YR 5/4) silt loam with thin lenses of loam; weak coarse subangular blocky structure; firm; few fine roots; 20 percent medium distinct light brownish gray (10YR 6/2) iron depletions on faces of peds and in pores; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; moderately acid; clear wavy boundary.

C1—60 to 75 inches; yellowish brown (10YR 5/4) silt loam with thin lenses of loam; massive; firm; 10 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few pebbles; moderately acid; clear wavy boundary.

C2—75 to 80 inches; yellowish brown (10YR 5/6) silt loam; massive; firm; 15 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding iron depletions; slightly acid.

Range in Characteristics

Depth to bedrock: More than 80 inches

Thickness of the solum: 30 to 60 inches

Depth to carbonates: 60 to more than 80 inches

Kind of rock fragments: Sandstone, siltstone, shale, igneous

Reaction: Unless limed, very strongly acid to moderately acid in the upper part and very strongly acid to slightly alkaline in the lower part

Ap horizon:
- Hue—10YR
- Value—4
- Chroma—2 or 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 2 percent

Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam, loam
- Content of rock fragments—0 to 2 percent

C horizon:
- Hue—10YR
- Value—4 or 5
- Chroma—3 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam; less common are stratifications of loam and fine sandy loam
- Content of rock fragments—0 to 10 percent

The Glenford pedon has a permeability of the substratum that is slightly out of the range of the series. This should not adversely affect use and management for most purposes.
Guernsey Series

Depth class: Deep or very deep
Drainage class: Moderately well drained
Landform: Hill
Position on the landform: Backslope, footslope
Parent material: Colluvium and residuum weathered from siltstone, shale, and limestone
Slope range: 6 to 25 percent
Associated soils: Berks, Coshocton, Gilpin, Kensington, Upshur
Taxonomic class: Fine, mixed, superactive, mesic Aquic Hapludalfs

Typical Pedon

Guernsey silt loam, 6 to 15 percent slopes; in Columbiana County, Ohio, Center Township, about 3.5 miles east of Hanoverton, 200 feet east and 200 feet south of the northwest corner of sec. 30, T. 14 N., R. 3. W.

Ap—0 to 8 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; moderate fine and medium granular structure; friable; common fine and medium roots; 5 percent pebbles of sandstone and shale; moderately acid; abrupt smooth boundary.

Bt1—8 to 16 inches; dark yellowish brown (10YR 4/6) silty clay loam; moderate fine and medium subangular blocky structure; friable; few fine roots; common faint dark yellowish brown (10YR 4/6) clay films on faces of peds; common distinct dark grayish brown (10YR 4/2) organic coats on faces of peds and in pores; 5 percent pebbles of sandstone and shale; moderately acid; clear wavy boundary.

2Bt2—16 to 24 inches; yellowish brown (10YR 5/6) silty clay; moderate medium angular blocky structure; firm, plastic and sticky; few fine roots; many distinct yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent fine distinct grayish brown (10YR 5/2) iron depletions lining pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; few channers; moderately acid; clear wavy boundary.

2Bt3—24 to 32 inches; yellowish brown (10YR 5/6) silty clay; moderate medium and coarse angular blocky structure; firm; plastic and sticky; few fine roots; many distinct yellowish brown (10YR 5/4) clay films on faces of peds; 15 percent fine distinct light brownish gray (10YR 6/2) iron depletions lining pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; few channers; moderately acid; clear wavy boundary.

2Bt4—32 to 42 inches; variegated yellowish brown (10YR 5/6), 70 percent, light olive brown (2.5Y 5/4), 30 percent, silty clay; moderate medium and coarse angular blocky structure; firm, plastic and sticky; few fine roots; many distinct yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent fine distinct light brownish gray (10YR 6/2) iron depletions lining pores; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 5 percent channers; slightly acid; clear wavy boundary.

2BC—42 to 52 inches; variegated light olive brown (2.5Y 5/3), 80 percent, yellowish brown (10YR 5/6), 20 percent, channery silty clay; weak medium and coarse subangular blocky structure; firm; slightly plastic and sticky; few fine roots; 5 percent fine prominent gray (N 5/0) iron depletions lining pores; 20 percent channers; strongly effervescent; moderately alkaline; clear wavy boundary.

3C1—52 to 58 inches; grayish brown (2.5Y 5/2) cobbley silty clay loam; massive; firm; 25 percent cobbles; strongly effervescent; moderately alkaline; clear wavy boundary.

3C2—58 to 65 inches; grayish brown (2.5Y 5/2) silty clay loam; massive; firm; 5 percent channers; strongly effervescent; moderately alkaline; clear wavy boundary.

3Cr—65 to 75 inches; gray (10YR 5/1) calcareous shale.
Range in Characteristics

Depth to bedrock: More than 50 inches
Thickness of the solum: 30 to 60 inches
Depth to carbonates: More than 35 inches if present at all above the bedrock
Kind of rock fragments: Limestone, sandstone, siltstone, shale
Reaction: Unless limed, moderately acid to very strongly acid in the A horizon; very strongly acid to moderately acid in the upper part of the Bt and ranging to slightly alkaline in the lower part of the Bt; moderately acid to moderately alkaline in the 2C horizon

Ap horizon:
Hue—10YR
Value—4
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—2 to 14 percent

Bt or 2Bt horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—silty clay loam, silty clay
Content of rock fragments—2 to 20 percent

2C or 3C horizon:
Hue—7.5YR, 10YR, 2.5Y
Value—4 to 6
Chroma—2 to 6
Texture of the fine earth fraction—silty clay loam, silty clay
Content of rock fragments—2 to 34 percent

Hazleton Series

Depth class: Deep or very deep
Drainage class: Well drained
Landform: Hill
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from sandstone
Slope range: 2 to 70 percent
Associated soils: Berks, Chili, Coshocton, Tioga, Westmoreland
Taxonomic class: Loamy-skeletal, mixed, active, mesic Typic Dystrudepts

Typical Pedon

Hazleton channery loam, from an area of Hazleton-Westmoreland complex, 40 to 70 percent slopes; in Columbiana County, Ohio, St. Clair Township, about 1.0 mile northwest of Fredericktown, 270 feet west and 800 feet south of the northeast corner of sec. 3, T. 6 N., R. 1 W.

Oe—0 to 2 inches: very dark grayish brown (10YR 3/2) partially decayed leaf litter; abrupt wavy boundary.

A—2 to 5 inches: very dark gray (10YR 3/1) channery loam, gray (10YR 5/1) dry; weak fine granular structure; very friable; many fine and medium roots; 20 percent channers; very strongly acid; abrupt smooth boundary.

BA—5 to 8 inches: 80 percent yellowish brown (10YR 5/4) and 20 percent dark brown (10YR 4/3) channery sandy loam; weak fine subangular blocky structure; friable;
Columbiana County, Ohio

common fine and medium roots; 25 percent channers; very strongly acid; clear wavy boundary.

Bw1—8 to 17 inches; yellowish brown (10YR 5/6) very channery sandy loam; weak fine and medium subangular blocky structure; friable; common fine and medium roots; 40 percent channers; strongly acid; clear wavy boundary.

Bw2—17 to 32 inches; brownish yellow (10YR 6/6) extremely channery sandy loam; weak fine and medium subangular blocky structure; friable; common fine roots; 60 percent channers; strongly acid; clear wavy boundary.

Bw3—32 to 38 inches; brownish yellow (10YR 6/6) extremely channery sandy loam; weak fine and medium subangular blocky structure; friable; few fine roots; 65 percent channers; very strongly acid; clear wavy boundary.

BC—38 to 50 inches; yellowish brown (10YR 5/4) extremely channery loamy sand; weak fine and medium subangular blocky structure; friable; few fine roots; 70 percent channers; very strongly acid; gradual wavy boundary.

C—50 to 67 inches; yellowish brown (10YR 5/4) extremely channery loamy sand; massive; friable; 80 percent channers; very strongly acid; gradual wavy boundary.

R—67 inches; brown (10YR 5/3) sandstone.

Range in Characteristics

Depth to bedrock: 40 to 80 inches
Thickness of the solum: 25 to 50 inches (fig. 26)
Depth to carbonates: None above the bedrock
Kind of rock fragments: Sandstone
Reaction: Unless limed, extremely acid to strongly acid throughout the profile

A horizon:
- Hue—10YR
- Value—2 to 4
- Chroma—1 to 4
- Texture of the fine earth fraction—loam
- Content of rock fragments—10 to 25 percent

Bw horizon:
- Hue—7.5YR, 10YR
- Value—3 to 6
- Chroma—3 to 8
- Texture of the fine earth fraction—loam, sandy loam, loamy sand
- Content of rock fragments—15 to 70 percent

C horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—3 to 6
- Texture of the fine earth fraction—loam, sandy loam, loamy sand
- Content of rock fragments—35 to 80 percent

The Hazleton components in Columbiana County are taxadjunct to the series because the mineralogy class is Mixed and not Siliceous. This should not adversely impact use and management of the soil for most purposes.

Holly Series

Depth class: Very deep
Drainage class: Poorly drained
Landform: Flood plain
Position on the landform: Flood-plain step
Parent material: Loamy alluvium
Slope range: 0 to 2 percent
Associated soils: Coshocton, Gilpin, Kensington, Westmoreland
Taxonomic class: Fine-loamy, mixed, active, nonacid, mesic Fluvaquentic
Endoaquepts

Figure 26.—A typical profile of Hazleton soils.

Typical Pedon

Holly silt loam, 0 to 2 percent slopes, frequently flooded; in Columbiana County, Ohio, Center Township, about 2.5 miles north of Gavers, 1,025 feet west and 675 feet north of the southeast corner of sec. 28, T. 14 N., R. 3 W.

A—0 to 4 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; friable; many fine and medium roots; common fine prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; strongly acid; abrupt smooth boundary.

Bg1—4 to 8 inches; gray (N 5/0) silt loam; weak coarse subangular blocky structure; friable; common fine and medium roots; many fine prominent yellowish red (5YR 4/6) masses of iron accumulation lining pores; strongly acid; clear wavy boundary.

Bg2—8 to 12 inches; gray (5Y 5/1) silt loam; weak coarse subangular blocky structure; friable; few fine roots; common fine prominent yellowish red (5YR 4/6) masses of iron accumulation lining pores; slightly acid; gradual wavy boundary.
Bg3—12 to 20 inches; gray (N 5/0) loam; weak coarse subangular blocky structure; friable; few fine roots; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; slightly acid; gradual wavy boundary.

Cg1—20 to 30 inches; gray (N 5/0) loam; massive; firm; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; 5 percent pebbles; slightly acid; gradual wavy boundary.

Cg2—30 to 40 inches; dark gray (N 4/0) gravelly loam; massive; friable; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; 20 percent pebbles; slightly acid; clear wavy boundary.

Cg3—40 to 50 inches; dark grayish brown (2.5Y 4/2) gravelly loam; massive; friable; 10 percent medium faint gray (N 5/0) irregular iron depletions in the matrix; common fine prominent yellowish brown (10YR 5/6) irregular masses of iron accumulation in the matrix surrounding iron depletions; 20 percent pebbles; slightly acid; clear wavy boundary.

Cg4—50 to 60 inches; olive gray (5Y 4/2) gravelly loam; massive; friable; 15 percent pebbles; neutral; gradual wavy boundary.

Cg5—60 to 70 inches; variegated dark gray (N 4/0), 60 percent, olive gray (5Y 4/2), 40 percent, gravelly loam; common medium prominent strong brown (7.5YR 5/6) irregular mottles in the matrix; massive; friable; 15 percent pebbles; neutral; gradual wavy boundary.

Cg6—70 to 75 inches; dark gray (N 4/0) gravelly loam; many medium prominent light olive brown (2.5Y 5/4) irregular mottles in the matrix; massive; friable; 20 percent pebbles; neutral.

R—75 inches; sandstone.

Range in Characteristics

Depth to bedrock: More than 70 inches
Thickness of the solum: 20 to 44 inches
Depth to carbonates: 40 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale
Reaction: Unless limed, strongly acid to neutral in the upper part and strongly acid to slightly alkaline in the lower part

A horizon:
Hue—10YR
Value—4
Chroma—1 or 2
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 10 percent

Bg horizon:
Hue—10YR, 2.5Y, 5Y or is neutral
Value—4 to 6
Chroma—0 to 2
Texture of the fine earth fraction—silt loam, loam; less commonly sandy loam or silty clay loam
Content of rock fragments—0 to 14 percent

Cg horizon:
Hue—10YR, 2.5Y, 5Y or is neutral
Value—4 or 5
Chroma—0 to 2
Texture of the fine earth fraction—silt loam, loam, sandy loam
Content of rock fragments—0 to 25 percent
The Holly pedon has bedrock below a depth of 60 inches that is not typical of the series. This should not adversely impact use and management of the soil for most purposes.

Homewood Series

- **Depth class:** Very deep
- **Drainage class:** Moderately well drained
- **Landform:** Till plain
- **Position on the landform:** Summit, backslope
- **Parent material:** Loess, till and the underlying residuum
- **Slope range:** 2 to 6 percent
- **Associated soils:** Berks, Hazleton, Kensington, Mechanicsburg
- **Taxonomic class:** Fine-loamy, mixed, superactive, mesic Oxyaquic Fragiudalfs

Typical Pedon

Homewood silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Elk Run Township, about 1.5 miles northwest of Elkton, 1,525 feet east and 1,145 feet north of the southwest corner, sec. 17, T. 11 N., R. 2 W.

- **Ap**—0 to 12 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; common fine and medium roots; few pebbles; strongly acid; abrupt smooth boundary.
- **BE**—12 to 16 inches; yellowish brown (10YR 5/6) silt loam; moderate fine and medium subangular blocky structure; friable; common fine roots; 10 percent brown (10YR 4/3) Ap material in root and worm channels; few pebbles; strongly acid; clear wavy boundary.
- **Bt1**—16 to 22 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; friable; few fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent pebbles; strongly acid; clear wavy boundary.
- **2Bt2**—22 to 25 inches; 70 percent yellowish brown (10YR 5/4), 30 percent brown (7.5YR 4/4) loam; weak coarse prismatic structure parting to moderate medium and coarse subangular blocky; firm; 20 percent brittle; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 20 percent medium distinct light brownish gray (10YR 6/2) iron depletions on faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; 10 percent pebbles; very strongly acid; gradual wavy boundary.
- **2Btx1**—25 to 30 inches brown (7.5YR 4/4) loam; moderate very coarse prismatic structure parting to weak medium platy; very firm; few fine roots; common faint brown (7.5YR 5/4) clay films on faces of peds; 30 percent medium prominent light brownish gray (10YR 6/2) iron depletions on vertical faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation on vertical faces of peds between depletions and prism interiors; 10 percent pebbles; 70 percent brittle; very strongly acid; gradual wavy boundary.
- **2Btx2**—30 to 37 inches; brown (7.5YR 4/4) loam; moderate very coarse prismatic structure parting to weak medium platy; very firm; few fine roots; common faint brown (7.5YR 5/4) clay films on faces of peds; 40 percent medium prominent light brownish gray (10YR 6/2) iron depletions on vertical faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation on vertical faces of peds between depletions and prism interiors; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese
accumulation on faces of peds and lining pores; 10 percent pebbles; 80 percent brittle; very strongly acid; gradual wavy boundary.

2Btx3—37 to 42 inches; yellowish brown (10YR 5/4) loam; moderate very coarse prismatic structure parting to weak medium subangular blocky; very firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 30 percent medium prominent light brownish gray (10YR 6/2) iron depletions on vertical faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation on vertical faces of peds between depletions and prism interiors; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds and lining pores; 10 percent pebbles; 70 percent brittle; very strongly acid; gradual wavy boundary.

2B’t1—42 to 55 inches; brown (10YR 5/3) clay loam; weak very coarse subangular blocky structure parting to moderate medium subangular blocky; firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 5 percent medium distinct light brownish gray (10YR 6/2) iron depletions on faces of peds and lining pores; few medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; 10 percent pebbles; strongly acid; clear wavy boundary.

2B’t2—55 to 62 inches; brown (10YR 5/3) loam; weak very coarse subangular blocky structure parting to moderate medium subangular blocky; firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 5 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; few medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding depletions; 10 percent pebbles; strongly acid; clear wavy boundary.

3BC—62 to 66 inches; yellowish brown (10YR 5/4) extremely channery loam; weak very coarse subangular blocky structure; firm; 70 percent channers; strongly acid; clear wavy boundary.

3Cr—66 to 76 inches; light olive brown (2.5Y 5/4) layered sandstone.

Range in characteristics

Depth to bedrock: More than 60 inches
Depth to the paralithic: 60 to more than 80 inches
Thickness of the solum: 60 to more than 80 inches
Thickness of the loess cap: 10 to 22 inches
Depth to fragipan: 16 to 33 inches
Depth to carbonates: More than 60 inches
Kind of rock fragments: Sandstone, shale, limestone, igneous
Reaction: Unless limed, strongly acid in the surface and upper subsoil; very strongly acid to slightly alkaline in the C horizon

Ap horizon:
Hue—10YR
Value—4
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 5 percent

Bt horizon:
Hue—10YR
Value—5
Chroma—4 or 6
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 5 percent
2Bt, 2Btx, 2B’t, and 2BC horizons:
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, loam, clay loam
 Content of rock fragments—5 to 25 percent

2C horizon:
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—4 to 6
 Texture of the fine earth fraction—loam, clay loam
 Content of rock fragments—5 to 34 percent

3BC and 3C horizons:
 Hue—10YR, 2.5Y
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—loam, silt loam, clay loam
 Content of rock fragments—35 to 70 percent

Homeworth Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Outwash terrace
Position on the landform: Tread
Parent material: Loamy water-sorted material overlying clayey lacustrine sediments
Slope range: 0 to 6 percent
Associated soils: Canfield, Ravenna, Zepernick
Taxonomic class: Fine-loamy, mixed, superactive, mesic Aeric Epiaqualfs

Typical Pedon

Homeworth loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Knox Township, about 3.0 miles east of Alliance, 1,240 feet west and 680 feet north of the southeast corner of sec. 4, T. 17 N., R. 5 W.

Ap—0 to 13 inches; dark grayish brown (10YR 4/2) loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; friable; many fine and very fine roots; 7 percent pebbles; neutral; abrupt smooth boundary.

Eg—13 to 16 inches; light brownish gray (10YR 6/2) sandy loam; weak fine subangular blocky structure; friable; common fine roots; few fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) rounded friable iron-manganese oxide accumulations in the matrix; 13 percent pebbles; neutral; clear wavy boundary.

BE—16 to 20 inches; light yellowish brown (10YR 6/4) sandy loam; weak fine medium subangular blocky structure; friable; common fine roots; common faint pale brown (10YR 6/3) silt coats on faces of peds; 40 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions and common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) rounded friable masses of iron-manganese accumulation in the matrix; 12 percent pebbles; neutral; clear wavy boundary.

Bt1—20 to 25 inches; yellowish brown (10YR 5/6) loam; moderate fine and medium subangular blocky structure; friable; few fine roots; common distinct yellowish
brown (10YR 5/4) and prominent gray (10YR 5/1) clay films on faces of peds; 50 percent medium prominent gray (10YR 6/1) iron depletions on faces of peds; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation lining pores; common fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 14 percent pebbles; slightly acid; clear wavy boundary.

Bt2—25 to 31 inches; yellowish brown (10YR 5/6) loam; moderate medium subangular blocky structure; firm; few fine roots; common distinct yellowish brown (10YR 5/4) and prominent gray (10YR 5/1) clay films on faces of peds; 50 percent medium prominent gray (10YR 6/1) iron depletions on faces of peds; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation lining pores; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 10 percent pebbles; slightly acid; clear wavy boundary.

Bt3—31 to 34 inches; yellowish brown (10YR 5/6) sandy loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; common distinct yellowish brown (10YR 5/4) and prominent gray (10YR 5/1) clay films on faces of peds; 30 percent medium prominent gray (10YR 6/1) iron depletions on faces of peds; few medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 8 percent pebbles; slightly acid; clear wavy boundary.

Bt4—34 to 38 inches; yellowish brown (10YR 5/4) sandy loam; weak medium and coarse subangular blocky structure; firm; few fine roots; common faint yellowish brown (10YR 5/4) and distinct gray (10YR 5/1) clay films on faces of peds; 20 percent medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; common medium prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; many fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 9 percent pebbles; moderately acid; clear wavy boundary.

2Bt5—38 to 50 inches; light olive brown (2.5Y 5/4) silty clay; moderate coarse prismatic structure; firm; few fine roots; common prominent gray (N 5/0) clay films on faces of peds; 20 percent medium prominent gray (10YR 6/1) iron depletions lining pores; few medium prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; moderately acid; gradual wavy boundary.

2BC—50 to 62 inches; light olive brown (2.5Y 5/4) silty clay; moderate medium prismatic structure; firm; few prominent gray (N 5/0) clay films on faces of peds; 20 percent medium prominent gray (N 5/0) iron depletions lining pores; neutral; gradual wavy boundary.

2C1—62 to 70 inches; light olive brown (2.5Y 5/4) silty clay; massive; firm; 5 percent medium prominent gray (N 5/0) iron depletions lining pores; neutral; gradual smooth boundary.

2C2—70 to 80 inches; light olive brown (2.5Y 5/4) silty clay; common medium prominent light gray (2.5Y 7/2) irregular mottles throughout; massive; firm; 10 percent fine prominent gray (N 5/0) irregular iron depletions in the matrix; slightly effervescent; slightly alkaline.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 40 to 65 inches
Depth to lacustrine sediments: 30 to 50 inches
Depth to carbonates: 40 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous

Reaction: Unless limed, strongly acid to slightly acid in the upper part, strongly acid to slightly alkaline in the lower part

Ap horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—1 to 3
- Texture of the fine earth fraction—silt loam, loam
- Content of rock fragments—0 to 10 percent

BE horizon:
- Hue—10YR or 2.5Y
- Value—5 or 6
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam, loam, sandy loam, fine sandy loam
- Content of rock fragments—0 to 10 percent

Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—2 to 6
- Texture of the fine earth fraction—silt loam, loam, sandy loam
- Content of rock fragments—0 to 20 percent

2Bt or 2BC horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—2 to 6
- Texture of the fine earth fraction—silty clay loam with clay content greater than 35 percent, silty clay
- Content of rock fragments—0 to 5 percent

2C horizon:
- Hue—10YR, 2.5Y, 5Y or is neutral
- Value—4 or 5
- Chroma—0 to 4
- Texture of the fine earth fraction—silty clay loam with clay content greater than 35 percent, silty clay
- Content of rock fragments—0 to 5 percent

Jimtown Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Stream terrace
Position on the landform: Tread
Parent material: Stratified glaciofluvial outwash deposits
Slope range: 0 to 6 percent
Associated soils: Bogart, Chili, Fredericktown, Holly, Lobdell, Orrville
Taxonomic class: Fine-loamy, mixed, superactive, mesic Aeric Endoaqualfs

Typical Pedon

Jimtown silt loam, 0 to 2 percent slopes; in Columbiana County, Ohio, West Township, about 0.5 mile north of Minerva, about 1200 feet west of the intersection of Kurtz Road (Township Road 23) and Stump Road (Township Road 719) along Kurtz Road, then 700 feet south, section 30, T. 16 N., R. 5 W.
Ap—0 to 8 inches; dark brown (10YR 3/3) silt loam, pale brown (10YR 6/3) dry; weak medium granular structure; friable; common fine and medium roots throughout; 4 percent well rounded pebbles; moderately acid; abrupt smooth boundary.

BE—8 to 12 inches; yellowish brown (10YR 5/4) silt loam; weak fine and medium subangular blocky structure; friable; common fine and medium roots throughout; many coarse and very coarse distinct light brownish gray (10YR 6/2) iron depletions on faces of peds, less than 15 percent by volume; dark brown (10YR 3/3) topsoil filling abandoned worm channels; 7 percent well rounded pebbles; moderately acid; gradual wavy boundary.

Bt1—12 to 16 inches; brown (10YR 5/3) loam; moderate medium subangular blocky structure; friable; few fine roots throughout; few distinct grayish brown (10YR 5/2) clay films on faces of peds; many coarse and very coarse distinct light brownish gray (10YR 6/2) clay depletions on faces of peds; many, 30 percent, medium distinct yellowish brown (10YR 5/6) iron masses in the matrix; common medium and coarse prominent black (10YR 2/1) masses of iron-manganese throughout; 13 percent well rounded pebbles; moderately acid; gradual wavy boundary.

Bt2—16 to 24 inches; brown (10YR 5/3) gravelly sandy loam; weak coarse subangular blocky structure; friable; few fine roots throughout; few faint grayish brown (10YR 5/2) clay films on faces of peds; many, 25 percent, coarse faint grayish brown (10YR 5/2) iron depletions throughout; common coarse prominent strong brown (7.5YR 5/6) masses of iron oxide accumulation throughout and common medium prominent yellowish red (5YR 4/6) masses of iron oxide accumulation in the matrix around concentrations; 30 percent well rounded gravel; slightly acid; gradual wavy boundary.

Bt3—24 to 32 inches; grayish brown (10YR 5/2) gravelly coarse sandy loam; weak coarse subangular blocky structure; very friable; few very fine roots throughout; few faint gray (10YR 5/1) clay films on vertical faces of peds and on rock fragments; many coarse prominent yellowish red (5YR 4/6) masses of iron oxide accumulation on faces of peds; 28 percent well rounded gravel; slightly acid; clear smooth boundary.

BC—32 to 39 inches; gray (10YR 5/1) very gravelly coarse sandy loam; weak very coarse prismatic structure; very friable; common medium prominent strong brown (7.5YR 4/6) masses of iron oxide accumulation on horizontal faces of peds; 55 percent well rounded gravel; slightly acid; clear smooth boundary.

C1—39 to 45 inches; brown (10YR 4/3) coarse sand; single grain; loose; 3 percent pebbles; slightly acid; clear smooth boundary.

C2—45 to 80 inches; grayish brown (10YR 5/2) loamy sand with thin discontinuous strata of extremely gravelly loamy sand; single grain; loose; 5 percent well rounded gravel, and 80 percent gravel in strata; moderately acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 25 to 54 inches
Depth to carbonates: 60 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, very strongly acid to neutral in the surface; very strongly acid to slightly acid in the upper subsoil; strongly acid to slightly acid in the lower subsoil; strongly acid to moderately alkaline in the substratum

Ap horizon:
- **Hue:** 10YR
- **Value:** 3 to 5
- **Chroma:** 2 or 3
- **Texture of the fine earth fraction:** silt loam
- **Content of rock fragments:** 0 to 14 percent
Bt horizon (upper part):
Hue—10YR, 2.5Y
Value—4 to 6
Chroma—2 to 6
Texture of the fine earth fraction—loam, clay loam, silty clay loam sandy loam,
sandy clay loam, coarse sandy loam
Content of rock fragments—0 to 30 percent

Bt horizon (lower part):
Hue—10YR, 2.5Y
Value—4 to 6
Chroma—2 to 6
Texture of the fine earth fraction—loam, clay loam, silty clay loam, sandy loam,
sandy clay loam, coarse sandy loam
Content of rock fragment—5 to 60 percent

BC horizon:
Hue—10YR, 2.5Y
Value—4 to 6
Chroma—1 to 6
Texture of the fine earth fraction—loam, sandy loam, loamy sand, coarse sandy
loam
Content of rock fragments—0 to 75 percent

C horizon:
Hue—10YR, 2.5Y
Value—4 to 6
Chroma—1 to 6
Texture of the fine earth fraction—loam, sandy loam, coarse sandy loam, loamy
sand, coarse sand
Content of rock fragments—0 to 85 percent

Keene Series

Depth class: Deep or very deep
Drainage class: Moderately well drained
Landform: Hill
Position on the landform: Summit, shoulder, footslope
Parent material: Silt mantle and the underlying residuum weathered from shale and
siltstone
Slope range: 2 to 6 percent
Associated soils: Berks, Coshocton, Gilpin, Westmoreland
Taxonomic class: Fine-silty, mixed, superactive, mesic Aquic Hapludalfs

Typical Pedon

Keene silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Franklin
Township, about 0.25 miles west of Milport, 1,575 feet east and 180 feet south of the
northwest corner of sec. 14, T. 14 N., R. 4 W.

Ap—0 to 11 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; moderate
medium granular structure; friable; many very fine roots; 2 percent channers;
strongly acid; abrupt smooth boundary.

BE—11 to 18 inches; yellowish brown (10YR 5/6) silt loam; moderate medium
subangular blocky structure; friable; common very fine roots; few faint yellowish
brown (10YR 5/4) coatings on faces of peds; 2 percent channers; moderately
acid; clear wavy boundary.
Bt1—18 to 25 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; few very fine roots; common distinct strong brown (7.5YR 5/4) clay films on faces of peds; 10 percent medium distinct gray (10YR 6/1) clay depletions on vertical faces of peds; 10 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 2 percent channers; strongly acid; clear wavy boundary.

2Bt2—25 to 35 inches; yellowish brown (10YR 5/6) silty clay loam; moderate coarse prismatic structure parting to moderate medium subangular blocky; firm; few very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 10 percent medium distinct gray (10YR 6/1) clay depletions on vertical faces of prisms; 15 percent medium distinct gray (10YR 6/1) iron depletions on vertical faces of prisms; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 2 percent channers; 3 percent parachanners; strongly acid; clear wavy boundary.

2Bt3—35 to 45 inches; yellowish brown (10YR 5/6) silty clay loam; moderate coarse prismatic structure parting to moderate medium subangular blocky; firm; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 10 percent medium distinct gray (10YR 6/1) clay depletions on vertical faces of peds; 30 percent medium distinct gray (10YR 6/1) irregular iron depletions in the matrix; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 5 percent channers; strongly acid; clear wavy boundary.

2Bt4—45 to 55 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; firm; common distinct gray (10YR 6/1) and common faint yellowish brown (10YR 5/4) clay films on faces of peds; 10 percent medium distinct gray (10YR 6/1) clay depletions on vertical faces of peds; 15 percent medium distinct gray (10YR 6/1) irregular iron depletions in the matrix; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 5 percent channers; strongly acid; clear wavy boundary.

2Bt5—55 to 66 inches; yellowish brown (10YR 5/6) clay loam; moderate medium subangular blocky structure; firm; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 10 percent medium distinct gray (10YR 6/1) clay depletions on vertical faces of peds; 15 percent medium distinct gray (N 6/0) irregular iron depletions in the matrix; few medium distinct strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 5 percent channers; 3 percent parachanners; strongly acid; clear wavy boundary.

2Cr—66 to 76 inches; light yellowish brown (10YR 6/4) weathered sandstone.

Range in Characteristics

Depth to bedrock: 40 to more than 80 inches
Thickness of the solum: 30 to 70 inches
Thickness of loess mantle: up to 36 inches
Depth to carbonates: None above the bedrock
Kind of rock fragments: Siltstone, shale
Reaction: Unless limed, very strongly acid or strongly acid in the surface and upper subsoil, very strongly acid to slightly acid in the lower subsoil and substratum

Ap horizon:
Hue—10YR
Value—4 or 5
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 5 percent

Bt horizon:
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—4 to 6
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 5 percent

2Bt horizon:
 Hue—7.5YR, 10YR
 Value—4 to 6
 Chroma—1 to 6
Texture of the fine earth fraction—silty clay loam, clay loam
Content of rock fragments—5 to 14 percent (2 to 10 percent soft fragments)

2C horizon (where present):
 Hue—10YR, 2.5Y
 Value—4 or 5
 Chroma—1 to 4
Texture of the fine earth fraction—silty clay loam, clay loam, silty clay
Content of rock fragments—5 to 25 percent (2 to 10 percent soft fragments)

Kensington Series

Depth class: Deep
Drainage class: Moderately well drained
Landform: Till plain
Position on the landform: Summit, shoulder, backslope
Parent material: Loess, till and the underlying residuum weathered from sedimentary rock
Slope range: 2 to 25 percent
Associated soils: Berks, Canfield, Chili, Hazleton, Mechanicsburg
Taxonomic class: Fine-loamy, mixed, active, mesic Aquic Hapludults

Typical Pedon

Kensington silt loam, 6 to 15 percent slopes; in Columbiana County, Ohio, West Township, about 1.5 miles northeast of East Rochester, 2,464 feet east and 389 feet north of the southwest corner, sec. 23, T. 16 N., R. 5 W.

Ap—0 to 11 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine granular structure; friable; common fine roots; 5 percent pebbles; moderately acid; abrupt smooth boundary.

Bt1—11 to 17 inches; strong brown (7.5YR 5/6) silt loam; weak medium subangular blocky structure; friable; common fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent medium prominent brown (10YR 5/3) clay depletions on faces of peds; 5 percent brown (10YR 4/3) Ap material in root and worm channels; 5 percent pebbles; very strongly acid; clear wavy boundary.

2Bt2—17 to 24 inches; strong brown (7.5YR 5/6) silt loam; moderate medium subangular blocky structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent pebbles; very strongly acid; clear wavy boundary.

2Bt3—24 to 33 inches; yellowish brown (10YR 5/4) channery loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; common
prominent brown (7.5YR 5/4) clay films on faces of peds; 5 percent fine distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; few fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulations on faces of peds and lining pores; 5 percent pebbles and 20 percent channers; very strongly acid; clear wavy boundary.

3Bt4—33 to 39 inches; 90 percent yellowish brown (10YR 5/4), 10 percent light olive brown (2.5Y 5/4) channery loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; few distinct yellowish brown (10YR 5/4) and few prominent brown (7.5YR 5/4) clay films on faces of peds; 5 percent fine and medium prominent gray (N 5/0) irregular iron depletions in the matrix and lining pores; few fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds and lining pores; 20 percent channers; very strongly acid; clear wavy boundary.

3Bt5—39 to 45 inches; light olive brown (2.5Y 5/4) channery loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; few distinct yellowish brown (10YR 5/4) and few prominent brown (7.5YR 5/4) clay films on faces of peds; 15 percent fine prominent gray (N 5/0) irregular iron depletions in the matrix and lining pores; few fine and medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds and lining pores; 15 percent channers; very strongly acid; clear wavy boundary.

3BC—45 to 52 inches; light olive brown (2.5Y 5/4) channery loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; few faint light olive brown (2.5Y 5/4) clay films on faces of peds; 5 percent fine and medium prominent gray (N 5/0) irregular iron depletions in the matrix and lining pores; few fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds and lining pores; 20 percent channers; very strongly acid; clear wavy boundary.

3C—52 to 58 inches; light olive brown (2.5Y 5/4) extremely channery loam; few fine prominent gray (10YR 5/1) irregular mottles throughout; massive; firm; few prominent brown (7.5YR 5/4) clay films on rock fragments; few fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 80 percent channers; very strongly acid; clear wavy boundary.

3Cr—58 to 71 inches; grayish brown (10YR 5/2) weathered shale and siltstone.
3R—71 inches; brown (10YR 5/3) hard siltstone.

Range in Characteristics

Depth to bedrock: 40 to 80 inches
Depth to paralithic: 35 to 60 inches
Thickness of the solum: 30 to 60 inches
Thickness of loess mantle: 0 to 20 inches
Depth to residuum: 20 to 45 inches
Depth to carbonates: None above the bedrock
Kind of rock fragments: Sandstone, siltstone, igneous
Reaction: Unless limed, very strongly acid or strongly acid in the surface, very strongly acid to moderately acid in the subsoil, very strongly acid or strongly acid in the substratum
Ap horizon:
 Hue—10YR
 Value—4 or 5
 Chroma—2 or 3
 Texture of the fine earth fraction—silt loam
 Content of rock fragments—0 to 10 percent

Bt horizon:
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam
 Content of rock fragments—5 to 30 percent

2Bt horizon:
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, loam, clay loam
 Content of rock fragments—5 to 30 percent

3Bt, 3BC horizon (where occurs):
 Hue—7.5YR, 10YR, 2.5Y
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, loam, silty clay loam, sandy loam, fine sandy loam
 Content of rock fragments—5 to 40 percent

3C horizon (where occurs):
 Hue—7.5YR, 10YR, 2.5Y
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, loam, fine sandy loam, sandy loam
 Content of rock fragments—20 to 80 percent

Lobdell Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Flood plain
Position on the landform: Flood-plain step
Parent material: Loamy alluvium
Slope range: 0 to 2 percent
Associated soils: Berks, Coshocton, Fitchville, Gilpin, Westmoreland
Taxonomic class: Fine-loamy, mixed, active, mesic Fluvaquentic Eutrudepts

Typical Pedon

Lobdell silt loam, 0 to 2 percent slopes, occasionally flooded; in Columbiana County, Ohio, Madison Township, about 0.5 mile south of Williamsport, 650 feet west and 1,650 feet north of the southeast corner of sec. 1, T. 10 N., R. 2 W.

Ap—0 to 10 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many fine and medium roots; few pebbles; strongly acid; abrupt smooth boundary.

Bw1—10 to 16 inches; dark yellowish brown (10YR 4/4) silt loam; weak medium
subangular blocky structure; friable; common fine roots; few pebbles; strongly acid; gradual wavy boundary.

Bw2—16 to 32 inches; yellowish brown (10YR 5/4) silt loam; weak coarse subangular blocky structure; friable; few fine roots; 10 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common medium distinct yellowish brown (10YR 5/8) irregular masses of iron accumulation in the matrix; few pebbles; moderately acid; clear wavy boundary.

BC—32 to 42 inches; dark yellowish brown (10YR 4/6) sandy loam; weak coarse subangular blocky structure; very friable; few fine roots; 20 percent medium distinct light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common medium distinct yellowish brown (10YR 5/8) irregular masses of iron accumulation in the matrix; 5 percent pebbles; moderately acid; clear wavy boundary.

C1—42 to 65 inches; dark yellowish brown (10YR 4/4) sandy loam; massive; very friable; few pebbles; moderately acid; gradual wavy boundary.

C2—65 to 76 inches; yellowish brown (10YR 5/4) sandy loam; massive; very friable; 5 percent pebbles; moderately acid.

Range in Characteristics

Depth to bedrock: Greater than 60 inches
Thickness of the solum: 24 to 50 inches
Depth to carbonates: More than 40 inches
Kind of rock fragments: Sandstone, siltstone and shale
Reaction: Unless limed, strongly acid to neutral in the solum, moderately acid to neutral in the substratum

Ap or A horizon:
- Hue—10YR
- Value—4
- Chroma—1 to 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 5 percent

Bw horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 or 5
- Chroma—3 or 4
- Texture of the fine earth fraction—silt loam, loam, sandy loam, silty clay loam
- Content of rock fragments—0 to 14 percent

C horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 to 6
- Chroma—1 to 6
- Texture of the fine earth fraction—silt loam, loam, sandy loam
- Content of rock fragments—0 to 14 percent

Lorain Series

Depth class: Very deep
Drainage class: Very poorly drained
Landform: Till plain
Position on the landform: Toeslope
Parent material: Silty and clayey glaciolacustrine sediments
Slope range: 0 to 2 percent
Associated soils: Canfield, Homewood, Ravenna, Rittman, Valley, Wadsworth
Taxonomic class: Fine, illitic, mesic Mollic Epiaqualfs

Typical Pedon

Trumbull County, Ohio; Southington Township; about 2.5 miles north of Delightful; 660 yards south of County Line Turnpike Road, 44 yards west of Barclay-Messerly Road.

Ap—0 to 7 inches; very dark gray (10YR 3/1) silty clay loam, gray (10YR 5/1) dry; weak medium and coarse granular structure; firm; many roots; slightly acid; abrupt smooth boundary.

BA—7 to 12 inches; dark gray (N 4/0) silty clay; weak medium and coarse prismatic structure parting to moderate medium subangular and angular blocky; very firm; many roots; many faint very dark gray (10YR 3/1) organic coatings on faces of peds; common fine and medium prominent strong brown (7.5YR 5/8) and reddish brown (5YR 4/4) masses of iron accumulation in ped interiors; strongly acid; clear wavy boundary.

Btg—12 to 31 inches; dark gray (N 4/0) silty clay; moderate medium and coarse prismatic structure parting to weak medium subangular and angular blocky; very firm; common roots; many faint very dark gray (10YR 3/1) and common faint dark gray (10YR 4/1) clay films on vertical and horizontal faces of peds; common fine and medium prominent reddish brown (5YR 4/4) and many fine and medium prominent strong brown (7.5YR 5/8) iron concentrations in ped interiors; strongly acid; clear wavy boundary.

Bt1—31 to 43 inches; yellowish brown (10YR 5/4) silty clay; weak medium prismatic structure parting to weak medium and coarse subangular and angular blocky; very firm; few roots; many faint dark gray (10YR 4/1) clay films on faces of peds; many fine and medium distinct gray (10YR 5/1) iron depletions in the matrix; many medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix; moderately acid; gradual wavy boundary.

Bt2—43 to 49 inches; yellowish brown (10YR 5/4) silty clay; weak coarse prismatic structure parting to weak coarse subangular blocky; very firm; common distinct dark gray (10YR 4/1) clay films on vertical faces of peds; many medium prominent gray (5Y 5/1) iron depletions on faces of peds; 2 percent coarse fragments; neutral; clear wavy boundary.

BC—49 to 54 inches; gray (5Y 5/1) silty clay; weak coarse prismatic structure; very firm; common fine faint grayish brown (2.5Y 5/2) iron depletions; common fine and medium prominent yellowish brown (10YR 5/4) masses of iron accumulation; 2 percent coarse fragments; neutral; gradual wavy boundary.

Cg—54 to 62 inches; olive gray (5Y 5/2) silty clay; massive; very firm; common fine and medium faint grayish brown (2.5Y 5/2) iron depletions; few fine and medium prominent dark brown (7.5YR 3/2) stains and concretions of iron and manganese oxide; 2 percent coarse fragments; strong effervescence; moderately alkaline.

Range in Characteristics

Depth to bedrock: More than 60 inches
Thickness of solum: 40 to 60 inches
Depth to carbonates: 40 to 60 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, strongly acid to slightly acid in the surface and upper subsoil; slightly acid or neutral in the lower subsoil; and neutral to moderately alkaline in the substratum

A or Ap horizon:
Hue—10YR
Value—2 or 3
Chroma—1 or 2
Texture of the fine earth fraction—silty clay loam
Content of rock fragments—0 to 2 percent

Btg horizon:
Hue—10YR, 2.5Y, 5Y or neutral
Value—4 or 5
Chroma—0 to 2
Texture of the fine earth fraction—silty clay, clay, silty clay loam
Content of rock fragments—0 to 2 percent

Bt horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—3 or 4
Texture of the fine earth fraction—silty clay, clay, silty clay loam
Content of rock fragments—0 to 2 percent

BC horizon:
Hue—10YR or 2.5Y
Value—2 to 5
Chroma—1 to 6
Texture of the fine earth fraction—silty clay loam, silty clay, clay
Content of rock fragments—0 to 2 percent

Cg horizon:
Hue—10YR or 2.5Y
Value—4 or 5
Chroma—0 to 2
Texture of the fine earth fraction—silty clay loam, silty clay, clay
Content of rock fragments—0 to 5 percent

Mechanicsburg Series

Depth class: Deep or very deep
Drainage class: Well drained
Landform: Till plain
Position on the landform: Summit, shoulder
Parent material: Loamy till over residuum weathered from fine grain sandstone and siltstone
Slope range: 2 to 15 percent
Associated soils: Berks, Coshocton, Gilpin, Kensington
Taxonomic class: Fine-loamy, mixed, active, mesic Ultic Hapludalfs

Typical Pedon

Mechanicsburg silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, about 2.0 miles east of Hanoverton, in Hanover Township, 250 feet east and 1,575 feet south of the northwest corner of sec. 26, T. 15 N., R. 4 W.

Ap—0 to 9 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; common fine roots; few pebbles; slightly acid; abrupt smooth boundary.

Bt1—9 to 15 inches; strong brown (7.5YR 5/6) silt loam; weak medium subangular blocky structure; friable; common fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; 5 percent pebbles; moderately acid; clear wavy boundary.

Bt2—15 to 22 inches; strong brown (7.5YR 5/6) gravelly loam; moderate medium subangular blocky structure; friable; few fine roots; common distinct brown
(7.5YR 5/4) clay films on faces of peds; few fine distinct dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 15 percent pebbles; strongly acid; clear wavy boundary.

2Bt3—22 to 28 inches; yellowish brown (10YR 5/4) channery silt loam; few fine distinct light brownish gray (10YR 6/2) and prominent strong brown (7.5YR 5/8) irregular mottles throughout; moderate medium subangular blocky structure; friable; few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on rock fragments; 25 percent channers; strongly acid; clear wavy boundary.

2Bt4—28 to 37 inches; yellowish brown (10YR 5/4) very channery silt loam; few fine and medium distinct gray (10YR 6/1) and prominent strong brown (7.5YR 5/8) irregular mottles throughout; moderate medium subangular blocky structure; friable, few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on rock fragments; 50 percent channers; strongly acid; clear wavy boundary.

2BC—37 to 45 inches; light olive brown (2.5Y 5/4) very channery silt loam; few fine prominent gray (10YR 6/1) and strong brown (7.5YR 5/8) irregular mottles throughout; weak medium subangular blocky structure; firm; few fine roots; few prominent brown (7.5YR 5/4) clay films on faces of peds; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on rock fragments; 40 percent channers; strongly acid; clear wavy boundary.

2C—45 to 50 inches; light olive brown (2.5Y 5/4) extremely channery silt loam; few fine prominent gray (10YR 6/1) and strong brown (7.5YR 5/8) irregular mottles throughout; massive; firm; few prominent brown (7.5YR 5/4) clay films on rock fragments; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on rock fragments; 60 percent channers; 10 percent parachanners; strongly acid; clear wavy boundary.

2Cr—50 to 67 inches; light olive brown (2.5Y 5/4) soft layered shale and siltstone.

2R—67 inches; yellowish brown (10YR 5/4) shale and siltstone.

Range in Characteristics

Depth to bedrock: 40 to 72 inches
Thickness of the solum: 24 to 50 inches
Depth to carbonates: None above the bedrock
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, very strongly acid or strongly acid in the surface, very strongly acid to moderately acid in the subsoil and substratum

Ap horizon:
Hue—10YR
Value—4 or 5
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 10 percent

Bt horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—silt loam, loam, silty clay loam
Content of rock fragments—2 to 20 percent
2Bt and 2BC horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 or 5
- Chroma—3 or 4
- Texture of the fine earth fraction—silt loam, loam, sandy loam
- Content of rock fragments—15 to 50 percent

2C horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—3 or 4
- Texture of the fine earth fraction—silt loam, loam, sandy loam
- Content of rock fragments—60 to 90 percent

Morristown Series

Depth class: Very Deep
Drainage class: Well drained
Landform: Surface mine on hill
Position on the landform: Summit, shoulder, backslope, footslope
Parent material: Calcareous regolith, partly weathered fine earth and fragments of limestone and shale from surface mining operations
Slope range: 0 to 25 percent
Associated soils: Berks, Canfield, Gilpin, Mechanicsburg, Westmoreland
Taxonomic class: Loamy-skeletal, mixed, active, calcarcous, mesic Typic Udorthents

Typical Pedon

Morristown silty clay loam, 8 to 25 percent slopes; in Columbiana County, Ohio, Madison Township, about 1.5 miles southwest of West Point, 560 feet west and 375 feet south of the northeast corner of sec. 18, T. 10 N., R. 2 W.

Ap—0 to 5 inches; yellowish brown (10YR 5/4) silty clay loam, pale brown (10YR 6/3) dry; weak fine granular structure; friable; common fine roots; 10 percent channers; neutral; abrupt smooth boundary.

C1—5 to 9 inches; variegated yellowish brown (10YR 5/4), 60 percent, brown (7.5YR 5/2), 40 percent, channery silty clay loam; massive; firm; few fine roots; 30 percent channers; slightly effervescent; slightly alkaline; clear wavy boundary.

C2—9 to 22 inches; variegated brown (7.5YR 5/2), 90 percent, and yellowish brown (10YR 5/6), 10 percent, very channery silty clay loam; massive; firm; few fine roots; 40 percent channers; 10 percent parachanners; slightly effervescent; slightly alkaline; clear wavy boundary.

C3—22 to 32 inches; variegated dark grayish brown (2.5Y 4/2), 60 percent, reddish brown (5YR 4/4), 20 percent, and yellowish brown (10YR 5/6), 20 percent, very channery silty clay loam; massive; firm; 40 percent channers; 15 percent parachanners; slightly effervescent; slightly alkaline; clear wavy boundary.

C4—32 to 80 inches; variegated dark grayish brown (2.5Y 4/2), 80 percent, reddish brown (5YR 4/4), 10 percent, and gray (10YR 5/1), 10 percent, very channery silty clay loam; massive; firm; 40 percent channers; 15 percent parachanners; slightly effervescent; slightly alkaline.

Range in Characteristics

Depth to bedrock: More than 60 inches
Thickness of the solum: 0 to 7 inches
Depth to carbonates: 0 to 7 inches
Kind of rock fragments: Limestone, sandstone, siltstone, shale
Reaction: Moderately alkaline to slightly acid in the surface soil, slightly alkaline or moderately alkaline in the substratum

Content of soft fragments: 5 to 20 percent

A horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—silty clay loam
Content of rock fragments—15 to 34 percent

Ap horizon:
Hue—10YR
Value—4 or 5
Chroma—2 to 4
Texture of the fine earth fraction—silty clay loam
Content of rock fragments—5 to 14 percent

C horizon:
Hue—5YR, 7.5YR, 10YR, 2.5Y or neutral
Value—3 to 6
Chroma—0 to 6
Texture of the fine earth fraction—silt loam, silty clay loam, clay loam, with average clay content greater than 27 percent
Content of rock fragments—30 to 70 percent; (20 to 35 percent in thin subhorizons)

Olmsted Series

Depth class: Very deep
Drainage class: Very poorly drained
Landform: Outwash plain, terrace
Position on the landform: Toeslope of plain, tread of terrace
Parent material: Loamy glaciofluvial deposits
Slope range: 0 to 2 percent
Associated soils: Bogart, Canfield, Chili, Fitchville, Glenford, Jimtown, Rittman, Valley, Wadsworth
Taxonomic class: Fine-loamy, mixed, active, mesic Mollic Endoaqualfs

Typical pedon

Olmsted loam, about 1.8 miles south of Copley Junction, in Copley Township, in Summit County, Ohio; 1,500 feet north of Wright Avenue, 2,000 feet south of State Route 162, and 2,100 feet south of White Pond, T. 2 N., R. 12 W.

Ap—0 to 8 inches; black (10YR 2/1) loam, very dark gray (10YR 3/1) dry; weak medium granular structure; friable; many fine roots; very strongly acid; abrupt smooth boundary.

Eg1—8 to 13 inches; gray (5Y 6/1) loam; weak medium subangular blocky structure; firm; common fine roots; common medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in old root channels; very strongly acid; clear smooth boundary.

Eg2—13 to 21 inches; gray (5Y 5/1) coarse sandy loam; weak medium subangular blocky structure; few fine roots; many fine prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix; 5 percent pebbles; very strongly acid; clear smooth boundary.
Btg1—21 to 29 inches; gray (5Y 5/1) coarse sandy loam; weak medium subangular blocky structure; friable; common faint gray (5Y 5/1) clay films coating and bridging sand grains; many medium prominent strong brown (7.5YR 5/8) masses of iron accumulation in the matrix; 5 percent pebbles; very strongly acid; clear smooth boundary.

Btg2—29 to 32 inches; dark gray (10YR 4/1) sandy clay loam; weak medium subangular blocky structure; friable; common faint dark gray (10YR 4/1) clay films bridging and coating sand grains; common medium prominent yellowish red (5YR 4/8) masses of iron accumulation in the matrix; strongly acid; abrupt smooth boundary.

BC—32 to 34 inches; strong brown (7.5YR 5/6) coarse sandy loam; weak coarse subangular blocky structure; friable; strongly acid; abrupt smooth boundary.

Cg—34 to 41 inches; dark gray (N 4/0) gravelly coarse sandy loam; massive; friable; many medium prominent yellowish red (5YR 4/6) masses of iron accumulation in the matrix; 25 percent pebbles; strongly acid; clear smooth boundary.

C—41 to 60 inches; brown (7.5YR 4/2) sandy clay loam; massive; friable; many coarse and very coarse prominent yellowish red (5YR 4/6) masses of iron accumulation in the matrix; moderately acid.

Range in characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 27 to 55 inches
Depth to carbonates: 50 to more than 80 inches
Kind of rock fragments: Sandstone, shale, igneous
Reaction: Unless limed, very strongly acid to slightly acid in the surface soil, very strongly acid to neutral in the upper subsoil, strongly acid to slightly alkaline in the lower subsoil and substratum

Ap horizon:
- Hue—10YR
- Value—2 or 3
- Chroma—1 or 2
- Texture of the fine earth fraction—silt loam, loam
- Content of rock fragments—0 to 10 percent

Eg horizon:
- Hue—10YR, 2.5Y, 5Y or neutral
- Value—4 to 6
- Chroma—0 to 2
- Texture of the fine earth fraction—coarse sandy loam, sandy loam, loam
- Content of rock fragments—0 to 10 percent

Btg horizon:
- Hue—10YR, 2.5Y, 5Y or neutral
- Value—4 to 6
- Chroma—0 to 2
- Texture of the fine earth fraction—coarse sandy loam, sandy loam, loam, sandy clay loam, clay loam
- Content of rock fragments—0 to 25 percent

BC horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 to 6
- Chroma—1 to 6
- Texture of the fine earth fraction—coarse sandy loam, sandy loam, loam, silt loam
- Content of rock fragments—0 to 25 percent
C horizon:
- Hue—7.5YR, 10YR, 2.5Y, 5Y or neutral
- Value—3 to 6
- Chroma—0 to 6
- Texture of the fine earth fraction—silt loam, coarse sandy loam, sandy loam, sandy clay loam, loamy sand, sand
- Content of rock fragments—0 to 50 percent

The surface soil texture is dominantly silt loam in Columbiana County although the referenced pedon from Summit County, Ohio is loam.

Omulga Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Loess mantled stream terrace
Position on the landform: Tread, riser
Parent material: Loess over silty colluvium and/or old alluvium
Slope range: 2 to 12 percent
Associated soils: Berks, Coshocton, Tioga
Taxonomic class: Fine-silty, mixed, active, mesic Oxyaquic Fragudalfs

Typical Pedon

Omulga silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, St. Clair Township, about 4.0 miles east of West Point, 1,300 feet west and 2,300 feet north of the southeast corner of sec. 6, T. 6 N., R. 1 W.

- **Ap**—0 to 9 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; moderate fine and medium granular structure; friable; many fine and medium roots; few channers; strongly acid; abrupt smooth boundary.

- **BA**—9 to 13 inches; yellowish brown (10YR 5/4) silt loam; moderate fine and medium subangular blocky structure; friable; common fine and medium roots; few fine prominent dark brown (7.5YR 3/2) irregularly shaped masses of iron-manganese accumulation on faces of peds and few fine prominent dark brown (7.5YR 3/2) soft rounded iron-manganese concretions throughout; few channers; strongly acid; clear wavy boundary.

- **BE**—13 to 19 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; firm; few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds and common prominent gray (10YR 6/1) clay films on vertical faces of peds; few distinct pale brown (10YR 6/3) silt coats in pores; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; few channers; strongly acid; clear wavy boundary.

- **Bt1**—19 to 27 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; very firm; few fine roots; common distinct brown (7.5YR 5/4) and common distinct gray (10YR 5/1) clay films on faces of peds; few distinct pale brown (10YR 6/3) silt coats on vertical faces of peds; 5 percent fine distinct light brownish gray (10YR 6/2) iron depletions lining pores; common fine prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation on faces of peds; many fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; 5 percent channers; strongly acid; clear wavy boundary.

- **Bt2**—27 to 34 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; very firm; few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds and common prominent gray (10YR 6/1) clay films on vertical faces of peds; few distinct pale brown (10YR 6/3) silt coats on
vertical faces of peds; 5 percent fine distinct light brownish gray (10YR 6/2) iron depletions lining pores and in the matrix; few fine prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation on faces of peds; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; 5 percent channers; strongly acid; clear wavy boundary.

Bt—34 to 51 inches; 70 percent yellowish brown (10YR 5/6), 30 percent light yellowish brown (10YR 6/4) silty clay loam; weak very coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; few distinct grayish brown (10YR 5/2) and common distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent fine distinct light brownish gray (10YR 6/2) iron depletions in the matrix and on vertical faces of peds; few fine prominent strong brown (7.5YR 5/8) masses of iron accumulation on vertical faces of peds between depletions and prism interiors; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; few channers; 70 percent brittle; very strongly acid; clear wavy boundary.

BC—51 to 58 inches; 60 percent yellowish brown (10YR 5/6), 40 percent light yellowish brown (10YR 6/4) silt loam; weak medium and coarse subangular blocky structure; firm; few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; 5 percent fine distinct light brownish gray (10YR 6/2) iron depletions in the matrix and lining pores; few fine prominent strong brown (7.5YR 5/8) masses of iron accumulation lining pores; few fine prominent dark brown (7.5YR 3/2) platelike masses of iron-manganese accumulation on faces of peds; few channers; strongly acid; clear wavy boundary.

2C1—58 to 70 inches; 60 percent yellowish brown (10YR 5/6), 40 percent light yellowish brown (2.5Y 6/3) sandy loam; massive; friable; 5 percent fine distinct light brownish gray (10YR 6/2) irregular iron depletions and few fine prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few channers; strongly acid; gradual wavy boundary.

2C2—70 to 80 inches; 70 percent light yellowish brown (2.5Y 6/3), 30 percent yellowish brown (10YR 5/6) sandy loam; massive; friable; 5 percent fine distinct light brownish gray (10YR 6/2) irregular iron depletions and few fine prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few channers; strongly acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 40 to more than 80 inches
Depth to fragipan: 18 to 36 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale
Reaction: Unless limed, very strongly acid to moderately acid in the surface soil, strongly acid to extremely acid in the upper subsoil, very strongly acid to moderately acid in the lower subsoil and ranges to neutral in thick silty clay and clay layers

Ap horizon:
Hue—10YR
Value—4 or 5
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 5 percent

Bt horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—3 to 8
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 5 percent

Btx horizon:
Hue—7.5YR, 10YR
Value—4 to 6
Chroma—3 to 6
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 10 percent

2B’t and 2C horizons:
Hue—7.5YR, 10YR, 2.5Y
Value—4 to 6
Chroma—2 to 6
Texture of the fine earth fraction—silt loam, loam, sandy loam, silty clay loam, silty clay
Content of rock fragments—0 to 14 percent

Orrville Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Flood plain
Position on the landform: Flood-plain step
Parent material: Loamy alluvium
Slope range: 0 to 2 percent
Associated soils: Berks, Coshocton, Fitchville, Gilpin, Westmoreland
Taxonomic class: Fine-loamy, mixed, active, nonacid, mesic Fluventic Endoaquepts

Typical Pedon

Orrville silt loam, 0 to 2 percent slopes, occasionally flooded; in Columbiana County, Ohio, Hanover Township, about 0.1 mile southwest of Dungannon, 1,780 feet west and 2,340 feet north of the southeast corner of sec. 35, T. 15 N., R. 4 W.

Ap—0 to 10 inches; dark grayish brown (10YR 4/2) silt loam, light gray (10YR 7/2) dry; weak medium and coarse granular structure; friable; many fine and medium roots; common fine prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; few pebbles; moderately acid; abrupt smooth boundary.

Bg—10 to 13 inches; gray (10YR 5/1) silt loam; weak medium and coarse subangular blocky structure; friable; common fine and medium roots; common fine prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; few pebbles; moderately acid; clear wavy boundary.

Bw1—13 to 18 inches; yellowish brown (10YR 5/4) loam; weak medium and coarse subangular blocky structure; friable; few fine roots; 45 percent medium distinct grayish brown (10YR 5/2) iron depletions on faces of peds and in pores; 25 percent medium distinct grayish brown (10YR 5/2) irregular iron depletions in the matrix; common medium prominent brown (7.5YR 4/4) irregular masses of iron accumulation in the matrix; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding depletions; few pebbles; moderately acid; clear wavy boundary.

Bw2—18— to 25 inches; yellowish brown (10YR 5/4) loam; weak coarse subangular blocky structure; friable; few fine roots; 40 percent medium distinct gray (10YR 5/1) iron depletions on faces of peds and in pores; many medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few pebbles; slightly acid; gradual wavy boundary.
Bw3—25— to 32 inches; yellowish brown (10YR 5/4) loam; weak coarse subangular
blocky structure; friable; few fine roots; 40 percent medium distinct gray (10YR
5/1) iron depletions on faces of peds and in pores; common medium prominent
strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix
associated to pores; common medium prominent brown (7.5YR 4/4) irregular
masses of iron accumulation in the matrix; 5 percent pebbles; slightly acid;
gradual wavy boundary.

BC—32 to 50 inches; dark yellowish brown (10YR 4/4) gravelly loam; weak coarse
subangular blocky structure; friable; few fine roots; 5 percent medium distinct gray
(10YR 5/1) irregular iron depletions in the matrix; common medium prominent
strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix
surrounding depletions; 20 percent pebbles; slightly acid; gradual wavy boundary.

C—50 to 60 inches; brown (10YR 4/3) gravelly loam; massive; friable; 20 percent
pebbles; moderately acid; gradual wavy boundary.

Cg1—60 to 70 inches; dark grayish brown (2.5Y 4/2) very gravelly sandy loam;
massive; friable; 55 percent pebbles; moderately acid; gradual wavy boundary.

Cg2—70 to 80 inches; dark grayish brown (2.5Y 4/2) extremely gravelly sandy loam;
massive; friable; 65 percent pebbles; slightly acid.

Range in Characteristics

Depth to bedrock: More than 80 inches

Thickness of the solum: 24 to 50 inches

Depth to carbonates: More than 80 inches

Kind of rock fragments: Sandstone, siltstone, shale, igneous

Reaction: Unless limed, slightly acid to strongly acid in the surface soil, slightly acid to
strongly acid in the upper subsoil, slightly acid to strongly acid in the lower
subsoil, neutral to strongly acid in the substratum

Ap horizon:

- **Hue:** 10YR
- **Value:** 4
- **Chroma:** 2
- **Texture of the fine earth fraction:** silt loam
- **Content of rock fragments:** 0 to 5 percent

Bg horizon:

- **Hue:** 10YR, 2.5Y, 5Y or neutral
- **Value:** 4 to 6
- **Chroma:** 0 to 2
- **Texture of the fine earth fraction:** silt loam, loam, silty clay loam
- **Content of rock fragments:** 0 to 14 percent

Bw horizon:

- **Hue:** 10YR, 2.5Y
- **Value:** 4 to 6
- **Chroma:** 3 to 6
- **Texture of the fine earth fraction:** silt loam, loam, silty clay loam
- **Content of rock fragments:** 0 to 14 percent

C horizon:

- **Hue:** 10YR, 2.5Y, 5Y or neutral
- **Value:** 4 to 6
- **Chroma:** 0 to 6
- **Texture of the fine earth fraction:** silt loam, loam, silty clay loam, sandy loam
- **Content of rock fragments:** 0 to 70 percent
The Orrville pedon has more rock fragments in the lower part of the C horizon (below 60 inches) than is defined as typical for the series. This should not adversely impact the use and management of the soil for most purposes.

Rainsboro Series

Depth class: Very deep
Drainage class: Moderately well drained (fig. 27)
Landform: Loess mantled stream terrace
Position on the landform: Tread, riser
Parent material: Loess over outwash
Slope range: 2 to 12 percent
Associated soils: Calcutta, Homewood, Kensington, Tioga
Taxonomic class: Fine-silty, mixed, superactive, mesic Oxyaquic Fragiudalfs

Typical Pedon

Rainsboro silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Elk Run Township, about 3/4 of a mile northwest of Williamsport, 1,602 feet east and 2,726 feet south of the northwest corner of sec. 36, T. 11 N., R. 2 W.

![Figure 27.—A typical profile of Rainsboro soils.](image-url)
Ap—0 to 8 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many fine and medium roots; strongly acid; abrupt smooth boundary.

BE—8 to 11 inches; yellowish brown (10YR 5/6) silt loam; weak medium subangular blocky structure; friable; common fine and medium roots; strongly acid; clear smooth boundary.

Bt—11 to 20 inches; yellowish brown (10YR 5/6) silt loam; moderate medium subangular blocky structure; friable; few fine roots; few faint brown (7.5YR 5/4) clay films on faces of peds; strongly acid; clear wavy boundary.

2Btx1—20 to 26 inches; yellowish brown (10YR 5/4) silt loam; moderate medium and coarse subangular blocky structure; very firm; few fine roots; few distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent fine distinct light brownish gray (10YR 6/2) iron depletions lining pores and in the matrix; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; 5 percent pebbles; 20 percent brittle; strongly acid; clear wavy boundary.

2Btx2—26 to 30 inches; yellowish brown (10YR 5/4) loam; weak very coarse prismatic structure parting to moderate medium subangular blocky; very firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 30 percent medium distinct light brownish gray (10YR 6/2) iron depletions on vertical faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation on vertical faces of peds between depletions and prism interiors; 10 percent pebbles; 80 percent brittle; strongly acid; clear wavy boundary.

2Btx3—30 to 41 inches; yellowish brown (10YR 5/4) clay loam; moderate very coarse prismatic structure parting to moderate medium subangular blocky; very firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 50 percent medium distinct light brownish gray (10YR 6/2) iron depletions on vertical faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation on vertical faces of peds between depletions and prism interiors; few pebbles; 80 percent brittle; strongly acid; clear wavy boundary.

2B’tx1—41 to 46 inches; yellowish brown (10YR 5/4) loam; weak very coarse subangular blocky structure parting to moderate medium subangular blocky; friable; few fine roots; common distinct brown (7.5YR 5/4) and common prominent gray (N 5/0) clay films on faces of peds; 20 percent medium distinct light brownish gray (10YR 6/2) iron depletions on faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; 5 percent pebbles; strongly acid; clear wavy boundary.

2B’tx2—46 to 56 inches; yellowish brown (10YR 5/4) loam; weak very coarse subangular blocky structure parting to moderate medium subangular blocky; friable; few fine roots; common distinct brown (7.5YR 5/4) and common prominent gray (N 5/0) clay films on faces of peds; 15 percent medium distinct light brownish gray (10YR 6/2) iron depletions on faces of peds and lining pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; 5 percent pebbles; strongly acid; clear wavy boundary.

2B’tx3—56 to 65 inches; brown (7.5YR 4/4) gravelly clay loam; weak very coarse subangular blocky structure; friable; few fine roots; common faint brown (7.5YR 5/4) clay films on faces of peds; 10 percent medium prominent light brownish gray (10YR 6/2) iron depletions lining pores; common medium distinct strong brown (7.5YR 5/6) masses of iron accumulation in the matrix associated to pores; 20 percent pebbles; strongly acid; clear wavy boundary.
2B’14—65 to 80 inches; brown (7.5YR 4/4) gravelly loam; weak coarse and medium subangular blocky structure; friable; few fine roots; few faint brown (7.5YR 5/4) clay films on faces of peds; 5 percent medium prominent light brownish gray (10YR 6/2) irregular iron depletions in the matrix; common medium distinct strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix surrounding depletions; 20 percent pebbles; strongly acid; clear wavy boundary.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: More than 80 inches
Depth to fragipan: 20 to 30 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, very strongly acid to slightly acid throughout the profile

Ap horizon:
- Hue—10YR
- Value—4
- Chroma—2 or 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 2 percent

BE and Bt horizons:
- Hue—10YR
- Value—4 or 5
- Chroma—4 or 6
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—0 to 2 percent

Btx horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam
- Content of rock fragments—2 to 35 percent

2Btx horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 to 6
- Texture of the fine earth fraction—silt loam, loam, clay loam
- Content of rock fragments—2 to 35 percent

2Bt and 2BC horizons:
- Hue—5YR, 7.5YR, 10YR
- Value—4 or 5
- Chroma—3 to 6
- Texture of the fine earth fraction—clay loam, loam, sandy loam
- Content of rock fragments—2 to 35 percent

3Bt and 3C horizons:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam, loam, silty clay loam, silty clay
- Content of rock fragments—2 to 35 percent
Ravenna Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Till plain
Position on the landform: Summit, backslope, footslope, toeslope
Parent material: Loamy till
Slope range: 0 to 6 percent
Associated soils: Canfield, Chili, Zepernick
Taxonomic class: Fine-loamy, mixed, active, mesic Aeric Fragiaqualfs

Typical Pedon

Ravenna silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Butler Township, about 1.0 mile northwest of Winona, 1,800 feet south and 1,775 feet east of the northwest corner of sec. 27, T. 16 N., R. 4 W.

Ap—0 to 10 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; friable; many very fine roots; 5 percent pebbles; slightly acid; abrupt smooth boundary.

E—10 to 13 inches; light brownish gray (2.5Y 6/2) silt loam; weak medium platy structure; friable; common very fine roots; 10 percent fine faint light brownish gray (10YR 6/2) clay depletions on faces of peds; 10 percent medium distinct gray (N 6/0) irregular iron depletions and common prominent yellowish brown (10YR 5/6) irregular masses of iron accumulation in the matrix; 5 percent pebbles; slightly acid; clear wavy boundary.

Bt1—13 to 21 inches; yellowish brown (10YR 5/4) silt loam; moderate medium subangular blocky structure; friable; few very fine roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; 60 percent medium distinct light brownish gray (10YR 6/2) clay depletions on faces of peds; 20 percent fine and medium distinct light brownish gray (10YR 6/2) irregular iron depletions and common prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; 5 percent pebbles; moderately acid; clear wavy boundary.

Bt2—21 to 25 inches; strong brown (7.5YR 5/6) silt loam; moderate medium prismatic structure parting to weak medium subangular blocky; firm, brittle; few very fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; many prominent gray (N 5/0) clay films on vertical faces of peds; 15 percent medium prominent gray (N 6/0) irregular iron depletions and few medium distinct strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few fine distinct dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent pebbles; moderately acid; clear wavy boundary.

Btx1—25 to 34 inches; yellowish brown (10YR 5/4) loam; moderate very coarse prismatic structure parting to moderate medium platy; firm; few very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent medium distinct gray (10YR 6/1) clay depletions on faces of prisms; 5 percent fine distinct gray (10YR 6/1) irregular iron depletions and many fine and medium prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 10 percent pebbles; 80 percent brittle; slightly acid; clear wavy boundary.

Btx2—34 to 42 inches; yellowish brown (10YR 5/4) silt loam; moderate very coarse prismatic structure parting to moderate medium subangular blocky; firm; few very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent medium distinct gray (10YR 6/1) clay depletions along faces of prisms; 5 percent fine distinct light brownish gray (10YR 6/2) irregular iron depletions and common fine and medium prominent strong brown (7.5YR 5/6) irregular masses
of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent pebbles; 80 percent brittle; neutral; clear wavy boundary.

BC1—42 to 50 inches; yellowish brown (10YR 5/4) gravelly silt loam; weak medium and coarse subangular blocky structure; firm; few very fine roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent fine distinct light brownish gray (10YR 6/2) irregular iron depletions and common fine and medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 20 percent pebbles; neutral; clear wavy boundary.

BC2—50 to 56 inches; yellowish brown (10YR 5/4) loam; weak medium subangular blocky structure; firm; few very fine roots; 15 percent medium distinct gray (10YR 5/1) irregular iron depletions and many medium and fine distinct yellowish brown (10YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 10 percent pebbles; slightly effervescent; slightly alkaline; clear wavy boundary.

C1—56 to 70 inches; light olive brown (2.5Y 5/4) loam; massive; firm; 50 percent medium distinct gray (N 5/0) irregular iron depletions and many fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; 10 percent pebbles; slightly effervescent; slightly alkaline; gradual wavy boundary.

C2—70 to 80 inches; light olive brown (2.5Y 5/4) loam; massive; firm; 50 percent medium distinct gray (N 5/0) irregular iron depletions and common medium and fine prominent strong brown (7.5YR 5/8) irregular masses of iron accumulation in the matrix; 10 percent pebbles; slightly effervescent; slightly alkaline.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 40 to 80 inches
Depth to fragipan: 14 to 30 inches
Depth to carbonates: 60 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, slightly acid to extremely acid in the surface; moderately acid to extremely acid in the upper subsoil; very strongly acid to neutral in the middle subsoil; very strongly acid to slightly alkaline in the lower subsoil; strongly acid to slightly alkaline in the substratum

Ap horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—1 to 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—2 to 10

Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 to 6
- Chroma—2 to 6
- Texture of the fine earth fraction—silt loam, loam, silty clay loam, clay loam
- Content of rock fragments—2 to 14 percent

Btx horizon:
- Hue—10YR, 2.5Y
- Value—4 or 5
- Chroma—3 or 4
Texture of the fine earth fraction—silt loam, loam
Content of rock fragments—5 to 20 percent

C horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—3 or 4
Texture of the fine earth fraction—silt loam, loam, sandy loam
Content of rock fragments—10 to 25 percent

Richland Series

Depth class: Very deep
Drainage class: Well drained
Landform: Hill
Position on the landform: Footslope
Parent material: Colluvium derived from interbedded sedimentary rock
Slope range: 15 to 40 percent
Associated soils: Berks, Coshocton, Gilpin, Guernsey, Hazleton, Orrville, Rainsboro, Westmoreland
Taxonomic class: Fine-loamy, mixed, active, mesic Oxyaquic Hapludalfs

Typical pedon

Richland loam, 15 to 25 percent slopes; in Belmont County, Ohio, Richland Township, about 2 miles south of St. Clairsville; 2,600 feet east and 700 feet south of the northwest corner of sec. 1, T. 7 N., R. 4 W.

Ap—0 to 5 inches; dark brown (10YR 3/3) loam, brown (10YR 5/3) dry; moderate fine granular structure; friable; many roots; 10 percent flat and sub-rounded fragments of fine grained sandstone, including 3 percent more than 15 inches in length; slightly acid; abrupt smooth boundary.

BA—5 to 8 inches; 60 percent yellowish brown (10YR 5/6) and 40 percent brown (10YR 4/3) loam; weak fine subangular blocky structure parting to moderate fine granular; friable; many roots; 10 percent flat and sub-rounded fragments of fine grained sandstone, including 3 percent more than 15 inches in length; slightly acid; clear smooth boundary.

Bt1—8 to 20 inches; yellowish brown (10YR 5/6) loam; moderate fine and medium subangular blocky structure; friable; common roots; common distinct dark yellowish brown (10YR 4/4) clay films and brown (10YR 5/3) silt coats on faces of peds; 10 percent flat and sub-rounded fragments of fine grained sandstone; moderately acid; clear smooth boundary.

Bt2—20 to 36 inches; yellowish brown (10YR 5/6) channery loam; moderate fine and medium subangular blocky structure; friable; few roots; common distinct brown (7.5YR 4/4) clay films and brown (10YR 5/3) silt coats on faces of peds; strong brown (7.5YR 5/8) concretions and stains; 15 percent flat fragments of fine and coarse grained sandstone; moderately acid; gradual wavy boundary.

Bt3—36 to 44 inches; yellowish brown (10YR 5/6) channery clay loam; moderate medium subangular blocky structure; firm; few roots; common distinct brown (7.5YR 4/4) clay films on faces of peds and rock fragments; few distinct brown (10YR 5/3) and pale brown (10YR 6/3) silt coats on faces of peds; few fine distinct light brownish gray (10YR 6/2) iron depletions in the matrix; few fine faint yellowish brown (10YR 5/8) soft masses of iron oxide accumulation in the matrix; strong brown (7.5YR 5/8) iron-manganese concretions and stains; 20 percent flat fragments of fine and coarse grained sandstone; moderately acid; gradual wavy boundary.
Bt4—44 to 55 inches; strong brown (7.5YR 5/6) channery clay loam; moderate medium subangular blocky structure; firm; few roots; common faint brown (7.5YR 4/4) clay films on faces of peds and rock fragments; common distinct pale brown (10YR 6/3) and brown (10YR 5/3) silt coats on faces of peds; common medium prominent grayish brown (10YR 5/2) iron depletions in the matrix and yellowish brown (10YR 5/8) soft masses of iron oxide accumulation in the matrix; 30 percent flat and sub-rounded fragments of coarse grained sandstone; moderately acid; clear smooth boundary.

C—55 to 80 inches; variegated strong brown (7.5YR 5/6) and dark yellowish brown (10YR 4/4) very channery clay loam; common medium prominent grayish brown (10YR 5/2) iron depletions in the matrix and yellowish brown (10YR 5/8) soft masses of iron oxide accumulation in the matrix; massive; firm; 45 percent flat and sub-rounded fragments of coarse grained sandstone; slightly acid.

Range in characteristics

Depth to bedrock: Greater than 80 inches
Thickness of the solum: 44 to 60 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, limestone
Reaction: Unless limed, strongly acid to neutral in the A and upper Bt horizons and moderately acid to neutral in the lower Bt and C horizons

A horizon:
 Hue—10YR
 Value—3
 Chroma—2 or 3
 Texture of the fine earth fraction—silt loam, loam
 Content of rock fragments—5 to 20 percent

Bt horizon (upper):
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam, sandy clay loam
 Content of rock fragments—5 to 20 percent

Bt horizon (lower):
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam, sandy clay loam
 Content of rock fragments—20 to 34 percent

C horizon:
 Hue—7.5 YR, 10YR
 Value—4 or 5
 Chroma—4 to 6
 Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam
 Content of rock fragments—20 to 55 percent

Rittman Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Till plain
Position on the landform: Summit, shoulder, backslope
Parent material: Loamy till
Slope range: 2 to 20 percent
Associated soils: Fitchville, Wadsworth, Zepernick
Taxonomic class: Fine-loamy, mixed, active, mesic Aquic Fragiudalfs

Typical Pedon

Rittman silt loam, 2 to 6 percent slopes; in Columbiana County, Ohio, Knox Township, about 0.75 mile northeast of Homeworth, 2,275 feet west and 940 feet north of the southeast corner of sec. 20, T. 17 N., R. 5 W.

Ap—0 to 10 inches; dark grayish brown (10YR 4/2) silt loam, light gray (10YR 7/2) dry; weak fine and medium granular structure; friable; many very fine roots; few pebbles; neutral; abrupt smooth boundary.

Bt1—10 to 13 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; common very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 5 percent medium distinct brown (10YR 5/3) clay depletions on vertical faces of peds; 5 percent fine distinct pale brown (10YR 6/3) irregular iron depletions in the matrix; few pebbles; moderately acid; clear wavy boundary.

Bt2—13 to 18 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium prismatic structure parting to weak medium subangular blocky; friable; common very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 15 percent medium prominent gray (10YR 5/1) clay depletions along faces of prisms; 10 percent fine prominent gray (10YR 6/1) irregular iron depletions in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; few pebbles; strongly acid; clear wavy boundary.

Bt3—18 to 21 inches; yellowish brown (10YR 5/4) silty clay loam; moderate medium prismatic structure parting to weak medium platy; friable; common very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; 15 percent medium distinct gray (10YR 5/1) clay depletions along faces of prisms; 15 percent medium distinct gray (10YR 6/1) irregular iron depletions and common fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 10 percent pebbles; strongly acid; clear wavy boundary.

Btx1—21 to 32 inches; dark yellowish brown (10YR 4/4) silty clay loam; moderate coarse prismatic structure parting to moderate medium platy; firm; few very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; common prominent gray (N 5/0) clay films along faces of prisms; 20 percent medium and fine gray (7.5YR 5/1) irregular iron depletions and common medium and fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; common fine prominent strong brown (7.5YR 5/6) rind of iron accumulation between the films and prism interiors; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; 5 percent pebbles; 70 percent brittle; strongly acid; clear wavy boundary.

Btx2—32 to 44 inches; yellowish brown (10YR 5/4) silty clay loam; moderate very coarse prismatic structure parting to moderate coarse and very coarse platy; firm; few very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; few distinct gray (10YR 5/1) clay films along faces of prisms; 15 percent fine distinct gray (10YR 5/1) irregular iron depletions and few medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent strong brown (7.5YR 5/6) rind of iron accumulation between the
films and prism interiors; common fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation on faces of peds; 10 percent pebbles; 80 percent brittle; moderately acid; clear wavy boundary.

C1—44 to 50 inches; yellowish brown (10YR 5/4) silty clay loam; massive; firm; 5 percent fine distinct gray (10YR 5/1) irregular iron depletions and few fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 5 percent pebbles; slightly effervescent; slightly alkaline; gradual wavy boundary.

C2—50 to 65 inches; yellowish brown (10YR 5/4) silty clay loam; massive; firm; 10 percent medium distinct gray (10YR 5/1) irregular iron depletions and common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 5 percent pebbles; slightly effervescent; slightly alkaline; gradual wavy boundary.

C3—65 to 80 inches; yellowish brown (10YR 5/4) clay loam; common medium distinct gray (10YR 5/1) and common medium prominent strong brown (7.5YR 5/6) irregular mottles throughout; massive; firm; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 5 percent pebbles; slightly effervescent; slightly alkaline.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 34 to 60 inches
Depth to fragipan: 18 to 36 inches
Depth to carbonates: 36 to more than 60 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous

Reaction: Unless limed, moderately acid to extremely acid in the Ap horizon, strongly acid to extremely acid in the Bt horizon except for the upper part that ranges to moderately acid, strongly acid or very strongly acid in the upper part of the Btx horizon and moderately acid to neutral in the lower part. Reaction is slightly acid to slightly alkaline in the substratum.

Ap horizon:
Hue—10YR
Value—4 or 5
Chroma—2 or 3
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 10 percent

Bt horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—4 or 6
Texture of the fine earth fraction—silt loam, silty clay loam, clay loam
Content of rock fragments—2 to 14 percent

Btx horizon:
Hue—10YR
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—silty clay loam, clay loam
Content of rock fragments—2 to 14 percent

C horizon:
Hue—10YR
Value—4 or 5
Chroma—3 or 4
Texture of the fine earth fraction—silty clay loam, clay loam
Content of rock fragments—2 to 14 percent

Teegarden Series

Depth class: Very deep
Drainage class: Moderately well drained
Landform: Till plain
Position on the landform: Summit, shoulder, backslope, footslope
Parent material: Loess, till and the underlying residuum weathered from interbedded sedimentary rock
Slope range: 2 to 15 percent
Associated soils: Berks, Hazleton, Kensington, Mechanicsburg
Taxonomic class: Fine-loamy, mixed, active, mesic Aquic Fragiudalfs

Typical Pedon

Teegarden silt loam, 6 to 15 percent slopes; In Columbiana County, Ohio, Middleton Township, about 3 miles southwest of Negley, 2,187 feet west and 522 feet north of the southeast corner, sec. 21, T. 7 N., R. 1 W.

Ap—0 to 10 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many fine and medium roots; 5 percent intermixing of yellowish brown (10YR 5/6) subsoil; few pebbles; moderately acid; abrupt smooth boundary.

Bt1—10 to 14 inches; yellowish brown (10YR 5/6) silt loam; moderate fine and medium subangular blocky structure; friable; common fine roots; few faint yellowish brown (10YR 5/4) clay films on faces of peds; few faint pale brown (10YR 6/3) silt coats lining pores; 5 percent pebbles; moderately acid; clear wavy boundary.

2Bt2—14 to 18 inches; yellowish brown (10YR 5/4) loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 10 percent medium distinct light brownish gray (10YR 6/2) iron depletions on faces of peds and lining pores; 10 percent pebbles; strongly acid; clear wavy boundary.

2Btx1—18 to 25 inches; yellowish brown (10YR 5/4) gravelly clay loam; weak coarse prismatic structure parting to moderate medium angular blocky; very firm; few fine roots; many prominent gray (N 5/0) clay films along faces of prisms and many distinct brown (7.5YR 5/4) clay films along faces of peds; 10 percent medium distinct grayish brown (10YR 5/2) iron depletions lining pores; many medium prominent strong brown (7.5YR 5/6) masses of iron-manganese accumulation between the iron depletions and prism interiors; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 15 percent pebbles; 40 percent brittle; extremely acid; clear wavy boundary.

2Btx2—25 to 34 inches; yellowish brown (10YR 5/4) clay loam; moderate very coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; many prominent gray (N 5/0) clay films along faces of prisms and many distinct brown (7.5YR 5/4) clay films along faces of peds; 10 percent medium distinct grayish brown (10YR 5/2) iron depletions lining pores; many medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interiors; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; 10 percent pebbles; 70 percent brittle; extremely acid; clear wavy boundary.

2B’t1—34 to 44 inches; yellowish brown (10YR 5/4) silt loam; weak very coarse prismatic structure parting to weak medium platy; friable; few fine roots; common
distinct brown (7.5YR 5/4) clay films on faces of peds; 40 percent medium distinct gray (10YR 6/1) iron depletions along faces of prisms; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interiors; common fine and medium prominent very dark gray (N 3/0) masses of iron-manganese accumulation in the matrix; 5 percent pebbles; 10 percent brittle; extremely acid; clear wavy boundary.

3B’t2—44 to 52 inches; light olive brown (2.5Y 5/4) silty clay; weak very coarse prismatic structure parting to moderate medium platy; very firm; few fine roots; common faint light olive brown (2.5YR 5/4) clay films on faces of peds and common distinct gray (N 6/0) clay films on faces of prisms; 15 percent medium prominent gray (10YR 6/1) iron depletions lining pores; common medium prominent strong brown (7.5YR 5/6) masses of iron accumulation between the iron depletions and prism interiors; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; few channers; extremely acid; clear wavy boundary.

3BC—52 to 60 inches; light olive brown (2.5Y 5/4) very channery silty clay loam; weak medium platy structure parting to moderate medium subangular blocky; firm; few fine roots; few distinct brown (7.5YR 5/4) clay films in pores; 10 percent medium prominent gray (10YR 6/1) iron depletions lining pores; common medium prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 40 percent channers; very strongly acid; gradual wavy boundary.

3C—60 to 65 inches; light olive brown (2.5Y 5/4) very channery loam; massive; firm; 10 percent medium prominent gray (10YR 6/1) iron depletions lining pores; common medium prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 55 percent channers; very strongly acid; clear wavy boundary.

4Cr—65 to 80 inches; light gray (2.5Y 7/2) layered, weathered sandstone.

Range in Characteristics

Depth to bedrock: More than 80 inches

Depth to paralithic contact: More than 60 inches

Thickness of the solum: 50 to 80 inches

Depth to the fragipan: 18 to 30 inches

Depth to carbonates: None above the bedrock

Kind of rock fragments: Sandstone, siltstone, shale

Reaction: Unless limed, very strongly acid or strongly acid in the surface and upper subsoil; extremely acid to strongly acid in the middle subsoil; very strongly or strongly acid in the lower subsoil and substratum

Ap horizon:
- Hue—10YR
- Value—4 or 5
- Chroma—2 or 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 5 percent

Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—4 or 6
- Texture of the fine earth fraction—silt loam, loam, silty clay loam, clay loam
- Content of rock fragments—2 to 14 percent

2Bt horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
Chroma—4 or 6
Texture of the fine earth fraction—silt loam, loam, silty clay loam, clay loam
Content of rock fragments—5 to 14 percent

2Btx horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—4 to 6
Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam
Content of rock fragments—5 to 20 percent

2B’t horizon:
Hue—7.5YR, 10YR
Value—4 or 5
Chroma—4 or 6
Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam
Content of rock fragments—5 to 25 percent

3B’t horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—4 or 6
Texture of the fine earth fraction—silt loam, silty clay loam, silty clay
Content of rock fragments—0 to 25 percent

3BC horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—2 to 6
Texture of the fine earth fraction—silt loam, silty clay loam, silty clay
Content of rock fragments—0 to 50 percent

3C horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—3 to 6
Texture of the fine earth fraction—silt loam, loam, clay loam, silty clay loam
Content of rock fragments—5 to 55 percent

Tioga Series

Depth class: Very deep
Drainage class: Well drained
Landform: Flood plain
Position on the landform: Flood-plain step
Parent material: Loamy alluvium
Slope range: 0 to 2 percent
Associated soils: Conotton, Hazleton, Omulga, Westmoreland
Taxonomic class: Coarse-loamy, mixed, superactive, mesic Dystric Fluventic Eutrudepts

Typical Pedon

Tioga loam, 0 to 2 percent slopes, occasionally flooded; in Columbiana County, Ohio, St. Clair Township, about 2.0 miles west of Fredericktown, 960 feet west and 2,140 feet south of the northeast corner of sec. 9, T. 6 N., R. 1 W.
Ap—0 to 9 inches; brown, (10YR 4/3) loam, pale brown (10YR 6/3) dry; weak fine and medium granular structure; friable; many fine and medium roots; few pebbles; strongly acid; abrupt smooth boundary.

Bw1—9 to 22 inches; dark yellowish brown (10YR 4/4) loam; weak fine and medium subangular blocky structure; friable; common fine and medium roots; common faint brown (10YR 4/3) organic coats in root channels and pores; few pebbles; strongly acid; clear wavy boundary.

Bw2—22 to 34 inches; dark brown (7.5YR 3/2) loam; common fine and medium prominent dark yellowish brown (10YR 4/4) irregular mottles in the matrix; weak medium and coarse subangular blocky structure; friable; common fine and medium roots; few pebbles; strongly acid; clear wavy boundary.

Bw3—34 to 40 inches; dark yellowish brown (10YR 4/4) loam; weak medium and coarse subangular blocky structure; friable; few fine roots; few pebbles; strongly acid; clear wavy boundary.

C1—40 to 68 inches; dark yellowish brown (10YR 4/4) sandy loam with thin strata of loamy sand; single grain; loose; few fine roots; few pebbles; moderately acid; diffuse wavy boundary.

C2—68 to 76 inches; brown (10YR 4/3) gravelly loamy sand; common fine faint brown (10YR 5/3) and prominent reddish brown (5YR 4/4) irregular mottles in the matrix; single grain; loose; 14 percent pebbles; moderately acid; clear wavy boundary.

C3—76 to 80 inches; yellowish brown (10YR 5/4) channery sandy loam; single grain; loose; 20 percent channers; moderately acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 20 to 40 inches
Depth to carbonates: 35 to more than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale
Reaction: Strongly acid to slightly alkaline in the A and Bw horizons; moderately acid to moderately alkaline in the C horizon

A horizon:
- Hue—10YR
- Value—3 or 4
- Chroma—2 to 4
- Texture of the fine earth fraction—loam
- Content of rock fragments—0 to 10 percent

Bw horizon:
- Hue—7.5YR, 10YR
- Value—3 or 4
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam, loam, fine sandy loam, sandy loam
- Content of rock fragments—0 to 35 percent

C horizon:
- Hue—7.5YR, 10YR
- Value—4 or 5
- Chroma—2 to 4
- Texture of the fine earth fraction—silt loam, loam, loamy sand, sandy loam, fine sandy loam
- Content of rock fragment—0 to 50 percent
Upshur Series

Depth class: Deep or very deep
Drainage class: Well drained
Landform: Hill
Position on the landform: Summit, shoulder, backslope
Parent material: Residuum weathered from clay shale
Slope range: 2 to 40 percent
Associated soils: Berks, Coshocton, Gilpin
Taxonomic class: Fine, mixed, superactive, mesic Typic Hapludalfs

Typical Pedon

Upshur silty clay loam, from an area of Upshur-Berks complex, 15 to 25 percent slopes, eroded; in Columbiana County, Ohio, Washington Township, about 2.25 miles northeast Salineville, 380 feet west and 1,500 feet north of the southeast corner of sec. 34, T. 13 N., R. 3 W.

Ap—0 to 8 inches; reddish brown (5YR 4/3) silty clay loam, pinkish gray (5YR 5/3) dry; weak fine and medium granular structure; friable; many fine and medium roots; 5 percent channers; strongly acid; abrupt smooth boundary.

Bt1—8 to 12 inches; reddish brown (5YR 4/4) silty clay; moderate fine and medium subangular blocky structure; firm, plastic and sticky; common fine and medium roots; many faint reddish brown (5YR 4/4) clay films on faces of peds; 10 percent intermixing of reddish brown (5YR 4/3) Ap material; 2 percent channers; strongly acid; clear wavy boundary.

Bt2—12 to 24 inches; reddish brown (5YR 4/4) silty clay; moderate medium subangular blocky structure; firm, plastic and sticky; few fine roots; many distinct reddish brown (5YR 4/4) clay films on faces of peds; 5 percent channers; neutral; clear wavy boundary.

Bt3—24 to 34 inches; reddish brown (2.5YR 4/4) silty clay; moderate medium subangular blocky structure; firm, plastic and sticky; few fine roots; many distinct reddish brown (5YR 4/4) clay films on faces of peds; 5 percent channers; strongly effervescent; moderately alkaline; clear wavy boundary.

Bt4—34 to 38 inches; reddish brown (2.5YR 4/4) silty clay; moderate medium and coarse subangular blocky structure; firm, plastic and sticky; few fine roots; many faint reddish brown (2.5YR 4/4) clay films on faces of peds; 5 percent channers; strongly effervescent; moderately alkaline; gradual wavy boundary.

BC—38 to 42 inches; reddish brown (2.5YR 4/4) silty clay; few fine and medium prominent gray (N 5/0) and dark reddish gray (5YR 4/2) irregular lithochromic mottles in the matrix; weak medium and coarse subangular blocky structure; firm, plastic and sticky; few fine roots; few faint reddish brown (2.5YR 4/4) clay films on faces of peds; 5 percent channers; strongly effervescent; moderately alkaline; clear wavy boundary.

C1—42 to 49 inches; reddish brown (2.5YR 4/4) silty clay; few fine and medium prominent gray (N 5/0) and dark reddish gray (5YR 4/2) irregular lithochromic mottles throughout; massive; firm; 5 percent channers; strongly effervescent; moderately alkaline; gradual wavy boundary.

C2—49 to 59 inches; dark reddish brown (2.5YR 3/4) silty clay loam; common fine and medium prominent brown (7.5YR 5/2) irregular lithochromic mottles throughout; massive; firm; 10 percent channers; strongly effervescent; moderately alkaline; gradual wavy boundary.

C3—59 to 72 inches; dark reddish brown (2.5YR 3/4) silty clay loam; common fine and medium prominent brown (7.5YR 5/2) and yellowish brown (10YR 5/6) bands throughout; massive; firm; 10 percent channers; strongly effervescent; moderately alkaline; clear wavy boundary.
Cr—72 to 80 inches; dark reddish brown (2.5YR 3/4) weathered mudstone.

Range in Characteristics

Depth to bedrock: 40 to 72 inches
Thickness of the solum: 26 to 50 inches
Depth to carbonates: 28 to more than 80 inches
Kind of rock fragments: Siltstone, shale
Reaction: Unless limed, very strongly acid to slightly acid in the Ap horizon; very strongly acid to moderately alkaline in the Bt horizons; and strongly acid to moderately alkaline in the C horizon

Ap horizon:
Hue—2.5YR through 10YR
Value—2 to 4
Chroma—2 to 4
Texture of the fine earth fraction—silty clay loam
Content of rock fragments—0 to 14 percent

Bt horizon (upper):
Hue—10R through 5YR
Value—3 or 4
Chroma—3 to 6
Texture of the fine earth fraction—silty clay, clay
Content of rock fragments—0 to 14 percent

Bt horizon (lower):
Hue—10R through 5YR
Value—3 or 4
Chroma—3 to 6
Texture of the fine earth fraction—silty clay, clay
Content of rock fragments—0 to 25 percent

C horizon:
Hue—10R, 5YR
Value—3 or 4
Chroma—4 to 6 (some pedons have variegated colors of olive, olive brown or yellow.)
Texture of the fine earth fraction—silty clay loam, silty clay
Content of rock fragments—0 to 60 percent

Valley Series

Depth class: Very deep
Drainage class: Poorly drained
Landform: Till plain
Position on the landform: Depression in toeslope
Parent material: Glaciolacustrine sediments underlain by till
Slope range: 0 to 2 percent
Associated soils: Canfield, Lorain, Olmsted, Ravenna, Rittman, Wadsworth
Taxonomic class: Fine, mixed, active, nonacid, mesic Typic Endoaquepts

Typical pedon

Valley series, silt loam, 0 to 2 percent slopes; in Columbiana County, Ohio, Knox Township, about 2½ miles north of North Georgetown, 510 feet southwest along Georgetown-Damascus Road (Township Road 716) from the intersection of Case Road (Township Road 717), then 115 feet perpendicular to Georgetown-Damascus Road to the
southeast, 2810 feet south and 930 feet west of the northeast corner of section 12, T. 17 N., R. 5 W.

Ap—0 to 7 inches; dark gray (2.5Y 4/1) silt loam, gray (10YR 6/1) dry; weak fine and medium granular structure; friable; many fine and medium roots throughout; common fine prominent strong brown (7.5YR 4/6) soft masses of iron accumulation in root channels; moderately acid; abrupt smooth boundary.

AB—7 to 11 inches; dark gray (5Y 4/1) siltly clay loam; moderate fine and medium subangular blocky structure; firm; common fine roots throughout; few distinct gray (10YR 5/1) iron depleted coats on faces of peds; common fine prominent strong brown (7.5YR 4/6) soft masses of iron accumulation in root channels; moderately acid; clear wavy boundary.

Bg1—11 to 21 inches; gray (N 5/) silty clay loam; moderate medium and coarse prismatic structure parting to weak medium angular blocky; very firm; few fine roots throughout; few distinct gray (10YR 5/1) iron depleted coats on faces of peds; common fine prominent strong brown (7.5YR 5/6) soft masses of iron accumulation in the matrix surrounding root channels; moderately acid; clear wavy boundary.

Bg2—21 to 26 inches; gray (5Y 5/1) silty clay; moderate coarse and very coarse subangular blocky structure; very firm; few fine roots throughout; common fine and medium prominent yellowish brown (10YR 5/6) soft masses of iron accumulation in the matrix surrounding root channels; common fine prominent very dark gray (7.5YR 3/1) soft masses of iron-manganese accumulation in the matrix; moderately acid; gradual wavy boundary.

Bg3—26 to 30 inches; very dark gray (N3/) silty clay; moderate coarse subangular blocky structure; very firm; few fine roots throughout; many distinct very dark gray (N3/) pressure faces on vertical faces of peds; common fine and medium prominent yellowish brown (10YR 5/4) soft masses of iron accumulation in the matrix surrounding root channels; 1 percent rock fragments; moderately acid; gradual wavy boundary.

Bg4—30 to 41 inches; gray (N5/) silty clay loam; moderate coarse subangular blocky structure; very firm; few fine roots throughout; common fine and medium prominent yellowish brown (10YR 5/6) soft masses of iron accumulation in the matrix surrounding root channels; common fine prominent very dark gray (7.5YR 3/1) soft masses of iron-manganese accumulation in the matrix; moderately acid; gradual wavy boundary.

BCg—41 to 48 inches; gray (10YR 6/1) silty clay loam; weak coarse subangular blocky structure; very firm; common fine and medium prominent yellowish brown (10YR 5/6) soft masses of iron accumulation in the matrix; common fine prominent very dark gray (7.5YR 3/1) soft masses of iron-manganese accumulation in the matrix; moderately acid; gradual wavy boundary.

2BC—48 to 55 inches; yellowish brown (10YR 5/4) loam; weak coarse subangular blocky structure; firm; common medium distinct gray (10YR 5/1) iron depletions in the matrix; common fine and medium faint yellowish brown (10YR 5/6) soft masses of iron accumulation in the matrix; common fine prominent very dark gray (7.5YR 3/1) soft masses of iron-manganese accumulation in the matrix; 10 percent rock fragments; moderately acid; gradual wavy boundary.

2C1—55 to 71 inches; yellowish brown (10YR 5/4) clay loam; massive; firm; common medium distinct gray (10YR 5/1) iron depletions in the matrix; common fine and medium faint yellowish brown (10YR 5/6) soft masses of iron accumulation in the matrix; common fine prominent very dark gray (7.5YR 3/1) soft masses of iron-manganese accumulation in the matrix; 10 percent rock fragments; neutral; gradual wavy boundary.
2C2—71 to 80 inches; light olive brown (2.5Y 5/4) loam; massive; firm; common medium prominent gray (10YR 5/1) iron depletions in the matrix; common fine and medium distinct yellowish brown (10YR 5/6) soft masses of iron accumulation in the matrix; common fine prominent very dark gray (7.5YR 3/1) soft masses of iron-manganese accumulation in the matrix; 10 percent rock fragments; strongly effervescent; neutral.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 35 to 65 inches
Depth to till: 35 to 60 inches
Depth to carbonates: 45 to greater than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, very strongly acid to slightly acid in the A or Ap horizon, strongly acid to slightly alkaline in the Bg, moderately acid to moderately alkaline in the BCg, moderately acid to neutral in the 2BC, and slightly acid to moderately alkaline in the 2C horizon.

Ap horizon:
Hue—10YR, 2.5Y
Value—4
Chroma—1 to 3
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 2 percent

A horizon:
Hue—10YR, 2.5Y
Value—2 or 3
Chroma—1 to 3
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 2 percent

Bg horizon:
Hue—10YR, 2.5Y, 5Y or neutral
Value—3 to 6
Chroma—0 to 2
Texture of the fine earth fraction—silt loam, silty clay loam, silty clay
Content of rock fragments—0 to 2 percent

BCg horizon:
Hue—10YR, 2.5Y, 5Y or neutral
Value—4 to 6
Chroma—0 to 2
Texture of the fine earth fraction—silty clay loam, silty clay
Content of rock fragments—0 to 2 percent

2BC horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—4 to 6
Texture of the fine earth fraction—silt loam, loam, silty clay loam, clay loam
Content of rock fragments—2 to 30 percent

2C horizon:
Hue—10YR, 2.5Y
Value—4 or 5
Chroma—4 to 6
Texture of the fine earth fraction—silt loam, loam, silty clay loam, clay loam
Content of rock fragments—2 to 30 percent

Vandergrift Series

Depth class: Deep or very deep
Drainage class: Moderately well drained
Landform: Hill
Position on the landform: Backslope, footslope
Parent material: Residuum weathered from calcareous and noncalcareous interbedded sedimentary rock
Slope range: 2 to 15 percent
Associated soils: Berks, Gilpin, Upshur, Westmoreland
Taxonomic class: Fine, mixed, superactive, mesic Aquic Hapludalfs

Typical Pedon

Vandergrift silt loam, 6 to 15 percent slopes; in Columbiana County, Ohio, Washington Township, about 1.75 miles northeast of Salineville, 1,115 feet west and 886 feet south of the northeast corner of sec. 33, T. 13 N., R.3 W.

Ap—0 to 8 inches; brown (10YR 4/3) silt loam, pale brown (10YR 6/3) dry; weak medium and fine granular structure; friable; many fine and medium roots; 5 percent channers; strongly acid; abrupt smooth boundary.

BA—8 to 15 inches; brown (7.5YR 5/4) silty clay loam; weak medium and fine subangular blocky structure; friable; common fine and medium roots; few distinct dark yellowish brown (10YR 4/4) organic coats on faces of peds and lining pores; common fine distinct dark brown (7.5YR 3/2) rounded friable iron-manganese nodules throughout; 5 percent channers; strongly acid; clear wavy boundary.

Bt—15 to 24 inches; reddish brown (2.5YR 4/4) silty clay; moderate medium angular blocky structure; firm, slightly sticky, moderately plastic; common fine and medium roots; common faint reddish brown (2.5YR 4/4) clay films on faces of peds; 2 percent fine prominent reddish gray (5YR 5/2) iron depletions lining pores; few parachanners; strongly acid; clear wavy boundary.

Btss—24 to 30 inches; weak red (10R 4/4) silty clay; moderate medium and coarse angular blocky structure; firm, slightly sticky, moderately plastic; few fine roots; common distinct reddish brown (2.5YR 4/4) clay films on faces of peds; common slickensides; 5 percent fine prominent reddish gray (5YR 5/2) iron depletions lining pores; common fine and medium prominent yellowish red (5YR 5/6) masses of iron accumulation lining pores; few parachanners; strongly acid; clear wavy boundary.

B't—30 to 48 inches; variegated reddish brown (5YR 4/4), 60 percent, weak red (10R 4/2), 40 percent, parachannery silty clay; moderate coarse subangular blocky structure; firm, slightly sticky, slightly plastic; few fine roots; common faint reddish brown (5YR4/4) clay films on faces of peds; 5 percent fine distinct pinkish gray (5YR 6/2) iron depletions lining pores; common fine and medium prominent strong brown (7.5YR 5/8) masses of iron accumulation lining pores; 10 percent channers; 15 percent parachanners; strongly acid; clear wavy boundary.

BC—48 to 52 inches; reddish brown (5YR 4/3) silty clay loam; weak coarse and medium subangular blocky structure; firm; few fine roots; 5 percent parachanners; 5 percent channers; strongly acid; gradual wavy boundary.

C—52 to 76 inches; dark reddish brown (2.5YR 3/4) very parachannery silty clay; massive; firm; 50 percent parachanners; slightly acid; gradual wavy boundary.

Cr—76 to 80 inches; light yellowish brown (2.5Y 6/4) platy mudstone
Range in Characteristics

Depth to bedrock: 40 to 80 inches
Thickness of the solum: 35 to 60 inches
Depth to carbonates: 45 to greater than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, limestone
Reaction: Unless limed, very strongly acid to moderately acid in the surface; very strongly acid to slightly acid in the subsoil; strongly acid to slightly alkaline in the substratum

Ap horizon:
 Hue—7.5YR, 10YR
 Value—3 or 4
 Chroma — 3 or 4
 Texture of the fine earth fraction—silt loam
 Content of rock fragments—0 to 10 percent

Bt, Btss, or B't horizon:
 Hue—10R through 5YR
 Value—3 to 5
 Chroma—2 to 6
 Texture of the fine earth fraction—silty clay loam, silty clay, clay
 Content of rock fragments—0 to 25 percent

BC horizon:
 Hue—10R through 5YR
 Value—4 or 5
 Chroma—2 to 6
 Texture of the fine earth fraction—silty clay loam, silty clay
 Content of rock fragments—0 to 75 percent

C horizon:
 Hue—10R through 10YR
 Value—3 to 6
 Chroma—2 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, silty clay, clay
 Content of rock fragments—0 to 75 percent

The Vandergrift pedon has slightly more rock fragments in the B't horizon than is defined as typical for the series. This should not adversely affect use and management of the soil for most purposes.

Wadsworth Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Till plain
Position on the landform: Summit, backslope, footslope, toeslope
Parent material: Till
Slope range: 0 to 6 percent
Associated soils: Rittman, Zepernick
Taxonomic class: Fine-silty, mixed, active, mesic Aeric Fragiaqualfs

Typical Pedon

Wadsworth silt loam, 2 to 6 percent slope; in Columbiana County, Ohio, Knox Township, about 1.75 miles north of Homeworth, 1,956 feet north and 493 feet east of the southwest corner of sec. 17, T. 17 N., R. 5 W.
Ap—0 to 8 inches; brown (10YR 5/3) silt loam; light gray (10YR 7/2) dry; weak fine and medium granular structure; friable; many very fine roots; few pebbles; slightly acid; abrupt smooth boundary.

BE—8 to 11 inches; yellowish brown (10YR 5/4) silt loam; weak medium subangular blocky structure; friable; common very fine roots; 10 percent medium distinct light brownish gray (10YR 6/2) clay depletions on faces of peds; 10 percent fine distinct gray (10YR 6/1) irregular iron depletions in the matrix; few pebbles; strongly acid; clear smooth boundary.

Bt1—11 to 22 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium subangular blocky structure; friable; common very fine roots; many distinct light brownish gray (10YR 6/2) clay films on faces of peds; 5 percent fine distinct pale brown (10YR 6/3) clay depletions on faces of peds; 10 percent medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; few pebbles; strongly acid; clear wavy boundary.

Bt2—22 to 27 inches; yellowish brown (10YR 5/6) silty clay loam; moderate medium prismatic structure parting to moderate medium subangular blocky; friable; few very fine roots; common distinct brown (7.5YR 5/4) and many distinct gray (10YR 6/1) clay films on faces of peds; 15 percent medium prominent gray (10YR 6/1) irregular iron depletions in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; few pebbles; strongly acid; clear wavy boundary.

Btx1—27 to 34 inches; dark yellowish brown (10YR 4/4) silty clay loam; moderate very coarse prismatic structure parting to moderate medium platy; firm; few very fine roots; common faint yellowish brown (10YR 5/4) clay films on faces of peds; common distinct light brownish gray (10YR 6/2) iron depletions on faces of prisms; 15 percent medium distinct gray (10YR 6/1) irregular iron depletions and few medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent pebbles; 70 percent brittle; strongly acid; clear wavy boundary.

Btx2—34 to 46 inches; dark yellowish brown (10YR 4/4) clay loam; moderate very coarse prismatic structure parting to weak medium subangular blocky; firm; common faint yellowish brown (10YR 5/4) clay films on faces of peds; common distinct light brownish gray (10YR 6/2) clay films on vertical faces of prisms; 15 percent medium distinct gray (10YR 6/1) irregular iron depletions and common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) masses of iron-manganese accumulation lining pores; 5 percent pebbles; 70 percent brittle; strongly acid; clear wavy boundary.

BC—46 to 60 inches; yellowish brown (10YR 5/4) silty clay loam; weak medium and coarse subangular blocky structure; firm; 10 percent fine and medium distinct gray (10YR 6/1) irregular iron depletions and common fine and medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; common fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 10 percent pebbles; strongly acid; clear wavy boundary.

C1—60 to 70 inches; dark yellowish brown (10YR 4/4) clay loam; massive; firm; 5 percent fine and medium distinct gray (10YR 6/1) irregular iron depletions and few medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 10 percent pebbles; moderately acid; gradual wavy boundary.
C2—70 to 80 inches; dark yellowish brown (10YR 4/4) gravelly clay loam; massive; firm; 10 percent fine and medium distinct gray (10YR 6/1) irregular iron depletions and common fine and medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation throughout the matrix; 15 percent pebbles; moderately acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 34 to 60 inches
Depth to fragipan: 18 to 30 inches
Depth to carbonates: 34 to 60 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous

Reaction: Unless limed, extremely acid to moderately acid in the surface and upper subsoil; very strongly acid to neutral in the Btx; strongly acid to slightly alkaline in the BC; moderately acid to moderately alkaline in the substratum

Ap horizon:
 Hue—10YR, 2.5Y
 Value—4 or 5
 Chroma—1 to 3
 Texture of the fine earth fraction—silt loam
 Content of rock fragments—0 to 4 percent

Bt horizon:
 Hue—10YR, 2.5Y
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, less commonly clay loam
 Content of rock fragments—0 to 4 percent

Btx horizon:
 Hue—10YR, 2.5Y
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, clay loam
 Content of rock fragments—2 to 10 percent

C horizon:
 Hue—10YR, 2.5Y
 Value—4 or 5
 Chroma—3 to 6
 Texture of the fine earth fraction—silt loam, loam, silty clay loam, clay loam
 Content of rock fragments—5 to 14 percent

Westmoreland Series

Depth class: Deep or very deep
Drainage class: Well drained
Landform: Hill
Position on the landform: Shoulder, backslope
Parent material: Loamy colluvium and residuum weathered from interbedded sedimentary rock
Slope range: 8 to 70 percent
Associated soils: Berks, Coshocton, Guernsey
Taxonomic class: Fine-loamy, mixed, active, mesic Ultic Hapludalfs

Typical Pedon

Westmoreland silt loam from an area of Westmoreland-Berks complex, 40 to 70 percent slopes; in Columbiana County, Ohio, Washington Township, about 1.5 miles northwest of Salineville, 2,150 feet north and 236 feet east of the southwest corner of sec. 32, T. 13 N., R. 3 W.

- **Oe**—0 to 1 inch; partially decayed leaf litter.
- **A**—1 to 2 inches; very dark grayish brown (10YR 3/2) silt loam, dark grayish brown (10YR 4/2) dry; weak fine granular structure; very friable; many fine roots; 5 percent channers; very strongly acid; abrupt smooth boundary.
- **E**—2 to 4 inches; yellowish brown (10YR 5/4) silt loam; weak medium subangular blocky structure; very friable; common fine roots; 5 percent channers; strongly acid; clear wavy boundary.
- **BE**—4 to 9 inches; dark yellowish brown (10YR 4/4) silt loam; moderate medium subangular blocky structure; friable; common fine roots; few faint yellowish brown (10YR 5/4) silt coats on faces of peds; 10 percent channers; strongly acid; clear wavy boundary.
- **Bt1**—9 to 17 inches; brown (7.5YR 5/4) channery silty clay loam; moderate medium subangular blocky structure; friable; few fine roots; common faint brown (7.5YR 5/4) clay films on faces of peds; 15 percent channers; strongly acid; clear wavy boundary.
- **Bt2**—17 to 28 inches; yellowish brown (10YR 5/4) channery silty clay loam; moderate medium subangular blocky structure; friable; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 20 percent channers; very strongly acid; clear wavy boundary.
- **Bt3**—28 to 38 inches; yellowish brown (10YR 5/4) very channery silty clay loam; weak medium subangular blocky structure; friable; few fine roots; common distinct brown (7.5YR 5/4) clay films on faces of peds; 30 percent channers; 10 percent parachanners; strongly acid; clear smooth boundary.
- **BC**—38 to 49 inches; yellowish brown (10YR 5/4) very channery silty clay loam; weak medium subangular blocky structure; firm; few fine roots; few distinct brown (7.5YR 5/4) clay films on rock fragments; 55 percent channers; strongly acid; clear wavy boundary.
- **C1**—49 to 68 inches; yellowish brown (10YR 5/4) extremely channery silty clay loam; few medium distinct light brownish gray (10YR 6/2) and strong brown (7.5YR 5/6) irregular mottles throughout; massive; firm; 55 percent channers; 30 percent parachanners; moderately acid; clear wavy boundary.
- **C2**—68 to 78 inches; yellowish brown (10YR 5/4) very parachannery silty clay loam; few medium distinct gray (10YR 6/1) and strong brown (7.5YR 5/6) irregular mottles throughout; massive; firm; 15 percent channers; 30 percent parachanners; moderately acid; clear wavy boundary.
- **C3**—78 to 80 inches; dark yellowish brown (10YR 4/4) very parachannery silty clay loam; common medium distinct gray (10YR 6/1) and strong brown (7.5YR 5/6) irregular mottles throughout; massive; firm; 20 percent channers; 38 percent parachanners; moderately acid; clear wavy boundary.

Range in Characteristics

- **Depth to bedrock:** 40 to 72 inches or more
- **Thickness of the solum:** 30 to 50 inches
- **Depth to carbonates:** None above the bedrock
- **Kind of rock fragments:** Sandstone, siltstone, limestone
Reaction: Unless limed, very strongly acid to moderately acid throughout the solum; strongly acid or moderately acid in the substratum

A or Ap horizon:
 Hue—10YR
 Value—3 or 4
 Chroma—2 or 3
 Texture of the fine earth fraction—silt loam, loam
 Content of rock fragments—2 to 20 percent

Bt horizon:
 Hue—7.5YR, 10YR
 Value—4 or 5
 Chroma—4 to 6
 Texture of the fine earth fraction—silt loam, silty clay loam, clay loam, loam
 Content of rock fragments—2 to 30 percent

C horizon:
 Hue—7.5YR, 10YR, 2.5Y
 Value—4 or 5
 Chroma—4 to 6
 Texture of the fine earth fraction—silt loam, loam, silty clay loam, clay loam
 Content of rock fragments—15 to 90 percent

Wick Series

Depth class: Very deep
Drainage class: Very poorly drained
Landform: Flood plain
Position on the landform: Flood-plain step
Parent material: Silty alluvium
Slope range: 0 to 2 percent
Associated soils: Canfield, Fitchville, Ravenna
Taxonomic class: Fine-silty, mixed, superactive, nonacid, mesic Fluvaquentic Endoaquepts

Typical Pedon

Wick silt loam, 0 to 2 percent slopes, frequently flooded; in Columbiana County, Ohio, Perry Township, about 1 mile north of Salem, 1,440 feet west and 240 feet south of the northeast corner of sec. 29, T. 16 N., R. 3 W.

A—0 to 5 inches; dark grayish brown (10YR 4/2) silt loam, light brownish gray (10YR 6/2) dry; weak fine and medium granular structure; friable; many fine roots; many fine dendritic prominent strong brown (7.5YR 5/6) masses of iron accumulation lining pores; strongly acid; abrupt smooth boundary.

Bg1—5 to 12 inches; gray (10YR 5/1) silt loam; weak medium subangular blocky structure; friable; common fine roots; common fine dendritic prominent red (2.5YR 4/6) masses of iron accumulation lining pores; very strongly acid; clear wavy boundary.

Bg2—12 to 24 inches; gray (10YR 5/1) silt loam; weak medium and coarse subangular blocky structure; friable; few fine roots; many fine dendritic prominent red (2.5YR 4/6) masses of iron accumulation lining pores; very strongly acid; gradual wavy boundary.

Bg3—24 to 34 inches; gray (N 5/0) silt loam; weak coarse subangular blocky structure; friable; few fine roots; common fine prominent dendritic dark red (2.5YR 3/6) masses of iron accumulation lining pores; common medium prominent brown
(7.5YR 5/4) irregular masses of iron accumulation in the matrix; very strongly acid; gradual wavy boundary.

Cg1—34 to 44 inches; gray (N 5/0) silty clay loam; massive; firm; few fine roots; common fine prominent dendritic dark red (2.5YR 3/6) masses of iron accumulation lining pores; common medium prominent brown (7.5YR 5/4) irregular masses of iron accumulation in the matrix; strongly acid; gradual wavy boundary.

Cg2—44 to 52 inches; gray (N 5/0) silty clay; massive; firm; many medium prominent reddish brown (5YR 4/4) irregular masses of iron accumulation in the matrix; common medium prominent yellowish brown (10YR 5/4) irregular masses of iron accumulation in the matrix; strongly acid; gradual wavy boundary.

Cg3—52 to 72 inches; gray (N 5/0) silty clay; massive; firm; common medium prominent dark brown (7.5YR 4/4) irregular masses of iron accumulation in the matrix; strongly acid; gradual wavy boundary.

Cg4—72 to 80 inches; gray (N 5/0) silty clay loam; massive; firm; common medium prominent very dark gray (N 3/0) irregular carbon masses in the matrix; neutral.

Range in Characteristics

Depth to bedrock: More than 60 inches
Thickness of the solum: 20 to 40 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous
Reaction: Unless limed, very strongly acid to slightly acid throughout the solum; strongly acid to neutral in the substratum

A horizon:
Hue—10YR, 2.5Y
Value—3 to 5
Chroma—1 to 4
Texture of the fine earth fraction—silt loam
Content of rock fragments—0 to 2 percent

Bg horizon:
Hue—10YR, 2.5Y, 5Y or neutral
Value—4 to 6
Chroma—0 to 2
Texture of the fine earth fraction—silt loam, silty clay loam
Content of rock fragments—0 to 5 percent

Cg horizon:
Hue—10YR, 2.5Y, 5Y or neutral
Value—4 to 6
Chroma—0 to 2
Texture of the fine earth fraction—silt loam, silty clay loam, silty clay, loam
Content of rock fragments—0 to 14 percent

Zepernick Series

Depth class: Very deep
Drainage class: Somewhat poorly drained
Landform: Flood plain
Position on the landform: Flood-plain step
Parent material: Silty alluvium
Slope range: 0 to 2 percent
Associated soils: Canfield, Fitchville, Fredericktown, Kensington, Mechanicsburg
Taxonomic class: Fine-silty, mixed, superactive, acid, mesic Fluventic Endoaquepts

Typical Pedon

Zepernick silt loam, 0 to 2 percent slopes, occasionally flooded; in Columbiana County, Ohio, West Township, about 2 miles north of Bayard, 610 feet east and 2,440 feet south of the northwest corner of sec. 17, T. 16 N., R.5 W.

Ap—0 to 6 inches; dark grayish brown (10YR 4/2) silt loam, grayish brown (10YR 5/2) dry; weak fine and medium granular structure; friable; many fine and medium roots; strongly acid; abrupt smooth boundary.

A—6 to 10 inches; dark grayish brown (10YR 4/2) silt loam; moderate medium granular structure; friable; many fine roots; very strongly acid; clear wavy boundary.

Bw—10 to 15 inches; dark yellowish brown (10YR 4/4) silt loam; moderate medium subangular blocky structure; firm; common fine roots; 20 percent medium distinct grayish brown (10YR 5/2) irregular iron depletions in the matrix; few fine prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix around depletions; extremely acid; clear wavy boundary.

Bg1—15 to 25 inches; grayish brown (2.5Y 5/2) silty clay loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; common medium prominent reddish brown (5YR 4/4) dendritic masses of iron accumulation lining pores; extremely acid; clear wavy boundary.

Bg2—25 to 32 inches; gray (10YR 5/1) silt loam; moderate medium and coarse subangular blocky structure; firm; few fine roots; few medium prominent dark brown (7.5YR 4/4) irregular masses of iron accumulation in the matrix Associated to pores; extremely acid; gradual wavy boundary.

B3—32 to 40 inches; gray (10YR 5/1) silt loam; moderate coarse subangular blocky structure; firm; few fine roots; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix Associated to pores; few medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; very strongly acid; clear wavy boundary.

BC—40 to 50 inches; brown (10YR 5/3) silt loam; weak coarse subangular blocky structure; firm; few fine roots; 40 percent medium distinct gray (10YR 5/1) iron depletions on ped faces and in pores; common medium prominent strong brown (7.5YR 5/6) irregular masses of iron accumulation in the matrix associated to pores; few medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; extremely acid; clear wavy boundary.

CB—50 to 65 inches; yellowish brown (10YR 5/6) silt loam; weak coarse subangular blocky structure; firm; few fine roots; 30 percent medium prominent gray (10YR 6/1) iron depletions on ped faces and in pores; common medium prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; extremely acid; clear wavy boundary.

C1—65 to 70 inches; yellowish brown (10YR 5/4) silt loam; massive; firm; 30 percent medium distinct gray (10YR 6/1) irregular iron depletions in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; extremely acid; clear wavy boundary.

C2—70 to 80 inches; strong brown (7.5YR 5/6) loam; massive; firm; 30 percent medium prominent gray (10YR 5/1) irregular iron depletions in the matrix; few fine prominent dark brown (7.5YR 3/2) irregular masses of iron-manganese accumulation in the matrix; extremely acid.

Range in Characteristics

Depth to bedrock: More than 80 inches
Thickness of the solum: 30 to 65 inches
Depth to carbonates: More than 80 inches
Kind of rock fragments: Sandstone, siltstone, shale, igneous

Reaction: Unless limed, very strongly acid to moderately acid in the surface; extremely acid or very strongly acid in the upper subsoil; extremely acid to strongly acid in the lower subsoil; extremely acid to neutral in the substratum

A horizon:
- Hue—10YR
- Value—3 or 4
- Chroma—1 to 3
- Texture of the fine earth fraction—silt loam
- Content of rock fragments—0 to 2 percent

B horizon:
- Hue—7.5YR, 10YR, 2.5Y
- Value—4 to 6
- Chroma—1 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam (some pedons have strata of sandy loam, fine sandy loam, loamy fine sand or fine sand below 40 inches)
- Content of rock fragments—0 to 2 percent

C horizon:
- Hue—7.5YR, 10YR, 2.5Y or neutral
- Value—4 or 5
- Chroma—0 to 6
- Texture of the fine earth fraction—silt loam, silty clay loam, loam (some pedons have strata of sandy loam, fine sandy loam, loamy fine sand or fine sand below 40 inches)
Soils are three dimensional natural entities of landscapes capable of supporting plant growth. This section identifies the major factors of soil formation and describes how these factors influence soil formation and discusses some of the processes of soil formation. The nature of the soil at a specific site is the result of intricate interactions of soil forming factors and processes. Distinctiveness of soil horizons generally diminishes with increases in depth where at some point, the identity of soil transitions to the identity of geologic materials.

Factors of Soil Formation

Soils are the cumulative product of independent soil-forming factors acting upon both organic and mineral parent materials accumulated by geologic processes. Soil formation proceeds as progressive stages. The major factors of soil formation are parent material, climate, relief, living organisms, and time.

Climate and living organisms, particularly vegetation, are the active forces in soil formation. They act on the parent material that has accumulated through the weathering of rocks and slowly change it to a natural body that has genetically related horizons. Their effect on the parent material is modified by relief and by the length of time the parent material has been acted upon.

The relative importance of each factor differs from place to place. In some places one factor dominates and determines most of the soil properties. Mostly, however, the interaction of all five factors determines the distinct features that form and thus characterize the soil in a given place. The factors of soil formation are so closely interrelated in their affects on the soil that few generalizations can be made regarding the effects of any one factor unless conditions are specified for the other four. Changes that occur in soils are of four basic kinds: additions, removals, transfers, and transformations.

Parent Material

The beginning material of soil is non-soil, and is called parent material. Parent material is the unconsolidated mineral or organic material in which soils form. The physical and mineralogical composition of the parent material is influenced by its origin. Parent material affects the character of the soil profile that is formed and, in extreme cases, determines it almost entirely. Generally, parent material dominantly contributes the texture of the soil.

The soils of the county formed in several kinds of parent material. These are: glacial till, glacial outwash, lacustrine sediments, residuum and colluvium of sedimentary bedrocks, alluvium, and organic deposits.

Glacial till is an extensive parent material of the soils in the northern part of the county. The till was deposited by the several glaciations that occurred during the Pleistocene geologic age. Till is material that was deposited directly by glacial ice with little or no water action. The composition of the till depends on the nature of the area over which the ice passed before it was deposited. Till varies in particle-size composition and densities from place to place. Most of the till that is exposed at the
surface in the county was deposited during the latest major glaciation, the Wisconsinan Glaciation. The soils formed in this parent material usually have moderately fine textured subsoils. Canfield and Ravenna soils are examples of soils typically formed in Wisconsinan age till.

The southern edge of the till plain is typically characterized by more rolling topography and a thinner deposit of till over the bedrock. A few soils in the county formed in thin deposits of till underlain by bedrock. Kensington and Mechanicsburg soils are examples of thinner soils underlain by bedrock.

Some parent materials have been transported and deposited by water. The size of particles that can be carried suspended in water depends on the speed and volume of the moving water. Outwash deposits, laid down by moving water and lacustrine material or lake bottom sediments, laid down in still water, are two kinds of water laid deposits.

Glacier meltwater transported, sorted, and deposited outwash sand and gravel or glaciofluvial deposits of kames that remain as variably stratified deposits in the county. Some of this coarse material was later covered by finer-textured loamy outwash. Chili and Conotton soils formed in glacial outwash.

Areas of lacustrine deposits consisting of loamy to clayey sediments deposited in scattered post-glacial lake basins are in the Mahoning River and Sandy Creek watersheds. Lacustrine deposits are reflected in Fitchville and Homeworth soils.

Organic matter accumulated as sediments as trees, grasses, and sedges died and settled to the bottom of shallow lakes. The saturated environment moderates temperature and limits oxygen so that decomposition is retarded. Carlisle is an organic soil formed in these partially decomposed remains of plants. They persist in areas where the water table is high so that they are protected from rapid and total decomposition.

Where the bedrock is exposed, either by glaciation, erosion, or merely never having been covered by unconsolidated material, soils are usually slower to form. Soft siltstone and shale is relatively easy to weather into parent materials. In places outcrops of shale, sandstone or limestone occur as the lowest and oldest bedrock formation exposed to the surface.

Upland soils of unglaciated areas in the southern part of the county formed in residuum and colluvium. Bedrock residuum is more extensive than colluvium. Residuum includes unconsolidated earthen materials weathered from shale, sandstone, siltstone, and limestone. Weathering bedrock to residuum is also influenced by relief, climate, organisms and time. The Berks and Gilpin soils formed in bedrock residuum.

Colluvium is accumulations of soil and parent materials that are moved to more stable downslope positions by gravity and water. It is as variable as the soil and parent materials contributing to the accumulation.

Loess is wind-deposited soil material that tends to smooth over the irregular relief of the landscape. As outwash terraces were forming, winds picked up silt particles and deposited them downwind, commonly at higher elevations. Soils in small areas on ridge tops and benches formed in as much as 40 inches of loess and in the underlying residuum. The Gavers and Keene soils formed in loess and in the underlying siltstone and shale residuum.

The alluvial sediments deposited by water are characterized by being old or recent. Alluvium is stratified according to the volume and energy of the water flow and the variety of material kinds and sizes being transported. Old alluvium was deposited in pre-glacial times by north flowing rivers or during or soon after the glaciers melted. Since the climate has changed, the old alluvial floodplains are now terraces that are no longer flooded. Time has allowed alterations to old alluvium that distinguish it from recent alluvium.
Recent alluvium is accumulated sediments of waterways that currently overflow stream channels in seasonal patterns. Deposition of alluvium is an active process in floodplains. Recent alluvium is one of the youngest parent materials in the county. The sediments are dominantly from the surface layer of the higher lying upland soils and are characteristically fertile. Orrville and Wick soils formed in alluvium.

Surface mine spoil is a mixture of partly weathered fine-earth material and fragments of shale, sandstone, siltstone, and limestone that was piled up or graded during surface mining for coal or clay shale. The Bethesda, Fairpoint, and Morristown soils formed in strip mine spoil, dominated by fragments of rock and some sand, silt, and clay (fig. 28).

Climate

Climate strongly influences the rate of chemical and physical weathering. The soil profile is subject to the greatest range of extremes in weathering influence of climate and weather at the surface of the soil which is in contact with the atmosphere. Thus the greatest influence of climate as a soil-forming factor is exhibited in the uppermost part of the soil profile. Soil formation progresses slowly where the soil is saturated, dry or cold.

Climate under which the soil material has accumulated and existed since accumulation is an active soil-forming factor. The climate in Columbiana County is uniform enough that it has not significantly contributed to differences among the soils. The prevailing climate has been favorable to physical change and chemical weathering of parent materials and to biological activity. The climate was largely responsible for determining the kind of vegetation in the area which is dominantly hardwood trees.

The amount of moisture, the length of the growing season, and the temperatures during the growing season affect the amount of vegetation produced. Vegetation is the main source of organic matter in the soil. These climatic factors also directly affect
the activity of the microorganisms that convert organic matter into humus. The rainfall has been adequate for percolating water to leach carbonates to depths below 40 inches in soils such as Ravenna. The frequency of rainfall caused wetting and drying cycles favorable to the translocation of clay minerals and formation of soil structure, as in Chili and Rittman soils for example.

The range of temperature variations has favored both physical change and chemical weathering of parent material. Freezing and thawing contribute to the formation of soil structure. Warm temperatures in summer promote chemical reactions in the weathering of primary minerals. Rainfall and temperature have been conducive to plant growth to the extent that organic matter had accumulated in the topsoil of most soils in the county. Differences in relief contribute to slight temperature variation in local microclimates and saturated environments of organic soils moderates temperature in a unique microclimate as well.

Wind and water elements of the climate can erode and deposit exposed topsoils that result in gradual thinning of topsoils in some areas and thickening them in other areas.

More information about the climate is available under the heading "General Nature of the County".

Living Organisms

Plants, animals, bacteria, fungi and other living organisms live on and in the soil. They exert an active influence in soil formation. Along with climate, living organisms, including plants, animals, insects, earthworms, micro-organisms and fungi, exert the strongest influence upon the uppermost part of the soil profile. The most distinctive horizonization occurs generally where these greatest extremes in temperature, moisture, plant and animal influence, and erosion and deposition and related influences, act upon the parent material. At the time the county was settled, the vegetation was predominantly hardwood forest of dominantly beech, maple, oak, hickory and ash. Swamp and low-lying areas formed under swamp forest vegetation consisting mainly of swamp white oak, pin oak, elm and cottonwood. Grassy clearings occurred on the marshy openings in the poorly drained swales.

Soils that formed in forested areas are subject to acid leaching. As a result, the subsoil is lower in exchangeable bases than the substratum. Usually these soils are generally acid and moderate or low in natural fertility. Examples are the Germano and Hazleton soils. In the swales and low-lying areas, there is a greater accumulation of organic matter where the water table is high for longer periods of time. These dark colored fertile soils include Lorain and Olmsted soils.

Small animals, insects, worms, fungi and bacteria in the soil through life activities mix and contribute organic matter to the soil. Earthworms, burrowing insects, moles, and other animals that live in the soil burrow and mix soil materials and generally make it more permeable. Microorganisms fix nitrogen from the air into a form usable by plants and help decompose plant tissue into humus, thus releasing nutrients that plants utilize. Infiltration of water is generally improved by the beneficial impacts of plant and animals on structure and in channel and pore space.

The activities of humans also affect the soil. They have an immediate effect upon both the rate and direction of soil-forming processes. They are a major influence in soil formation in recent times as technology enables larger ambitions. Through management of soils for increased production, the natural soil-water relationships that existed for thousands of years have changed in many places.

Soils in some areas have been drained, irrigated, and removed and relocated in construction activities. The application of lime, fertilizer, and other chemicals and amendments changes the chemistry of the soils and affects other properties such as structure. Soil-conserving practices attempt to reestablish equilibrium under human's
management practices. Conservation tillage practices contribute to improving soils under cultivation. Udorthents is an example of soils significantly altered in use and management by humans.

Relief

Relief is the collective inequalities of elevation of a land surface. It is the shape and gradient configuration of the land surface. Relief tends to modify the effects of the active factors of climate and plant and animal life.

Relief influences the effects of the active factors of climate and plant and animal life. The presence or absence of a seasonal high water table is largely determined by relief. Relief also influences both geologic and accelerated erosion rates. It may also contribute to local microclimate variations. Thus relief can largely account for the formation of different soils from the same kind of parent material.

Relief affects the natural drainage of soils. It influences the character of runoff and the depth to the seasonal high water table. Water that runs off sloping soils collects in depressions or is removed through a drainage system. Therefore, from an equal amount of rainfall, steeper soils receive less total water and the nearly level soils, more total water. Gently sloping soils generally show the most development because they are neither saturated nor droughty. Soil formation on steep slopes tends to be inhibited by erosion and the limited amount of water that penetrates the surface.

The well drained Amanda soils are generally formed where the slope was steep enough to allow rapid runoff. The somewhat poorly drained Doles soils formed in areas where runoff was slow or medium. The very poorly drained Lorain soils formed in depressions where some plant residues accumulated because the water table is near or above the surface during extended wet periods.

The presence or absence of a seasonal high water table is largely determined by relief. Most of the more poorly drained soils, such as the poorly drained Valley soils, are on flats and in depressions. The somewhat poorly drained Wadsworth soils formed in slightly higher areas where runoff is low. Soils on hillsides generally are drier than those in adjacent depressions because water runs off the hillsides more readily and collects in the depressions. The well drained Westmoreland soils are generally formed where the relief was steep enough to allow rapid runoff.

Relief varies greatly in Columbiana County. In the northern part of the county, the soils are typically nearly level to sloping. Relief becomes more pronounced in the central part of the county where undulating topography grades to the western edge of the Allegheny Plateau. Relief is most dramatic in the southern part of the county in the unglaciated section of the Allegheny Plateau, where the difference in elevation from the ridge tops to the flood plains can be about 500 feet.

Time

Time is needed for the other soil forming factors to exert their influence in converting geologic materials into soils. Time is always required for development of distinct soil horizons. The age of a soil is indicated to some extent by the degree of profile formation. For example, soils that formed in recent alluvium, such as Orrville and Wick soils, have horizons that are not distinctly developed or expressed and are regarded as young soils.

In many places, factors other than time have been responsible for most of the differences in kind and distribution of horizons in the different soils. The length of time that parent material has been in place and affected by vegetation and climate is important to soil formation. The influence of time on soil formation is modified by relief and nature of the parent material. The length of time that a parent material has been exposed to the other four factors of soil formation is reflected in the kinds of soils that
have formed. A relatively long time is required for the development of strong evidence of extensive influence of many soil-forming processes. If the parent material weathers slowly, the profile is formed slowly. If slopes are steep and soil is eroded almost as fast as it forms, no distinct horizons form.

Generally, in terms of geologic age, the soils of the glaciated part of the county have been developing for a relatively short period of time since the retreat of the Wisconsinan glaciers. This accounts for the relatively shallow depth of leaching and the slightly acid or neutral reaction in many of the soils. However, the soils in the unglaciated part of the county are more deeply leached and more acid at deeper depths partially due to more time for the leaching to occur.

Soils that formed in recent alluvium, for example Lobdell and Tioga soils, have horizons that are not distinctly developed or expressed. Soils formed in strip mine spoil, namely Fairpoint and Morristown soils, also have very limited horizon development.

Processes of Soil Formation

All the factors of soil formation influence the processes of soil development. The four main processes responsible for soil development are additions, removals, transfers, and transformations. Some of these promote horizon differentiation, but others tend to impede differentiation or obliterate existing differences.

The processes of soil formation have effectively altered the uppermost parent materials of the stable landscape positions in the county into distinguishable soil profiles. In contrast, the parent material on flood plains has been only slightly modified due to frequent deposits of fresh sediment that interrupts the progression of soil forming processes. Soils on floodplains, such as Orrville and Wick soils exhibit only minor changes or minimum effects of soil formation processes.

The formation of a succession of layers, or horizons, in soils in Columbiana County is the result mainly of one or more of the following processes: the accumulation of organic matter; the leaching of carbonates and other soluble minerals; the chemical breakdown, chiefly through hydrolysis, of primary minerals into silicate clay minerals; the translocation of silicate clays and probably some silt from upper horizons to lower ones; and the reduction and transfer of iron.

In this county the most significant addition to the soil is organic matter to the upper part. Some organic matter has accumulated in most of the soils of the county. Soils that have high water tables usually have relatively more organic matter and/or a thick, dark surface layer because the rate of accumulation exceeded that of decomposition. A surface layer that is high in organic matter content, usually has good structure and has a high base saturation. Lorain soils are an example. Where the layer of accumulation was originally thin, however, plowing and cultivating have incorporated it into other layers. Plowing and cultivation also facilitate accelerated decomposition due to increased aeration so that over time a significant reduction of organic matter is effected. Erosion is the process of transporting exposed topsoils with its organic matter offsite.

Where the layer of accumulation was originally thin, however, plowing and cultivating have incorporated it into other layers or destroyed it by accelerated decomposition due to increased aeration. Erosion may have resulted in transporting thin topsoil with its organic matter offsite. Ernest is an example of soils that have a limited content of organic matter.

Leaching of carbonates, i.e. lime, from calcareous parent materials is one of the most significant losses. It precedes many other chemical changes in the solum. In most of the glacial till in the county, the content of carbonates ranges from 5 to 25 percent. Most of the light-colored soils that formed in glacial till have been leached to a depth of 20 to 36 inches. The upper 24 inches of the soil profile is now acid.
Carbonates in the coarse-textured soils, such as Conotton and Fredericktown soils, generally have been leached to a depth of more than 36 inches. The loss of lime creates a changed chemical environment in the soil so that other minerals are progressively solubilized and subsequently leached. The most susceptible minerals are acted upon first and generally the rates of weathering decrease with time as the most stable minerals remain. Their susceptibility to weathering is slower and their removal is slower.

Transformation of mineral compounds occurs in most soils. Following the removal of carbonates, alterations to such minerals as biotite and feldspar result in changes of color within the profile. Iron in mineral compounds commonly becomes reduced and soluble in anaerobic conditions. This iron in solution is neutral in color and allows the color of more resistant minerals, mostly silica, to determine the appearance.

Gray soil generally indicates the reduced form of iron. Gleying, or the reduction and solution of ferrous iron, has taken place in the very poorly drained, poorly drained, and somewhat poorly drained soils. It is caused by a recurring high water table. A gray soil color indicates conditions that dominantly favor the reduction process. Reduced iron is soluble, but it commonly has been moved only a short distance within the soils in the county. Reduced iron in solution can also reoxidize and segregate as insoluble oxides in other places of the soil profile or continue to move in solution beyond the soil profile. These segregations are observed as mottles that are often shades of yellowish brown or reddish brown. These alterations of iron are common in soils that are not well drained. Otherwise, if the water table is not seasonally high within the solum, the more stable forms of iron oxides typically lend brownish colors with higher chroma and redder hue than those in the substratum. Accumulations of iron and manganese oxides are common in the somewhat poorly drained, poorly drained, and very poorly drained soils. They occur as dark brown or black stains on the faces of peds or as small concretions.

Another expression of transformation is the alteration of primary silicate minerals. These minerals are chemically weathered so that secondary minerals, mainly those of the layer-lattice silicate clays are produced. Most of the layer-lattice clays remain in place in the soil profile although some clay from the topsoil is commonly transfered to the subsoil.

An important transfer of components within the soil is the movement of clay from the surface layer to the subsurface layer. This occurs with the cycles of wetting and drying of the soil profile. The fine clay becomes preferentially suspended in percolating water moving through the surface layer of the soil profile. As the water gravitates downward to the subsoil, the fine clay is carried with it. Where the water is absorbed into the subsoil, it leaves behind the fine clay to accumulate on structure surfaces. The transfer of fine clay accounts for clay film coatings on the faces of peds in the subsoil of Canfield and other soils. To a lesser extent, organic matter can move downward in the profile similarly. Various sesquioxides also have been transferred from the surface layer to lower layers through this weathering process. Guernsey and Omulga soils are examples of soils with evidence of translocated clay in the subsoil as clay films on the surface of the peds.

Crowell, K. 1978. Ground-water resources of Columbiana County. Ohio Department of Natural Resources, Division of Water, map with text.

Ohio Department of Development. Census 2000 Reports. (http://www.odod.state.oh.us/research/files/P0003/County_Prime/Columbiana.pdf)

Ablation till. Loose, permeable till deposited during the final downwasting of glacial ice. Lenses of crudely sorted sand and gravel are common.

Aeration, soil. The exchange of air in soil with air from the atmosphere. The air in a well aerated soil is similar to that in the atmosphere; the air in a poorly aerated soil is considerably higher in carbon dioxide and lower in oxygen.

Aggregate, soil. Many fine particles held in a single mass or cluster. Natural soil aggregates, such as granules, blocks, or prisms, are called peds. Clods are aggregates produced by tillage or logging.

Alluvium. Material, such as sand, silt, or clay, deposited on land by streams.

Alpha,alpha-dipyridyl. A dye that when dissolved in 1N ammonium acetate is used to detect the presence of reduced iron (Fe II) in the soil. A positive reaction indicates a type of redoximorphic feature.

Animal unit month (AUM). The amount of forage required by one mature cow of approximately 1,000 pounds weight, with or without a calf, for 1 month.

Aquic conditions. Current soil wetness characterized by saturation, reduction, and redoximorphic features.

Argillic horizon. A subsoil horizon characterized by an accumulation of illuvial clay.

Aspect. The direction in which a slope faces.

Association, soil. A group of soils or miscellaneous areas geographically associated in a characteristic repeating pattern and defined and delineated as a single map unit.

Available water capacity (available moisture capacity). The capacity of soils to hold water available for use by most plants. It is commonly defined as the difference between the amount of soil water at field moisture capacity and the amount at wilting point. It is commonly expressed as inches of water per inch of soil. The capacity, in inches, in a 60-inch profile or to a limiting layer is expressed as:

<table>
<thead>
<tr>
<th>Type</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>0 to 3</td>
</tr>
<tr>
<td>Low</td>
<td>3 to 6</td>
</tr>
<tr>
<td>Moderate</td>
<td>6 to 9</td>
</tr>
<tr>
<td>High</td>
<td>9 to 12</td>
</tr>
<tr>
<td>Very high</td>
<td>more than 12</td>
</tr>
</tbody>
</table>

Backslope. The position that forms the steepest and generally linear, middle portion of a hillslope. In profile, backslopes are commonly bounded by a convex shoulder above and a concave footslope below.

Basal area. The area of a cross section of a tree, generally referring to the section at breast height and measured outside the bark. It is a measure of stand density, commonly expressed in square feet.

Basal till. Compact glacial till deposited beneath the ice.

Base saturation. The degree to which material having cation-exchange properties is saturated with exchangeable bases (sum of Ca, Mg, Na, and K), expressed as a percentage of the total cation-exchange capacity.

Bedding planes. Fine strata, less than 5 millimeters thick, in unconsolidated alluvial, eolian, lacustrine, or marine sediment.
Bedrock. The solid rock that underlies the soil and other unconsolidated material or that is exposed at the surface.

Bedrock-controlled topography. A landscape where the configuration and relief of the landforms are determined or strongly influenced by the underlying bedrock.

Bisequum. Two sequences of soil horizons, each of which consists of an illuvial horizon and the overlying eluvial horizons.

Bottom land. The normal flood plain of a stream, subject to flooding.

Boulders. Rock fragments larger than 2 feet (60 centimeters) in diameter.

Calcareous soil. A soil containing enough calcium carbonate (commonly combined with magnesium carbonate) to effervesce visibly when treated with cold, dilute hydrochloric acid.

Capillary water. Water held as a film around soil particles and in tiny spaces between particles. Surface tension is the adhesive force that holds capillary water in the soil.

Catena. A sequence, or “chain,” of soils on a landscape that formed in similar kinds of parent material but have different characteristics as a result of differences in relief and drainage.

Cation. An ion carrying a positive charge of electricity. The common soil cations are calcium, potassium, magnesium, sodium, and hydrogen.

Cation-exchange capacity. The total amount of exchangeable cations that can be held by the soil, expressed in terms of milliequivalents per 100 grams of soil at neutrality (pH 7.0) or at some other stated pH value. The term, as applied to soils, is synonymous with base-exchange capacity but is more precise in meaning.

Channery soil material. Soil material that has, by volume, 15 to 35 percent thin, flat fragments of sandstone, shale, slate, limestone, or schist as much as 6 inches (15 centimeters) along the longest axis. A single piece is called a channer.

Chemical treatment. Control of unwanted vegetation through the use of chemicals.

Chiseling. Tillage with an implement having one or more soil-penetrating points that shatter or loosen hard, compacted layers to a depth below normal plow depth.

Clay. As a soil separate, the mineral soil particles less than 0.002 millimeter in diameter. As a soil textural class, soil material that is 40 percent or more clay, less than 45 percent sand, and less than 40 percent silt.

Clay depletions. Low-chroma zones having a low content of iron, manganese, and clay because of the chemical reduction of iron and manganese and the removal of iron, manganese, and clay. A type of redoximorphic depletion.

Clay film. A thin coating of oriented clay on the surface of a soil aggregate or lining pores or root channels. Synonyms: clay coating, clay skin.

Climax plant community. The stabilized plant community on a particular site. The plant cover reproduces itself and does not change so long as the environment remains the same.

Coarse textured soil. Sand or loamy sand.

Cobble (or cobblestone). A rounded or partly rounded fragment of rock 3 to 10 inches (7.6 to 25 centimeters) in diameter.

Cobbly soil material. Material that has 15 to 35 percent, by volume, rounded or partially rounded rock fragments 3 to 10 inches (7.6 to 25 centimeters) in diameter. Very cobbly soil material has 35 to 60 percent of these rock fragments, and extremely cobbly soil material has more than 60 percent.

COLE (coefficient of linear extensibility). See Linear extensibility.

Colluvium. Soil material or rock fragments, or both, moved by creep, slide, or local wash and deposited at the base of steep slopes.

Complex, soil. A map unit of two or more kinds of soil or miscellaneous areas in such an intricate pattern or so small in area that it is not practical to map them separately at the selected scale of mapping. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas.
Concretions. Cemented bodies with crude internal symmetry organized around a point, a line, or a plane. They typically take the form of concentric layers visible to the naked eye. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up concretions. If formed in place, concretions of iron oxide or manganese oxide are generally considered a type of redoximorphic concentration.

Conservation cropping system. Growing crops in combination with needed cultural and management practices. In a good conservation cropping system, the soil-improving crops and practices more than offset the effects of the soil-depleting crops and practices. Cropping systems are needed on all tilled soils. Soil-improving practices in a conservation cropping system include the use of rotations that contain grasses and legumes and the return of crop residue to the soil. Other practices include the use of green manure crops of grasses and legumes, proper tillage, adequate fertilization, and weed and pest control.

Conservation tillage. A tillage system that does not invert the soil and that leaves a protective amount of crop residue on the surface throughout the year.

Consistence, soil. Refers to the degree of cohesion and adhesion of soil material and its resistance to deformation when ruptured. Consistence includes resistance of soil material to rupture and to penetration; plasticity, toughness, and stickiness of puddled soil material; and the manner in which the soil material behaves when subject to compression. Terms describing consistence are defined in the "Soil Survey Manual."

Control section. The part of the soil on which classification is based. The thickness varies among different kinds of soil, but for many it is that part of the soil profile between depths of 10 inches and 40 or 80 inches.

Coprogenous earth (sedimentary peat). Fecal material deposited in water by aquatic organisms.

Corrosion. Soil-induced electrochemical or chemical action that dissolves or weakens concrete or uncoated steel.

Cover crop. A close-growing crop grown primarily to improve and protect the soil between periods of regular crop production, or a crop grown between trees and vines in orchards and vineyards.

Cropping system. Growing crops according to a planned system of rotation and management practices.

Crop residue management. Returning crop residue to the soil, which helps to maintain soil structure, organic matter content, and fertility and helps to control erosion.

Cutbanks cave (in tables). The walls of excavations tend to cave in or slough.

Deferred grazing. Postponing grazing or resting grazing land for a prescribed period.

Dense layer (in tables). A very firm, massive layer that has a bulk density of more than 1.8 grams per cubic centimeter. Such a layer affects the ease of digging and can affect filling and compacting.

Depth, soil. Generally, the thickness of the unconsolidated earthen material over bedrock. Very deep soils are more than 60 inches deep over bedrock; deep soils, 40 to 60 inches; moderately deep, 20 to 40 inches; shallow, 10 to 20 inches; and very shallow, less than 10 inches.

Diameter breast height (dbh). The diameter of a tree 4.5 feet above the soil surface on the uphill side of the tree where diameter measurements are ordinarily taken.

Diversion (or diversion terrace). A ridge of earth, generally a terrace, built to protect downslope areas by diverting runoff from its natural course.

Drainage class (natural). Refers to the frequency and duration of wet periods under conditions similar to those under which the soil formed. Alterations of the water regime by human activities, either through drainage or irrigation, are not a consideration unless they have significantly changed the morphology of the soil.
Seven classes of natural soil drainage are recognized—excessively drained, somewhat excessively drained, well drained, moderately well drained, somewhat poorly drained, poorly drained, and very poorly drained. These classes are defined in the “Soil Survey Manual.”

Drainage, surface. Runoff, or surface flow of water, from an area.

Effluent. The aqueous discharge from a home waste treatment system.

Eluviation. The movement of material in true solution or colloidal suspension from one place to another within the soil. Soil horizons that have lost material through eluviation are eluvial; those that have received material are illuvial.

Endosaturation. A type of saturation of the soil in which all horizons between the upper boundary of saturation and a depth of 2 meters are saturated.

Eolian soil material. Earthy parent material accumulated through wind action; commonly refers to sandy material in dunes or to loess in blankets on the surface.

Ephemeral stream. A stream, or reach of a stream, that flows only in direct response to precipitation. It receives no long-continued supply from melting snow or other source, and its channel is above the water table at all times.

Episaturation. A type of saturation indicating a perched water table in a soil in which saturated layers are underlain by one or more unsaturated layers within 2 meters of the surface.

Erosion. The wearing away of the land surface by water, wind, ice, or other geologic agents and by such processes as gravitational creep.

- **Erosion (geologic).** Erosion caused by geologic processes acting over long geologic periods and resulting in the wearing away of mountains and the building up of such landscape features as flood plains and coastal plains. Synonym: natural erosion.

- **Erosion (accelerated).** Erosion much more rapid than geologic erosion, mainly as a result of human or animal activities or of a catastrophe in nature, such as a fire, that exposes the surface.

Escarpment. A relatively continuous and steep slope or cliff breaking the general continuity of more gently sloping land surfaces and resulting from erosion or faulting. Synonym: scarp.

Fertility, soil. The quality that enables a soil to provide plant nutrients, in adequate amounts and in proper balance, for the growth of specified plants when light, moisture, temperature, tilth, and other growth factors are favorable.

Field moisture capacity. The moisture content of a soil, expressed as a percentage of the oven dry weight, after the gravitational, or free, water has drained away; the field moisture content 2 or 3 days after a soaking rain; also called normal field capacity, normal moisture capacity, or capillary capacity.

Fine textured soil. Sandy clay, silty clay, or clay.

Flood plain. A nearly level alluvial plain that borders a stream and is subject to flooding unless protected artificially.

Fluvial. Of or pertaining to rivers; produced by river action, as a fluvial plain.

Foothill. The position that forms the inner, gently inclined surface at the base of a hillslope. In profile, foothills are commonly concave. A foothill is a transition zone between upslope sites of erosion and transport (shoulders and backslopes) and downslope sites of deposition (toeslopes).

Forest cover. All trees and other woody plants (underbrush) covering the ground in a forest.

Forest type. A stand of trees similar in composition and development because of given physical and biological factors by which it may be differentiated from other stands.

Fragipan. A loamy, brittle subsurface horizon low in porosity and content of organic matter and low or moderate in clay but high in silt or very fine sand. A fragipan appears cemented and restricts roots. When dry, it is hard or very hard and has a
higher bulk density than the horizon or horizons above. When moist, it tends to rupture suddenly under pressure rather than to deform slowly.

Genesis, soil. The mode of origin of the soil. Refers especially to the processes or soil-forming factors responsible for the formation of the solum, or true soil, from the unconsolidated parent material.

Glacial drift. Pulverized and other rock material transported by glacial ice and then deposited. Also, the sorted and unsorted material deposited by streams flowing from glaciers.

Glacial outwash. Gravel, sand, and silt, commonly stratified, deposited by glacial meltwater.

Glacial till. Unsorted, nonstratified glacial drift consisting of clay, silt, sand, and boulders transported and deposited by glacial ice.

Glaciofluvial deposits. Material moved by glaciers and subsequently sorted and deposited by streams flowing from the melting ice. The deposits are stratified and occur as kames, eskers, deltas, and outwash plains.

Glaciolacustrine deposits. Material ranging from fine clay to sand derived from glaciers and deposited in glacial lakes mainly by glacial meltwater. Many deposits are interbedded or laminated.

Gleyed soil. Soil that formed under poor drainage, resulting in the reduction of iron and other elements in the profile and in gray colors.

Grassed waterway. A natural or constructed waterway, typically broad and shallow, seeded to grass as protection against erosion. Conducts surface water away from cropland.

Gravel. Rounded or angular fragments of rock as much as 3 inches (2 millimeters to 7.6 centimeters) in diameter. An individual piece is a pebble.

Gravelly soil material. Material that has 15 to 35 percent, by volume, rounded or angular rock fragments, not prominently flattened, as much as 3 inches (7.6 centimeters) in diameter.

Ground water. Water filling all the unblocked pores of the material below the water table.

Hard bedrock. Bedrock that cannot be excavated except by blasting or by the use of special equipment that is not commonly used in construction.

Hard to reclaim (in tables). Reclamation is difficult after the removal of soil for construction and other uses. Revegetation and erosion control are extremely difficult.

Head slope. A geomorphic component of hills consisting of a laterally concave area of a hillside, especially at the head of a drainageway. The overland waterflow is converging.

High-residue crops. Such crops as small grain and corn used for grain. If properly managed, residue from these crops can be used to control erosion until the next crop in the rotation is established. These crops return large amounts of organic matter to the soil.

Hill. A natural elevation of the land surface, rising as much as 1,000 feet above surrounding lowlands, commonly of limited summit area and having a well defined outline; hillsides generally have slopes of more than 15 percent. The distinction between a hill and a mountain is arbitrary and is dependent on local usage.

Horizon, soil. A layer of soil, approximately parallel to the surface, having distinct characteristics produced by soil-forming processes. In the identification of soil horizons, an uppercase letter represents the major horizons. Numbers or lowercase letters that follow represent subdivisions of the major horizons. An explanation of the subdivisions is given in the “Soil Survey Manual.” The major horizons of mineral soil are as follows:

- **O horizon.**—An organic layer of fresh and decaying plant residue.
- **A horizon.**—The mineral horizon at or near the surface in which an accumulation
of humified organic matter is mixed with the mineral material. Also, a plowed surface horizon, most of which was originally part of a B horizon.

E horizon.—The mineral horizon in which the main feature is loss of silicate clay, iron, aluminum, or some combination of these.

B horizon.—The mineral horizon below an A horizon. The B horizon is in part a layer of transition from the overlying A to the underlying C horizon. The B horizon also has distinctive characteristics, such as (1) accumulation of clay, sesquioxides, humus, or a combination of these; (2) prismatic or blocky structure; (3) redder or browner colors than those in the A horizon; or (4) a combination of these.

C horizon.—The mineral horizon or layer, excluding indurated bedrock, that is little affected by soil-forming processes and does not have the properties typical of the overlying soil material. The material of a C horizon may be either like or unlike that in which the solum formed. If the material is known to differ from that in the solum, an Arabic numeral, commonly a 2, precedes the letter C.

Cr horizon.—Soft, consolidated bedrock beneath the soil.

R layer.—Consolidated bedrock beneath the soil. The bedrock commonly underlies a C horizon, but it can be directly below an A or a B horizon.

Humus. The well decomposed, more or less stable part of the organic matter in mineral soils.

Hydrologic soil groups. Refers to soils grouped according to their runoff potential. The soil properties that influence this potential are those that affect the minimum rate of water infiltration on a bare soil during periods after prolonged wetting when the soil is not frozen. These properties are depth to a seasonal high water table, the infiltration rate and permeability after prolonged wetting, and depth to a very slowly permeable layer. The slope and the kind of plant cover are not considered but are separate factors in predicting runoff.

Igneous rock. Rock formed by solidification from a molten or partially molten state. Major varieties include plutonic and volcanic rock. Examples are andesite, basalt, and granite.

Illuviation. The movement of soil material from one horizon to another in the soil profile. Generally, material is removed from an upper horizon and deposited in a lower horizon.

Impervious soil. A soil through which water, air, or roots penetrate slowly or not at all. No soil is absolutely impervious to air and water all the time.

Infiltration. The downward entry of water into the immediate surface of soil or other material, as contrasted with percolation, which is movement of water through soil layers or material.

Infiltration capacity. The maximum rate at which water can infiltrate into a soil under a given set of conditions.

Infiltration rate. The rate at which water penetrates the surface of the soil at any given instant, usually expressed in inches per hour. The rate can be limited by the infiltration capacity of the soil or the rate at which water is applied at the surface.

Intake rate. The average rate of water entering the soil under irrigation. Most soils have a fast initial rate; the rate decreases with application time. Therefore, intake rate for design purposes is not a constant but is a variable depending on the net irrigation application. The rate of water intake, in inches per hour, is expressed as follows:

<table>
<thead>
<tr>
<th>Rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 0.2</td>
<td>very low</td>
</tr>
<tr>
<td>0.2 to 0.4</td>
<td>low</td>
</tr>
<tr>
<td>0.4 to 0.75</td>
<td>moderately low</td>
</tr>
<tr>
<td>0.75 to 1.25</td>
<td>moderate</td>
</tr>
<tr>
<td>1.25 to 1.75</td>
<td>moderately high</td>
</tr>
<tr>
<td>1.75 to 2.5</td>
<td>high</td>
</tr>
<tr>
<td>More than 2.5</td>
<td>very high</td>
</tr>
</tbody>
</table>
Interfluve. An elevated area between two drainageways that sheds water to those
drainageways.

Intermittent stream. A stream, or reach of a stream, that flows for prolonged periods
only when it receives ground-water discharge or long, continued contributions
from melting snow or other surface and shallow subsurface sources.

Iron depletions. Low-chroma zones having a low content of iron and manganese
oxide because of chemical reduction and removal, but having a clay content
similar to that of the adjacent matrix. A type of redoximorphic depletion.

Irrigation. Application of water to soils to assist in production of crops. Methods of
irrigation are:

Drip (or trickle).—Water is applied slowly and under low pressure to the surface
of the soil or into the soil through such applicators as emitters, porous tubing, or
perforated pipe.

Sprinkler.—Water is sprayed over the soil surface through pipes or nozzles from a
pressure system.

Subirrigation.—Water is applied in open ditches or tile lines until the water table is
raised enough to wet the soil.

Kame. An irregular, short ridge or hill of stratified glacial drift.

Kame terrace. A terrace landscape position consisting of stratified sand and gravel
that was deposited by meltwater flow between a melting glacier and an adjacent
valley wall or moraine that remained after the recession of the ice.

Knoll. A small, low, rounded hill rising above adjacent landforms.

K_{sat}. Saturated hydraulic conductivity. (See Permeability.)

Lacustrine deposit. Material deposited in lake water and exposed when the water
level is lowered or the elevation of the land is raised.

Landform. Any physical recognizable form or feature on the earth’s surface, having a
characteristic shape and produced by natural causes. Landforms provide
empirical descriptions of similar positions of the earth’s surface.

Landscape. A collection of related landforms; usually the land surface which the eye
can comprehend in a single view.

Large stones (in tables). Rock fragments 3 inches (7.6 centimeters) or more across.
Large stones adversely affect the specified use of the soil.

Leaching. The removal of soluble material from soil or other material by percolating
water.

Linear extensibility. Refers to the change in length of an unconfined clod as
moisture content is decreased from a moist to a dry state. Linear extensibility is
used to determine the shrink-swell potential of soils. It is an expression of the
volume change between the water content of the clod at \(\frac{1}{5}\) or \(\frac{1}{10}\)-bar tension
(33kPa or 10kPa tension) and oven dryness. Volume change is influenced by the
amount and type of clay minerals in the soil. The volume change is the percent
change for the whole soil. If it is expressed as a fraction, the resulting value is
COLE, coefficient of linear extensibility.

Liquid limit. The moisture content at which the soil passes from a plastic to a liquid
state.

Loam. Soil material that is 7 to 27 percent clay particles, 28 to 50 percent silt
particles, and less than 52 percent sand particles.

Loess. Fine grained material, dominantly of silt-sized particles, deposited by wind.

Low-residue crops. Such crops as corn used for silage, peas, beans, and potatoes.
Residue from these crops is not adequate to control erosion until the next crop in
the rotation is established. These crops return little organic matter to the soil.

Low strength. The soil is not strong enough to support loads.

Masses. Concentrations of substances in the soil matrix that do not have a clearly
defined boundary with the surrounding soil material and cannot be removed as a
discrete unit. Common compounds making up masses are calcium carbonate,
gypsum or other soluble salts, iron oxide, and manganese oxide. Masses consisting of iron oxide or manganese oxide generally are considered a type of redoximorphic concentration.

Mechanical treatment. Use of mechanical equipment for seeding, brush management, and other management practices.

Medium textured soil. Very fine sandy loam, loam, silt loam, or silt.

Metamorphic rock. Rock of any origin altered in mineralogical composition, chemical composition, or structure by heat, pressure, and movement. Nearly all such rocks are crystalline.

Mineral soil. Soil that is mainly mineral material and low in organic material. Its bulk density is more than that of organic soil.

Minimum tillage. Only the tillage essential to crop production and prevention of soil damage.

Miscellaneous area. An area that has little or no natural soil and supports little or no vegetation.

Moderately coarse textured soil. Coarse sandy loam, sandy loam, or fine sandy loam.

Moderately fine textured soil. Clay loam, sandy clay loam, or silty clay loam.

Moraine. An accumulation of earth, stones, and other debris deposited by a glacier. Some types are terminal, lateral, medial, and ground.

Morphology, soil. The physical makeup of the soil, including the texture, structure, porosity, consistence, color, and other physical, mineral, and biological properties of the various horizons, and the thickness and arrangement of those horizons in the soil profile.

Mottling, soil. Irregular spots of different colors that vary in number and size. Descriptive terms are as follows: abundance—few, common, and many; size—fine, medium, and coarse; and contrast—faint, distinct, and prominent. The size measurements are of the diameter along the greatest dimension. Fine indicates less than 5 millimeters (about 0.2 inch); medium, from 5 to 15 millimeters (about 0.2 to 0.6 inch); and coarse, more than 15 millimeters (about 0.6 inch).

Muck. Dark, finely divided, well decomposed organic soil material. (See Sapric soil material.)

Mudstone. Sedimentary rock formed by induration of silt and clay in approximately equal amounts.

Munsell notation. A designation of color by degrees of three simple variables—hue, value, and chroma. For example, a notation of 10YR 6/4 is a color with hue of 10YR, value of 6, and chroma of 4.

Neutral soil. A soil having a pH value of 6.6 to 7.3. (See Reaction, soil.)

Nodules. Cemented bodies lacking visible internal structure. Calcium carbonate, iron oxide, and manganese oxide are common compounds making up nodules. If formed in place, nodules of iron oxide or manganese oxide are considered types of redoximorphic concentrations.

Nutrient, plant. Any element taken in by a plant essential to its growth. Plant nutrients are mainly nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, manganese, copper, boron, and zinc obtained from the soil and carbon, hydrogen, and oxygen obtained from the air and water.

Organic matter. Plant and animal residue in the soil in various stages of decomposition. The content of organic matter in the surface layer is described as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>less than 0.5 percent</td>
</tr>
<tr>
<td>Low</td>
<td>0.5 to 1.0 percent</td>
</tr>
<tr>
<td>Moderately low</td>
<td>1.0 to 2.0 percent</td>
</tr>
<tr>
<td>Moderate</td>
<td>2.0 to 4.0 percent</td>
</tr>
<tr>
<td>High</td>
<td>4.0 to 8.0 percent</td>
</tr>
<tr>
<td>Very high</td>
<td>more than 8.0 percent</td>
</tr>
</tbody>
</table>
Outwash plain. A landform of mainly sandy or coarse textured material of glaciofluvial origin. An outwash plain is commonly smooth; where pitted, it generally is low in relief.

Paleoterrace. An erosional remnant of a terrace that retains the surface form and alluvial deposits of its origin but was not emplaced by, and commonly does not grade to, a present-day stream or drainage network.

Pan. A compact, dense layer in a soil that impedes the movement of water and the growth of roots. For example, hardpan, fragipan, claypan, plowpan, and traffic pan.

Parent material. The unconsolidated organic and mineral material in which soil forms.

Ped. An individual natural soil aggregate, such as a granule, a prism, or a block.

Pedisediment. A thin layer of alluvial material that mantles an erosion surface and has been transported to its present position from higher lying areas of the erosion surface.

Pedon. The smallest volume that can be called “a soil.” A pedon is three dimensional and large enough to permit study of all horizons. Its area ranges from about 10 to 100 square feet (1 square meter to 10 square meters), depending on the variability of the soil.

Percolation. The movement of water through the soil.

Permeability. The quality of the soil that enables water or air to move downward through the profile. The rate at which a saturated soil transmits water is accepted as a measure of this quality. In soil physics, the rate is referred to as “saturated hydraulic conductivity,” which is defined in the “Soil Survey Manual.” In line with conventional usage in the engineering profession and with traditional usage in published soil surveys, this rate of flow continues to be expressed as “permeability.” Terms describing permeability, measured in inches per hour, are as follows:

- Impermeable less than 0.0015 inch
- Very slow 0.0015 to 0.06 inch
- Slow 0.06 to 0.2 inch
- Moderately slow 0.2 to 0.6 inch
- Moderate 0.6 inch to 2.0 inches
- Moderately rapid 2.0 to 6.0 inches
- Rapid 6.0 to 20 inches
- Very rapid more than 20 inches

Phase, soil. A subdivision of a soil series based on features that affect its use and management, such as slope, stoniness, and flooding.

pH value. A numerical designation of acidity and alkalinity in soil. (See Reaction, soil.)

Piping (in tables). Formation of subsurface tunnels or pipelike cavities by water moving through the soil.

Plasticity index. The numerical difference between the liquid limit and the plastic limit; the range of moisture content within which the soil remains plastic.

Plastic limit. The moisture content at which a soil changes from semisolid to plastic.

Ponding. Standing water on soils in closed depressions. Unless the soils are artificially drained, the water can be removed only by percolation or evapotranspiration.

Poorly graded. Refers to a coarse grained soil or soil material consisting mainly of particles of nearly the same size. Because there is little difference in size of the particles, density can be increased only slightly by compaction.

Potential rooting depth (effective rooting depth). Depth to which roots could penetrate if the content of moisture in the soil were adequate. The soil has no properties restricting the penetration of roots to this depth.
Productivity, soil. The capability of a soil for producing a specified plant or sequence of plants under specific management.

Profile, soil. A vertical section of the soil extending through all its horizons and into the parent material.

Proper grazing use. Grazing at an intensity that maintains enough cover to protect the soil and maintain or improve the quantity and quality of the desirable vegetation. This practice increases the vigor and reproduction capacity of the key plants and promotes the accumulation of litter and mulch necessary to conserve soil and water.

Reaction, soil. A measure of acidity or alkalinity of a soil, expressed in pH values. A soil that tests to pH 7.0 is described as precisely neutral in reaction because it is neither acid nor alkaline. The degrees of acidity or alkalinity, expressed as pH values, are:

- Ultra acid less than 3.5
- Extremely acid 3.5 to 4.4
- Very strongly acid 4.5 to 5.0
- Strongly acid 5.1 to 5.5
- Moderately acid 5.6 to 6.0
- Slightly acid 6.1 to 6.5
- Neutral 6.6 to 7.3
- Slightly alkaline 7.4 to 7.8
- Moderately alkaline 7.9 to 8.4
- Strongly alkaline 8.5 to 9.0
- Very strongly alkaline 9.1 and higher

Redoximorphic concentrations. Nodules, concretions, soft masses, pore linings, and other features resulting from the accumulation of iron or manganese oxide. An indication of chemical reduction and oxidation resulting from saturation.

Redoximorphic depletions. Low-chroma zones from which iron and manganese oxide or a combination of iron and manganese oxide and clay has been removed. These zones are indications of the chemical reduction of iron resulting from saturation.

Redoximorphic features. Redoximorphic concentrations, redoximorphic depletions, reduced matrices, a positive reaction to alpha,alpha-dipyridyl, and other features indicating the chemical reduction and oxidation of iron and manganese compounds resulting from saturation.

Reduced matrix. A soil matrix that has low chroma in situ because of chemically reduced iron (Fe II). The chemical reduction results from nearly continuous wetness. The matrix undergoes a change in hue or chroma within 30 minutes after exposure to air as the iron is oxidized (Fe III). A type of redoximorphic feature.

Regolith. The unconsolidated mantle of weathered rock and soil material on the earth's surface; the loose earth material above the solid rock.

Relief. The elevations or inequalities of a land surface, considered collectively.

Residuum (residual soil material). Unconsolidated, weathered or partly weathered mineral material that accumulated as consolidated rock disintegrated in place.

Riser. The relatively short steeply sloping face of a terrace that defines the terrace above a lower terrace or base level.

Road cut. A sloping surface produced by mechanical means during road construction. It is commonly on the uphill side of the road.

Rock fragments. Rock or mineral fragments having a diameter of 2 millimeters or more; for example, pebbles, cobbles, stones, and boulders.

Root zone. The part of the soil that can be penetrated by plant roots.

Runoff. The precipitation discharged into stream channels from an area. The water that flows off the surface of the land without sinking into the soil is called surface
runoff. Water that enters the soil before reaching surface streams is called ground-water runoff or seepage flow from ground water.

Sand. As a soil separate, individual rock or mineral fragments from 0.05 millimeter to 2.0 millimeters in diameter. Most sand grains consist of quartz. As a soil textural class, a soil that is 85 percent or more sand and not more than 10 percent clay.

Sandstone. Sedimentary rock containing dominantly sand-sized particles.

Saturation. Wetness characterized by zero or positive pressure of the soil water. Under conditions of saturation, the water will flow from the soil matrix into an unlined auger hole.

Sedimentary rock. Rock made up of particles deposited from suspension in water. The chief kinds of sedimentary rock are conglomerate, formed from gravel; sandstone, formed from sand; shale, formed from clay; and limestone, formed from soft masses of calcium carbonate. There are many intermediate types. Some wind-deposited sand is consolidated into sandstone.

Sequum. A sequence consisting of an illuvial horizon and the overlying eluvial horizon. (See Eluviation.)

Series, soil. A group of soils that have profiles that are almost alike, except for differences in texture of the surface layer. All the soils of a series have horizons that are similar in composition, thickness, and arrangement.

Shale. Sedimentary rock formed by the hardening of a clay deposit.

Sheet erosion. The removal of a fairly uniform layer of soil material from the land surface by the action of rainfall and surface runoff.

Shoulder. The position that forms the uppermost inclined surface near the top of a hillslope. It is a transition from backslope to summit. The surface is dominantly convex in profile and erosional in origin.

Shrink-swell (in tables). The shrinking of soil when dry and the swelling when wet. Shrinking and swelling can damage roads, dams, building foundations, and other structures. It can also damage plant roots.

Side slope. A geomorphic component of hills consisting of a laterally planar area of a hillside. The overland waterflow is predominantly parallel.

Silt. As a soil separate, individual mineral particles that range in diameter from the upper limit of clay (0.002 millimeter) to the lower limit of very fine sand (0.05 millimeter). As a soil textural class, soil that is 80 percent or more silt and less than 12 percent clay.

Siltstone. Sedimentary rock made up of dominantly silt-sized particles.

Similar soils. Soils that share limits of diagnostic criteria, behave and perform in a similar manner, and have similar conservation needs or management requirements for the major land uses in the survey area.

Site index. A designation of the quality of a forest site based on the height of the dominant stand at an arbitrarily chosen age. For example, if the average height attained by dominant and codominant trees in a fully stocked stand at the age of 50 years is 75 feet, the site index is 75.

Slope. The inclination of the land surface from the horizontal. Percentage of slope is the vertical distance divided by horizontal distance, then multiplied by 100. Thus, a slope of 20 percent is a drop of 20 feet in 100 feet of horizontal distance. In this survey, classes for simple slopes are as follows:

<table>
<thead>
<tr>
<th>Slope Type</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>0 to 1 percent</td>
</tr>
<tr>
<td>Level and Nearly level</td>
<td>0 to 3 percent</td>
</tr>
<tr>
<td>Gently sloping</td>
<td>1 to 6 percent</td>
</tr>
<tr>
<td>Strongly sloping</td>
<td>6 to 12 percent</td>
</tr>
<tr>
<td>Moderately steep</td>
<td>12 to 18 percent</td>
</tr>
<tr>
<td>Steep</td>
<td>18 to 50 percent</td>
</tr>
<tr>
<td>Very steep</td>
<td>50 percent and higher</td>
</tr>
</tbody>
</table>
Sloughed till. Water-saturated till that has flowed slowly downhill from its original place of deposit by glacial ice. It may rest on other till, on glacial outwash, or on a glaciolacustrine deposit.

Slow refill (in tables). The slow filling of ponds, resulting from restricted permeability in the soil.

Soft bedrock. Bedrock that can be excavated with trenching machines, backhoes, small rippers, and other equipment commonly used in construction.

Soil. A natural, three-dimensional body at the earth’s surface. It is capable of supporting plants and has properties resulting from the integrated effect of climate and living matter acting on earthy parent material, as conditioned by relief over periods of time.

Soil separates. Mineral particles less than 2 millimeters in equivalent diameter and ranging between specified size limits. The names and sizes, in millimeters, of separates recognized in the United States are as follows:

- Very coarse sand: 2.0 to 1.0
- Coarse sand: 1.0 to 0.5
- Medium sand: 0.5 to 0.25
- Fine sand: 0.25 to 0.10
- Very fine sand: 0.10 to 0.05
- Silt: 0.05 to 0.002
- Clay: less than 0.002

Soil survey. (i) The systematic examination, description, classification, mapping and interpretation of soils in an area. (ii) The program of the National Cooperative Soil Survey that includes developing and implementing standards for describing, classifying, mapping, writing, and publishing information about soils of a specific area.

Solum. The upper part of a soil profile, above the C horizon, in which the processes of soil formation are active. The solum in soil consists of the A, E, and B horizons. Generally, the characteristics of the material in these horizons are unlike those of the material below the solum. The living roots and plant and animal activities are largely confined to the solum.

Stone line. A concentration of coarse fragments in a soil. Generally, it is indicative of an old weathered surface. In a cross section, the line may be one fragment or more thick. It generally overlies material that weathered in place and is overlain by recent sediment of variable thickness.

Stones. Rock fragments 10 to 24 inches (25 to 60 centimeters) in diameter if rounded or 15 to 24 inches (38 to 60 centimeters) in length if flat.

Stony. Refers to a soil containing stones in numbers that interfere with or prevent tillage.

Structure, soil. The arrangement of primary soil particles into compound particles or aggregates. The principal forms of soil structure are—platy (laminated), prismatic (vertical axis of aggregates longer than horizontal), columnar (prisms with rounded tops), blocky (angular or subangular), and granular. Structureless soils are either single grained (each grain by itself, as in dune sand) or massive (the particles adhering without any regular cleavage, as in many hardpans).

Subsoil. Technically, the B horizon; roughly, the part of the solum below plow depth.

Substratum. The part of the soil below the solum.

Subsurface layer. Any surface soil horizon (A, E, AB, or EB) below the surface layer.

Summit. The topographically highest position of a hillslope. It has a nearly level (planar or only slightly convex) surface.

Surface layer. The soil ordinarily moved in tillage, or its equivalent in uncultivated soil, ranging in depth from 4 to 10 inches (10 to 25 centimeters). Frequently designated as the “plow layer,” or the “Ap horizon.”
Surface soil. The A, E, AB, and EB horizons, considered collectively. It includes all subdivisions of these horizons.

Taxadjuncts. Soils that cannot be classified in a series recognized in the classification system. Such soils are named for a series they strongly resemble and are designated as taxadjuncts to that series because they differ in ways too small to be of consequence in interpreting their use and behavior. Soils are recognized as taxadjuncts only when one or more of their characteristics are slightly outside the range defined for the family of the series for which the soils are named.

Terminal moraine. A belt of thick glacial drift that generally marks the termination of important glacial advances.

Terrace (geologic). An old alluvial plain, ordinarily flat or undulating, bordering a river, a lake, or the sea.

Texture, soil. The relative proportions of sand, silt, and clay particles in a mass of soil. The basic textural classes, in order of increasing proportion of fine particles, are sand, loamy sand, sandy loam, loam, silt loam, silt, sandy clay loam, clay loam, silty clay loam, sandy clay, silty clay, and clay. The sand, loamy sand, and sandy loam classes may be further divided by specifying “coarse,” “fine,” or “very fine.”

Thin layer (in tables). Otherwise suitable soil material that is too thin for the specified use.

Till plain. An extensive area of nearly level to undulating soils underlain by glacial till.

Tilth, soil. The physical condition of the soil as related to tillage, seedbed preparation, seedling emergence, and root penetration.

Toe slope. The outermost inclined surface at the base of a hill; part of the footslope.

Topsoil. The upper part of the soil, which is the most favorable material for plant growth. It is ordinarily rich in organic matter and is used to topdress roadbanks, lawns, and land affected by mining.

Tread. The relatively flat surface of the terrace or floodplain that was created primarily by water deposited sediments.

Upland. Land at a higher elevation, in general, than the alluvial plain or stream terrace; land above the lowlands along streams.

Valley fill. In glaciated regions, material deposited in stream valleys by glacial meltwater. In nonglaciated regions, alluvium deposited by heavily loaded streams.

Water table. The upper surface of the groundwater or that level below which the soil is saturated with water; the upper surface is the locus of points in soil water at which the hydraulic pressure is equal to atmospheric pressure.

Water table, apparent. Same as water table. Apparent water table is the reference when the water table is identified within the soil profile.

Water table, perched. The surface of a local zone of saturation held above the main body of groundwater by a less permeable layer or stratum and separated from the main body of groundwater by an unsaturated zone. Perched water table is the reference when this condition is identified within the soil profile.

Weathering. All physical and chemical changes produced in rocks or other deposits at or near the earth’s surface by atmospheric agents. These changes result in disintegration and decomposition of the material.

Well graded. Refers to soil material consisting of coarse grained particles that are well distributed over a wide range in size or diameter. Such soil normally can be easily increased in density and bearing properties by compaction. Contrasts with poorly graded soil.

Wilting point (or permanent wilting point). The moisture content of soil, on an oven-dry basis, at which a plant (specifically a sunflower) wilts so much that it does not recover when placed in a humid, dark chamber.

Windthrow. The uprooting and tipping over of trees by the wind.
Tables
Table 1.—Temperature and Precipitation
(Recorded in the period 1971-2000 at: MILLPORT 2 NW, OH5315)

<table>
<thead>
<tr>
<th>Month</th>
<th>Temperature (Degrees F.)</th>
<th>Precipitation (Inches)</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg daily max</td>
<td>avg daily min</td>
<td>avg max</td>
<td>avg min</td>
</tr>
<tr>
<td>January</td>
<td>34.9</td>
<td>16.7</td>
<td>25.8</td>
<td>-18</td>
</tr>
<tr>
<td>February</td>
<td>39.3</td>
<td>18.9</td>
<td>29.1</td>
<td>-14</td>
</tr>
<tr>
<td>March</td>
<td>50.0</td>
<td>27.1</td>
<td>38.5</td>
<td>78</td>
</tr>
<tr>
<td>April</td>
<td>61.4</td>
<td>35.4</td>
<td>48.4</td>
<td>84</td>
</tr>
<tr>
<td>May</td>
<td>71.3</td>
<td>45.2</td>
<td>58.3</td>
<td>88</td>
</tr>
<tr>
<td>June</td>
<td>79.6</td>
<td>54.0</td>
<td>66.8</td>
<td>93</td>
</tr>
<tr>
<td>July</td>
<td>83.2</td>
<td>58.2</td>
<td>70.7</td>
<td>95</td>
</tr>
<tr>
<td>August</td>
<td>81.8</td>
<td>56.4</td>
<td>69.1</td>
<td>94</td>
</tr>
<tr>
<td>September</td>
<td>74.9</td>
<td>49.6</td>
<td>62.3</td>
<td>91</td>
</tr>
<tr>
<td>October</td>
<td>63.5</td>
<td>38.5</td>
<td>51.0</td>
<td>81</td>
</tr>
<tr>
<td>November</td>
<td>50.7</td>
<td>30.9</td>
<td>40.8</td>
<td>74</td>
</tr>
<tr>
<td>December</td>
<td>39.4</td>
<td>22.2</td>
<td>30.8</td>
<td>65</td>
</tr>
</tbody>
</table>

Average: 60.8 37.8 49.3 ---

Yearly Total: 2668 38.46 33.37 42.81 85 30.3

Average number of days per year with at least 1 inch of snow on the ground: 11

*A growing degree day is a unit of heat available for plant growth. It can be calculated by adding the maximum and minimum daily temperatures, dividing the sum by 2, and subtracting the temperature below which growth is minimal for the principal crops in the area (Threshold: 50 degrees F).
Table 2.—Freeze Dates in Spring and Fall
(Recorded in the period 1971-2000 at: MILLPORT 2 NW, OH5315)

<table>
<thead>
<tr>
<th>Probability</th>
<th>Temperature</th>
<th>Temperature</th>
<th>Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24°F or lower</td>
<td>28°F or lower</td>
<td>32°F or lower</td>
</tr>
<tr>
<td>Last freezing temperature in spring:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 year in 10 later than--</td>
<td>May 8</td>
<td>May 20</td>
<td>June 2</td>
</tr>
<tr>
<td>2 year in 10 later than--</td>
<td>May 3</td>
<td>May 14</td>
<td>May 28</td>
</tr>
<tr>
<td>5 year in 10 later than--</td>
<td>April 23</td>
<td>May 3</td>
<td>May 18</td>
</tr>
<tr>
<td>First freezing temperature in fall:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 yr in 10 earlier than--</td>
<td>October 10</td>
<td>September 23</td>
<td>September 11</td>
</tr>
<tr>
<td>2 yr in 10 earlier than--</td>
<td>October 15</td>
<td>September 28</td>
<td>September 15</td>
</tr>
<tr>
<td>5 yr in 10 earlier than--</td>
<td>October 25</td>
<td>October 9</td>
<td>September 23</td>
</tr>
</tbody>
</table>
Table 3.—Growing Season
(Recorded for the period 1971-2000 at MILLPORT 2 NW, OH5315)

<table>
<thead>
<tr>
<th>Probability</th>
<th>Daily Minimum Temperature During growing season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Higher than 24°F</td>
</tr>
<tr>
<td></td>
<td>Days</td>
</tr>
<tr>
<td>9 years in 10</td>
<td>164</td>
</tr>
<tr>
<td>8 years in 10</td>
<td>172</td>
</tr>
<tr>
<td>5 years in 10</td>
<td>186</td>
</tr>
<tr>
<td>2 years in 10</td>
<td>201</td>
</tr>
<tr>
<td>1 year in 10</td>
<td>208</td>
</tr>
</tbody>
</table>
Table 4.—Acreage and Proportionate Extent of the Map Units

<table>
<thead>
<tr>
<th>Map symbol</th>
<th>Soil name</th>
<th>Acres</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmF</td>
<td>Amanda loam, 35 to 70 percent slopes--</td>
<td>661</td>
<td>0.2</td>
</tr>
<tr>
<td>BkB</td>
<td>Berks channery silt loam, 2 to 6 percent slopes----------------------------</td>
<td>3,199</td>
<td>0.9</td>
</tr>
<tr>
<td>BkC</td>
<td>Berks channery silt loam, 6 to 15 percent slopes---------------------------</td>
<td>13,062</td>
<td>3.8</td>
</tr>
<tr>
<td>BkD</td>
<td>Berks channery silt loam, 15 to 25 percent slopes--------------------------</td>
<td>13,536</td>
<td>3.9</td>
</tr>
<tr>
<td>BkE</td>
<td>Berks channery silt loam, 25 to 40 percent slopes---------------------------</td>
<td>19,153</td>
<td>5.6</td>
</tr>
<tr>
<td>BmB</td>
<td>Berks-Urban land complex, 2 to 6 percent slopes-----------------------------</td>
<td>103</td>
<td>*</td>
</tr>
<tr>
<td>BmC</td>
<td>Berks-Urban land complex, 6 to 15 percent slopes-----------------------------</td>
<td>532</td>
<td>0.2</td>
</tr>
<tr>
<td>BmD</td>
<td>Berks-Urban land complex, 15 to 25 percent slopes---------------------------</td>
<td>335</td>
<td>*</td>
</tr>
<tr>
<td>BpF</td>
<td>Bethesda very channery silt loam, 25 to 70 percent slopes-------------------</td>
<td>814</td>
<td>0.2</td>
</tr>
<tr>
<td>BsC2</td>
<td>Bogart loam, 6 to 12 percent slopes, eroded-------------------------------</td>
<td>88</td>
<td>*</td>
</tr>
<tr>
<td>BtA</td>
<td>Bogart silt loam, 0 to 2 percent slopes----------------------------------</td>
<td>138</td>
<td>*</td>
</tr>
<tr>
<td>BtB</td>
<td>Bogart silt loam, 2 to 6 percent slopes----------------------------------</td>
<td>1,664</td>
<td>0.5</td>
</tr>
<tr>
<td>BtC</td>
<td>Bogart silt loam, 6 to 12 percent slopes----------------------------------</td>
<td>185</td>
<td>*</td>
</tr>
<tr>
<td>CaA</td>
<td>Calcutta silt loam, 0 to 3 percent slopes----------------------------------</td>
<td>324</td>
<td>*</td>
</tr>
<tr>
<td>CcB</td>
<td>Canfield silt loam, 2 to 6 percent slopes---------------------------------</td>
<td>35,167</td>
<td>10.3</td>
</tr>
<tr>
<td>CcC</td>
<td>Canfield silt loam, 6 to 12 percent slopes---------------------------------</td>
<td>43,345</td>
<td>12.6</td>
</tr>
<tr>
<td>CcD</td>
<td>Canfield silt loam, 12 to 20 percent slopes--------------------------------</td>
<td>6,337</td>
<td>1.8</td>
</tr>
<tr>
<td>CcE</td>
<td>Canfield silt loam, 20 to 35 percent slopes--------------------------------</td>
<td>2,150</td>
<td>0.6</td>
</tr>
<tr>
<td>CeA</td>
<td>Carlisle muck, 0 to 1 percent slopes---------------------------------------</td>
<td>301</td>
<td>*</td>
</tr>
<tr>
<td>CFD2</td>
<td>Chili loam, 12 to 20 percent slopes, eroded-------------------------------</td>
<td>165</td>
<td>*</td>
</tr>
<tr>
<td>Cha</td>
<td>Chili silt loam, 0 to 2 percent slopes-------------------------------------</td>
<td>170</td>
<td>*</td>
</tr>
<tr>
<td>ChB</td>
<td>Chili silt loam, 2 to 6 percent slopes-------------------------------------</td>
<td>2,648</td>
<td>0.8</td>
</tr>
<tr>
<td>ChC</td>
<td>Chili silt loam, 6 to 12 percent slopes-------------------------------------</td>
<td>2,168</td>
<td>0.6</td>
</tr>
<tr>
<td>ChM</td>
<td>Conotton gravelly loam, 2 to 6 percent slopes-------------------------------</td>
<td>431</td>
<td>*</td>
</tr>
<tr>
<td>ChN</td>
<td>Conotton gravelly loam, 6 to 12 percent slopes-------------------------------</td>
<td>201</td>
<td>*</td>
</tr>
<tr>
<td>CoB</td>
<td>Coshocton silt loam, 2 to 6 percent slopes---------------------------------</td>
<td>935</td>
<td>0.3</td>
</tr>
<tr>
<td>CoC</td>
<td>Coshocton silt loam, 6 to 15 percent slopes--------------------------------</td>
<td>9,256</td>
<td>2.7</td>
</tr>
<tr>
<td>CoD</td>
<td>Coshocton silt loam, 15 to 25 percent slopes------------------------------</td>
<td>324</td>
<td>*</td>
</tr>
<tr>
<td>DAM</td>
<td>Dam---</td>
<td>23</td>
<td>*</td>
</tr>
<tr>
<td>DgA</td>
<td>Dolis silt loam, 0 to 3 percent slopes--------------------------------------</td>
<td>255</td>
<td>*</td>
</tr>
<tr>
<td>ErC</td>
<td>Ernest silt loam, 6 to 15 percent slopes-----------------------------------</td>
<td>254</td>
<td>*</td>
</tr>
<tr>
<td>ErD</td>
<td>Ernest silt loam, 15 to 25 percent slopes----------------------------------</td>
<td>270</td>
<td>*</td>
</tr>
<tr>
<td>FbB</td>
<td>Fairpoint very channery silt loam, 0 to 8 percent slopes---------------------</td>
<td>1,410</td>
<td>0.4</td>
</tr>
<tr>
<td>FBD</td>
<td>Fairpoint very channery silt loam, 8 to 25 percent slopes-------------------</td>
<td>4,184</td>
<td>1.2</td>
</tr>
<tr>
<td>FfB</td>
<td>Fairpoint very channery silt loam, 25 to 70 percent slopes-------------------</td>
<td>13,722</td>
<td>4.0</td>
</tr>
<tr>
<td>FeB</td>
<td>Fairpoint silty clay loam, 0 to 8 percent slopes----------------------------</td>
<td>950</td>
<td>0.3</td>
</tr>
<tr>
<td>FCD</td>
<td>Fairpoint silty clay loam, 8 to 25 percent slopes--------------------------</td>
<td>2,897</td>
<td>0.8</td>
</tr>
<tr>
<td>FdA</td>
<td>Fitchville silt loam, 0 to 2 percent slopes--------------------------------</td>
<td>998</td>
<td>0.3</td>
</tr>
<tr>
<td>FdB</td>
<td>Fitchville silt loam, 2 to 6 percent slopes--------------------------------</td>
<td>869</td>
<td>0.3</td>
</tr>
<tr>
<td>FeA</td>
<td>Fluvaquents, silty, 0 to 1 percent slopes, frequently flooded-----------------</td>
<td>787</td>
<td>0.2</td>
</tr>
<tr>
<td>FnC2</td>
<td>Fredericktown gravelly loam, 6 to 15 percent slopes, eroded----------------</td>
<td>1,310</td>
<td>0.4</td>
</tr>
<tr>
<td>FnD2</td>
<td>Fredericktown gravelly loam, 15 to 25 percent slopes, eroded-----------------</td>
<td>277</td>
<td>*</td>
</tr>
<tr>
<td>FoB</td>
<td>Fredericktown silt loam, 2 to 6 percent slopes-------------------------------</td>
<td>1,442</td>
<td>0.3</td>
</tr>
<tr>
<td>Fra</td>
<td>Frenchtown silt loam, 0 to 2 percent slopes---------------------------------</td>
<td>404</td>
<td>0.1</td>
</tr>
<tr>
<td>GaB</td>
<td>Gavers silt loam, 2 to 6 percent slopes-------------------------------------</td>
<td>1,291</td>
<td>0.4</td>
</tr>
<tr>
<td>GaC</td>
<td>Germo fine sandy loam, 6 to 15 percent slopes--------------------------------</td>
<td>98</td>
<td>*</td>
</tr>
<tr>
<td>GeD</td>
<td>Germano fine sandy loam, 15 to 25 percent slopes----------------------------</td>
<td>61</td>
<td>*</td>
</tr>
<tr>
<td>GnB</td>
<td>Gilpin silt loam, 2 to 6 percent slopes-------------------------------------</td>
<td>3,565</td>
<td>1.0</td>
</tr>
<tr>
<td>Gnc</td>
<td>Gilpin silt loam, 6 to 15 percent slopes------------------------------------</td>
<td>6,769</td>
<td>2.0</td>
</tr>
<tr>
<td>Gnd</td>
<td>Gilpin silt loam, 15 to 25 percent slopes-----------------------------------</td>
<td>5,551</td>
<td>1.6</td>
</tr>
<tr>
<td>GoC</td>
<td>Gilpin-Coshocton silt loam, 6 to 15 percent slopes--------------------------</td>
<td>6,847</td>
<td>2.0</td>
</tr>
<tr>
<td>GoD</td>
<td>Gilpin-Coshocton silt loams, 15 to 25 percent slopes------------------------</td>
<td>1,235</td>
<td>0.4</td>
</tr>
<tr>
<td>GpC</td>
<td>Gilpin-Coshocton-Urban land complex, 6 to 15 percent slopes-----------------</td>
<td>376</td>
<td>0.1</td>
</tr>
<tr>
<td>GrB</td>
<td>Glenford silt loam, 2 to 6 percent slopes-----------------------------------</td>
<td>384</td>
<td>0.1</td>
</tr>
<tr>
<td>GrC</td>
<td>Glenford silt loam, 6 to 12 percent slopes----------------------------------</td>
<td>431</td>
<td>0.1</td>
</tr>
<tr>
<td>Guc</td>
<td>Guernsey silt loam, 6 to 15 percent slopes----------------------------------</td>
<td>393</td>
<td>0.1</td>
</tr>
<tr>
<td>Guc2</td>
<td>Guernsey silt loam, 6 to 15 percent slopes, eroded--------------------------</td>
<td>252</td>
<td>*</td>
</tr>
<tr>
<td>GuD</td>
<td>Guernsey silt loam, 15 to 25 percent slopes---------------------------------</td>
<td>79</td>
<td>*</td>
</tr>
<tr>
<td>HeB</td>
<td>Hazleton channery loam, 2 to 6 percent slopes-------------------------------</td>
<td>198</td>
<td>*</td>
</tr>
<tr>
<td>HeC</td>
<td>Hazleton channery loam, 6 to 15 percent slopes-------------------------------</td>
<td>1,766</td>
<td>0.5</td>
</tr>
<tr>
<td>HeD</td>
<td>Hazleton channery loam, 15 to 25 percent slopes-------------------------------</td>
<td>1,651</td>
<td>0.5</td>
</tr>
<tr>
<td>HeE</td>
<td>Hazleton channery loam, 25 to 40 percent slopes-------------------------------</td>
<td>2,437</td>
<td>0.8</td>
</tr>
<tr>
<td>HFF</td>
<td>Hazleton-Rock outcrop complex, 40 to 70 percent slopes-----------------------</td>
<td>2,171</td>
<td>0.6</td>
</tr>
<tr>
<td>HgF</td>
<td>Hazleton-Westmoreland channery loams, 40 to 70 percent slopes----------------</td>
<td>8,439</td>
<td>2.5</td>
</tr>
</tbody>
</table>

See footnote at end of table.
<table>
<thead>
<tr>
<th>Map symbol</th>
<th>Soil name</th>
<th>Acres</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>HKA</td>
<td>Holly silt loam, 0 to 2 percent slopes, frequently flooded</td>
<td>391</td>
<td>0.1</td>
</tr>
<tr>
<td>HIB</td>
<td>Homewood silt loam, 2 to 6 percent slopes</td>
<td>526</td>
<td>0.2</td>
</tr>
<tr>
<td>HmA</td>
<td>Homewood loam, 0 to 2 percent slopes</td>
<td>272</td>
<td>*</td>
</tr>
<tr>
<td>HmB</td>
<td>Homewood loam, 2 to 6 percent slopes</td>
<td>93</td>
<td>*</td>
</tr>
<tr>
<td>HOB</td>
<td>Homewood silt loam, 0 to 2 percent slopes</td>
<td>413</td>
<td>0.1</td>
</tr>
<tr>
<td>HOB</td>
<td>Homewood silt loam, 2 to 6 percent slopes</td>
<td>404</td>
<td>0.1</td>
</tr>
<tr>
<td>JWa</td>
<td>Jimtown silt loam, 0 to 2 percent slopes</td>
<td>176</td>
<td>*</td>
</tr>
<tr>
<td>JWb</td>
<td>Jimtown silt loam, 2 to 6 percent slopes</td>
<td>1,217</td>
<td>0.4</td>
</tr>
<tr>
<td>KeB</td>
<td>Keene silt loam, 2 to 6 percent slopes</td>
<td>2,714</td>
<td>0.8</td>
</tr>
<tr>
<td>KnB</td>
<td>Kensington silt loam, 2 to 6 percent slopes</td>
<td>80</td>
<td>*</td>
</tr>
<tr>
<td>KnC</td>
<td>Kensington silt loam, 6 to 15 percent slopes</td>
<td>6,541</td>
<td>1.9</td>
</tr>
<tr>
<td>KnD</td>
<td>Kensington silt loam, 15 to 25 percent slopes</td>
<td>3,679</td>
<td>1.1</td>
</tr>
<tr>
<td>LbA</td>
<td>Lobdell silt loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>1,181</td>
<td>0.3</td>
</tr>
<tr>
<td>LnA</td>
<td>Lorain silt loam, 0 to 2 percent slopes</td>
<td>731</td>
<td>0.2</td>
</tr>
<tr>
<td>McB</td>
<td>Mechanicsburg silt loam, 2 to 6 percent slopes</td>
<td>1,933</td>
<td>0.6</td>
</tr>
<tr>
<td>McC</td>
<td>Mechanicsburg silt loam, 6 to 15 percent slopes</td>
<td>1,418</td>
<td>0.4</td>
</tr>
<tr>
<td>MnB</td>
<td>Morristown silty clay loam, 0 to 8 percent slopes</td>
<td>483</td>
<td>0.1</td>
</tr>
<tr>
<td>MnD</td>
<td>Morristown silty clay loam, 8 to 25 percent slopes</td>
<td>723</td>
<td>0.2</td>
</tr>
<tr>
<td>MoB</td>
<td>Morristown channery silty clay loam, 0 to 8 percent slopes</td>
<td>163</td>
<td>*</td>
</tr>
<tr>
<td>MoD</td>
<td>Morristown channery silty clay loam, 8 to 25 percent slopes</td>
<td>539</td>
<td>0.2</td>
</tr>
<tr>
<td>OdA</td>
<td>Omlsted and Valley soils, 0 to 2 percent slopes</td>
<td>414</td>
<td>0.1</td>
</tr>
<tr>
<td>OmB</td>
<td>Omlga silt loam, 2 to 6 percent slopes</td>
<td>1,088</td>
<td>0.3</td>
</tr>
<tr>
<td>OmC</td>
<td>Omlga silt loam, 6 to 12 percent slopes</td>
<td>1,032</td>
<td>0.3</td>
</tr>
<tr>
<td>OrA</td>
<td>Orrville silt loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>1,555</td>
<td>1.2</td>
</tr>
<tr>
<td>Pg</td>
<td>Pits, gravel</td>
<td>426</td>
<td>0.1</td>
</tr>
<tr>
<td>RaB</td>
<td>Rainsboro silt loam, 2 to 6 percent slopes</td>
<td>919</td>
<td>0.3</td>
</tr>
<tr>
<td>RaC2</td>
<td>Rainsboro silt loam, 6 to 12 percent slopes, eroded</td>
<td>582</td>
<td>0.2</td>
</tr>
<tr>
<td>RbC</td>
<td>Rainsboro silt loam, 6 to 12 percent slopes, stony</td>
<td>88</td>
<td>*</td>
</tr>
<tr>
<td>RbA</td>
<td>Ravenna silt loam, 0 to 2 percent slopes</td>
<td>1,700</td>
<td>0.5</td>
</tr>
<tr>
<td>ReB</td>
<td>Ravenna silt loam, 2 to 6 percent slopes</td>
<td>8,451</td>
<td>2.5</td>
</tr>
<tr>
<td>RdH</td>
<td>Richland silt loam, 15 to 25 percent slopes, stony</td>
<td>272</td>
<td>*</td>
</tr>
<tr>
<td>RhE</td>
<td>Richland silt loam, 25 to 40 percent slopes, stony</td>
<td>204</td>
<td>*</td>
</tr>
<tr>
<td>RsB</td>
<td>Rittman silt loam, 2 to 6 percent slopes</td>
<td>4,436</td>
<td>1.3</td>
</tr>
<tr>
<td>RsC</td>
<td>Rittman silt loam, 6 to 12 percent slopes</td>
<td>3,226</td>
<td>0.9</td>
</tr>
<tr>
<td>RsD2</td>
<td>Rittman silt loam, 12 to 20 percent slopes, eroded</td>
<td>1,021</td>
<td>0.3</td>
</tr>
<tr>
<td>TeB</td>
<td>Teegarden silt loam, 2 to 6 percent slopes</td>
<td>784</td>
<td>0.2</td>
</tr>
<tr>
<td>TcC</td>
<td>Teegarden silt loam, 6 to 15 percent slopes, eroded</td>
<td>5,101</td>
<td>1.5</td>
</tr>
<tr>
<td>TeC2</td>
<td>Teegarden silt loam, 6 to 15 percent slopes, eroded</td>
<td>3,837</td>
<td>1.1</td>
</tr>
<tr>
<td>ToA</td>
<td>Tioga loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>3,626</td>
<td>1.1</td>
</tr>
<tr>
<td>Ua</td>
<td>Udorthents, loamy, 2 to 25 percent slopes</td>
<td>668</td>
<td>0.2</td>
</tr>
<tr>
<td>Ub</td>
<td>Udorthents, refuse substratum, 2 to 25 percent slopes</td>
<td>331</td>
<td>*</td>
</tr>
<tr>
<td>Uc</td>
<td>Udorthents-Pits complex, 0 to 70 percent slopes</td>
<td>1,668</td>
<td>0.5</td>
</tr>
<tr>
<td>UcK2</td>
<td>Upshur-Berks complex, 6 to 15 percent slopes, eroded</td>
<td>470</td>
<td>0.2</td>
</tr>
<tr>
<td>UdK2</td>
<td>Upshur-Berks complex, 15 to 25 percent slopes, eroded</td>
<td>602</td>
<td>0.2</td>
</tr>
<tr>
<td>UcK2</td>
<td>Upshur-Berks complex, 25 to 40 percent slopes, eroded</td>
<td>735</td>
<td>0.2</td>
</tr>
<tr>
<td>Ur</td>
<td>Urban land, 0 to 15 percent slopes</td>
<td>1,297</td>
<td>0.4</td>
</tr>
<tr>
<td>UtB</td>
<td>Urban land-Canfield complex, 2 to 6 percent slopes</td>
<td>2,692</td>
<td>0.8</td>
</tr>
<tr>
<td>UtC</td>
<td>Urban land-Canfield complex, 6 to 12 percent slopes</td>
<td>1,113</td>
<td>0.3</td>
</tr>
<tr>
<td>UvB</td>
<td>Urban land-Chillicothe complex, 2 to 6 percent slopes</td>
<td>2,039</td>
<td>1.1</td>
</tr>
<tr>
<td>VaA</td>
<td>Valley silt loam, 0 to 2 percent slopes</td>
<td>1,274</td>
<td>0.4</td>
</tr>
<tr>
<td>VbA</td>
<td>Valley silty clay loam, 0 to 2 percent slopes</td>
<td>92</td>
<td>*</td>
</tr>
<tr>
<td>VcA</td>
<td>Valley-Lorain silt loams, 0 to 2 percent slopes</td>
<td>2,383</td>
<td>0.7</td>
</tr>
<tr>
<td>VnB</td>
<td>Vandergrift silt loam, 2 to 6 percent slopes</td>
<td>963</td>
<td>0.3</td>
</tr>
<tr>
<td>Vnc</td>
<td>Vandergrift silt loam, 6 to 15 percent slopes</td>
<td>1,781</td>
<td>0.5</td>
</tr>
<tr>
<td>W</td>
<td>Water</td>
<td>2,967</td>
<td>0.9</td>
</tr>
<tr>
<td>WaA</td>
<td>Wadsworth silt loam, 0 to 2 percent slopes</td>
<td>249</td>
<td>*</td>
</tr>
<tr>
<td>WaB</td>
<td>Wadsworth silt loam, 2 to 6 percent slopes</td>
<td>1,348</td>
<td>0.4</td>
</tr>
<tr>
<td>WKe</td>
<td>Westmoreland-Berks complex, 25 to 40 percent slopes</td>
<td>3,530</td>
<td>1.0</td>
</tr>
<tr>
<td>WKF</td>
<td>Westmoreland-Berks complex, 40 to 70 percent slopes</td>
<td>6,858</td>
<td>2.0</td>
</tr>
<tr>
<td>Wmc</td>
<td>Westmoreland-Coshon silt loams, 8 to 15 percent slopes</td>
<td>1,293</td>
<td>0.4</td>
</tr>
<tr>
<td>WnD</td>
<td>Westmoreland-Coshon silt loams, 15 to 25 percent slopes</td>
<td>86</td>
<td>*</td>
</tr>
<tr>
<td>Woa</td>
<td>Wick silt loam, 0 to 2 percent slopes, frequently flooded</td>
<td>3,932</td>
<td>1.1</td>
</tr>
<tr>
<td>ZeA</td>
<td>Zepernick silt loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>7,971</td>
<td>2.3</td>
</tr>
</tbody>
</table>

| Total | 343,027 | 100.0 |

* Less than 0.1 percent.
<table>
<thead>
<tr>
<th>Map symbol</th>
<th>Soil name</th>
</tr>
</thead>
<tbody>
<tr>
<td>BkB</td>
<td>Berks channery silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>BtA</td>
<td>Bogart silt loam, 0 to 2 percent slopes</td>
</tr>
<tr>
<td>BtB</td>
<td>Bogart silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>CaA</td>
<td>Calcutta silt loam, 0 to 3 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>CoB</td>
<td>Coshocton silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>DgA</td>
<td>Doles silt loam, 0 to 3 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>FdA</td>
<td>Fitchville silt loam, 0 to 2 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>FdB</td>
<td>Fitchville silt loam, 2 to 6 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>GaB</td>
<td>Gavers silt loam, 2 to 6 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>GnB</td>
<td>Gilpin silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>GrB</td>
<td>Glenford silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>HkA</td>
<td>Holly silt loam, 0 to 2 percent slopes, frequently flooded (Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season)</td>
</tr>
<tr>
<td>HlB</td>
<td>Homewood silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>HmA</td>
<td>Homeworth loam, 0 to 2 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>HmB</td>
<td>Homeworth loam, 2 to 6 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>HoB</td>
<td>Homeworth silt loam, 2 to 6 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>JwA</td>
<td>Jimtown silt loam, 0 to 2 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>JwB</td>
<td>Jimtown silt loam, 2 to 6 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>KeB</td>
<td>Keene silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>KnB</td>
<td>Kensington silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>LnA</td>
<td>Lobdell silt loam, 0 to 2 percent slopes, occasionally flooded</td>
</tr>
<tr>
<td>LnB</td>
<td>Lorain silt loam, 0 to 2 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>MCB</td>
<td>Mechanicsburg silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>OmB</td>
<td>Omulga silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>OrA</td>
<td>Orrville silt loam, 0 to 2 percent slopes, occasionally flooded (Prime farmland if drained)</td>
</tr>
<tr>
<td>RaB</td>
<td>Rainsboro silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>ReA</td>
<td>Ravenna silt loam, 0 to 2 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>ReB</td>
<td>Ravenna silt loam, 2 to 6 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>RsB</td>
<td>Rittman silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>TeB</td>
<td>Teegearden silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>ToA</td>
<td>Tioga loam, 0 to 2 percent slopes, occasionally flooded</td>
</tr>
<tr>
<td>VnB</td>
<td>Vandergrift silt loam, 2 to 6 percent slopes</td>
</tr>
<tr>
<td>WaA</td>
<td>Wadsworth silt loam, 0 to 2 percent slopes (Prime farmland if drained)</td>
</tr>
<tr>
<td>WoA</td>
<td>Wick silt loam, 0 to 2 percent slopes, frequently flooded (Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season)</td>
</tr>
<tr>
<td>ZeA</td>
<td>Zepernick silt loam, 0 to 2 percent slopes, occasionally flooded (Prime farmland if drained)</td>
</tr>
<tr>
<td>Map symbol</td>
<td>Soil name</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>CeA</td>
<td>Carlisle muck, 0 to 1 percent slopes</td>
</tr>
<tr>
<td>FeA</td>
<td>Fluvaquents, silty, 0 to 1 percent slopes, frequently flooded</td>
</tr>
<tr>
<td>FrA</td>
<td>Frenchtown silt loam, 0 to 2 percent slopes</td>
</tr>
<tr>
<td>HkA</td>
<td>Holly silt loam, 0 to 2 percent slopes, frequently flooded</td>
</tr>
<tr>
<td>LnA</td>
<td>Lorain silt loam, 0 to 2 percent slopes</td>
</tr>
<tr>
<td>OdA</td>
<td>Olmsted and Valley soils, 0 to 2 percent slopes</td>
</tr>
<tr>
<td>VaA</td>
<td>Valley silt loam, 0 to 2 percent slopes</td>
</tr>
<tr>
<td>VbA</td>
<td>Valley silty clay loam, 0 to 2 percent slopes</td>
</tr>
<tr>
<td>VcA</td>
<td>Valley-Lorain silt loams, 0 to 2 percent slopes</td>
</tr>
<tr>
<td>WoA</td>
<td>Wick silt loam, 0 to 2 percent slopes, frequently flooded</td>
</tr>
<tr>
<td>Map symbol and map unit name</td>
<td>Hydric Component</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>DgA: Doles silt loam, 0 to 3 percent slopes</td>
<td>Wetter soil</td>
</tr>
<tr>
<td>FdA: Fitchville silt loam, 0 to 2 percent slopes</td>
<td>Wetter soil</td>
</tr>
<tr>
<td>FdB: Fitchville silt loam, 2 to 6 percent slopes</td>
<td>Wetter soils</td>
</tr>
<tr>
<td>GaB: Gavers silt loam, 2 to 6 percent slopes</td>
<td>Wetter soils</td>
</tr>
<tr>
<td>HmA: Homeworth loam, 0 to 2 percent slopes</td>
<td>Wetter soil</td>
</tr>
<tr>
<td>HmB: Homeworth loam, 2 to 6 percent slopes</td>
<td>Wetter soil</td>
</tr>
<tr>
<td>HoA: Homeworth silt loam, 0 to 2 percent slopes</td>
<td>Wetter soil</td>
</tr>
<tr>
<td>HoB: Homeworth silt loam, 2 to 6 percent slopes</td>
<td>Wetter soil</td>
</tr>
<tr>
<td>JwA: Jimtown silt loam, 0 to 2 percent slopes</td>
<td>Valley</td>
</tr>
<tr>
<td>JwB: Jimtown silt loam, 2 to 6 percent slopes</td>
<td>Valley</td>
</tr>
<tr>
<td>LbA: Lobdell silt loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>Holly</td>
</tr>
<tr>
<td>OrA: Orrville silt loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>Holly</td>
</tr>
<tr>
<td>ReA: Ravenna silt loam, 0 to 2 percent slopes</td>
<td>Wetter soils</td>
</tr>
<tr>
<td>ReB: Ravenna silt loam, 2 to 6 percent slopes</td>
<td>Wetter soils</td>
</tr>
<tr>
<td>ToA: Tioga loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>Poorly drained soils</td>
</tr>
<tr>
<td>WaA: Wadsworth silt loam, 0 to 2 percent slopes</td>
<td>Wetter soils</td>
</tr>
<tr>
<td>WaB: Wadsworth silt loam, 2 to 6 percent slopes</td>
<td>Wetter soils</td>
</tr>
<tr>
<td>ZeA: Zepernick silt loam, 0 to 2 percent slopes, occasionally flooded</td>
<td>Wick</td>
</tr>
</tbody>
</table>
Table 8.—Cropland Limitations and Hazards

(See text for a description of the limitations and hazards listed in this table. Absence of an entry indicates that crops generally are not grown on these components.)

<table>
<thead>
<tr>
<th>Soil name and map symbol</th>
<th>Cropland limitations and hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmF: Amanda</td>
<td>Excessive slope, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>BkB: Berks</td>
<td>Depth to bedrock, high potential for ground-water pollution, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>BkC: Berks</td>
<td>Depth to bedrock, high potential for ground-water pollution, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>BkD: Berks</td>
<td>Excessive slope, depth to bedrock, high potential for ground-water pollution, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>BkE: Berks</td>
<td>Excessive slope, depth to bedrock, high potential for ground-water pollution, excessive acidity, very high organic matter content, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>BmB: Berks</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban land</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban land</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban land</td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF: Bethesda</td>
<td>Excessive slope, gravelly surface, poor tilth, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>BsC2: Bogart</td>
<td>Part of the surface layer removed by erosion, seasonal high water table, high potential for ground-water pollution, fair tilth, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>BtA: Bogart</td>
<td>Seasonal high water table, surface compaction, high potential for ground-water pollution, surface crusting</td>
</tr>
<tr>
<td>BtB: Bogart</td>
<td>Seasonal high water table, surface compaction, high potential for ground-water pollution, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>BtC: Bogart</td>
<td>Seasonal high water table, surface compaction, high potential for ground-water pollution, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>CaA: Calcutta</td>
<td>Seasonal high water table, excessive acidity, frost action, very high organic matter content, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>Soil name and map symbol</td>
<td>Cropland limitations and hazards</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>CcB: Canfield</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>CcC: Canfield</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>CcD: Canfield</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>CcE: Canfield</td>
<td>Excessive slope, seasonal high water table, surface compaction, frost action, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>CeA: Carlisle</td>
<td>Ponded for extended periods, moderate potential for ground-water pollution, frost action, subsidence of the muck, very high organic matter content, wind erosion</td>
</tr>
<tr>
<td>CfD2: Chili</td>
<td>Part of the surface layer removed by erosion, high potential for ground-water pollution, fair tilth, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>ChA: Chili</td>
<td>Surface compaction, high potential for ground-water pollution, surface crusting</td>
</tr>
<tr>
<td>ChB: Chili</td>
<td>Surface compaction, high potential for ground-water pollution, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>ChC: Chili</td>
<td>Surface compaction, high potential for ground-water pollution, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>CmB: Conotton</td>
<td>High potential for ground-water pollution, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>CmC: Conotton</td>
<td>High potential for ground-water pollution, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>CoB: Coshocton</td>
<td>Surface compaction, frost action, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>CoC: Coshocton</td>
<td>Surface compaction, frost action, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>CoD: Coshocton</td>
<td>Excessive slope, surface compaction, frost action, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>DAM: Dam</td>
<td>Not rated</td>
</tr>
</tbody>
</table>
Table 8.—Cropland Limitations and Hazards—Continued

<table>
<thead>
<tr>
<th>Soil name and map symbol</th>
<th>Cropland limitations and hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>DgA: Doles--------------</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>ErC: Ernest--------------</td>
<td>Seasonal high water table, surface compaction, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>ErD: Ernest--------------</td>
<td>Excessive slope, seasonal high water table, surface compaction, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>FbB: Fairpoint------------</td>
<td>Gravelly surface, poor tilth, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>FbD: Fairpoint------------</td>
<td>Excessive slope, gravelly surface, poor tilth, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>FbF: Fairpoint------------</td>
<td>Excessive slope, gravelly surface, poor tilth, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>FcB: Fairpoint------------</td>
<td>Surface compaction, fair tilth, surface crusting, erosion hazard, limited available water capacity, clodding</td>
</tr>
<tr>
<td>FcD: Fairpoint------------</td>
<td>Excessive slope, surface compaction, fair tilth, surface crusting, easily eroded, erosion hazard, limited available water capacity, clodding</td>
</tr>
<tr>
<td>FdA: Fitchville-----------</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting</td>
</tr>
<tr>
<td>FdB: Fitchville-----------</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>FeA: Fluvaquents----------</td>
<td>Frequent flooding, ponded for extended periods, moderate potential for ground-water pollution, poor tilth</td>
</tr>
<tr>
<td>FnC2: Fredericktown-------</td>
<td>Part of the surface layer removed by erosion, moderate potential for ground-water pollution, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>FnD2: Fredericktown-------</td>
<td>Part of the surface layer removed by erosion, excessive slope, moderate potential for ground-water pollution, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>FoB: Fredericktown--------</td>
<td>Surface compaction, moderate potential for ground-water pollution, surface crusting, erosion hazard</td>
</tr>
</tbody>
</table>
Table 8.—Cropland Limitations and Hazards—Continued

<table>
<thead>
<tr>
<th>Soil name and map symbol</th>
<th>Cropland limitations and hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>FrA:</td>
<td>Ponding, surface compaction, frost action, surface crusting, limited available water capacity, restricted permeability, root restrictive layer</td>
</tr>
<tr>
<td>GaB:</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>GeC:</td>
<td>Depth to bedrock, high potential for ground-water pollution, easily eroded, erosion hazard, wind erosion, limited available water capacity</td>
</tr>
<tr>
<td>GeD:</td>
<td>Excessive slope, depth to bedrock, high potential for ground-water pollution, easily eroded, erosion hazard, wind erosion, limited available water capacity</td>
</tr>
<tr>
<td>GnB:</td>
<td>Surface compaction, depth to bedrock, high potential for ground-water pollution, surface crusting, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>GnC:</td>
<td>Surface compaction, depth to bedrock, high potential for ground-water pollution, surface crusting, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>GnD:</td>
<td>Excessive slope, surface compaction, depth to bedrock, high potential for ground-water pollution, surface crusting, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>GoC:</td>
<td>Surface compaction, depth to bedrock, high potential for ground-water pollution, surface crusting, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Coshocton:</td>
<td>Surface compaction, frost action, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>GoD:</td>
<td>Excessive slope, surface compaction, depth to bedrock, high potential for ground-water pollution, surface crusting, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Coshocton:</td>
<td>Excessive slope, surface compaction, frost action, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>GpC:</td>
<td>Not rated</td>
</tr>
<tr>
<td>Coshocton:</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban land:</td>
<td>Not rated</td>
</tr>
<tr>
<td>GrB:</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, erosion hazard</td>
</tr>
</tbody>
</table>
Table 8.—Cropland Limitations and Hazards—Continued

<table>
<thead>
<tr>
<th>Soil name and map symbol</th>
<th>Cropland limitations and hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrC: Glenford------------</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>GuC: Guernsey------------</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, easily eroded, erosion hazard, high clay content</td>
</tr>
<tr>
<td>GuC2: Guernsey-----------</td>
<td>Part of the surface layer removed by erosion, seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, fair tilth, surface crusting, easily eroded, erosion hazard, high clay content</td>
</tr>
<tr>
<td>GuD: Guernsey------------</td>
<td>Excessive slope, seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, easily eroded, erosion hazard, high clay content</td>
</tr>
<tr>
<td>HeB: Hazleton------------</td>
<td>Erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>HeC: Hazleton------------</td>
<td>Erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>HeD: Hazleton------------</td>
<td>Excessive slope, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>HeE: Hazleton------------</td>
<td>Excessive slope, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>HfF: Hazleton------------</td>
<td>Excessive slope, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Rock outcrop------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>HgF: Hazleton------------</td>
<td>Excessive slope, excessive acidity, very high organic matter content, erosion hazard</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Excessive slope, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>HkA: Holly---------------</td>
<td>Frequent flooding, seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action</td>
</tr>
<tr>
<td>HlB: Homewood------------</td>
<td>Surface compaction, surface crusting, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>HmA: Homeworth-----------</td>
<td>Seasonal high water table, frost action</td>
</tr>
<tr>
<td>Hmb: Homeworth-----------</td>
<td>Seasonal high water table, frost action, erosion hazard, restricted permeability, high clay content</td>
</tr>
<tr>
<td>Soil name and map symbol</td>
<td>Cropland limitations and hazards</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>HoA: Homeworth</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, high clay content</td>
</tr>
<tr>
<td>HoB: Homeworth</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard, restricted permeability, high clay content</td>
</tr>
<tr>
<td>JwA: Jimtown</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting</td>
</tr>
<tr>
<td>JwB: Jimtown</td>
<td>Seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>KeB: Keene</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>KnB: Kensington</td>
<td>Surface compaction, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>KnC: Kensington</td>
<td>Surface compaction, moderate potential for ground-water pollution, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>KnD: Kensington</td>
<td>Excessive slope, surface compaction, moderate potential for ground-water pollution, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>LbA: Lobdell</td>
<td>Occasional flooding, seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting</td>
</tr>
<tr>
<td>LnA: Lorain</td>
<td>Ponding, surface compaction, moderate potential for ground-water pollution, frost action, restricted permeability, high clay content</td>
</tr>
<tr>
<td>McB: Mechanicsburg</td>
<td>Surface compaction, moderate potential for ground-water pollution, surface crusting, erosion hazard</td>
</tr>
<tr>
<td>McC: Mechanicsburg</td>
<td>Surface compaction, moderate potential for ground-water pollution, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>MnB: Morristown</td>
<td>Surface compaction, fair tilth, surface crusting, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>MnD: Morristown</td>
<td>Excessive slope, surface compaction, fair tilth, surface crusting, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>MoB: Morristown</td>
<td>Poor tilth, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>MoD: Morristown</td>
<td>Excessive slope, poor tilth, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Soil name and map symbol</td>
<td>Cropland limitations and hazards</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>OdA:</td>
<td>OdA: Ponding, surface compaction, moderate potential for ground-water pollution, frost action</td>
</tr>
<tr>
<td>Valley</td>
<td>Valley: Ponding, surface compaction, moderate potential for ground-water pollution, frost action, restricted permeability, high clay content</td>
</tr>
<tr>
<td>OmB:</td>
<td>OmB: Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard, root restrictive layer</td>
</tr>
<tr>
<td>OmC:</td>
<td>OmC: Seasonal high water table, surface compaction, frost action, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>OrA:</td>
<td>OrA: Occasional flooding, seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting</td>
</tr>
<tr>
<td>Pg:</td>
<td>Pg: Not rated</td>
</tr>
<tr>
<td>RaB:</td>
<td>RaB: Surface compaction, frost action, surface crusting, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>RaC2:</td>
<td>RaC2: Part of the surface layer removed by erosion, surface compaction, frost action, fair tilth, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>RbC:</td>
<td>RbC: Stony surface, surface compaction, frost action, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>ReA:</td>
<td>ReA: Seasonal high water table, surface compaction, frost action, surface crusting, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>ReB:</td>
<td>ReB: Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>RhD:</td>
<td>RhD: Excessive slope, stony surface, surface compaction, moderate potential for ground-water pollution, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>RhE:</td>
<td>RhE: Excessive slope, stony surface, surface compaction, moderate potential for ground-water pollution, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>RsB:</td>
<td>RsB: Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>Soil name and map symbol</td>
<td>Cropland limitations and hazards</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>RsC: Rittman------------</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>RsD2: Rittman------------</td>
<td>Part of the surface layer removed by erosion, seasonal high water table, surface compaction, frost action, fair tilth, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>TeB: Teegarden------------</td>
<td>Seasonal high water table, surface compaction, surface crusting, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>TeC: Teegarden------------</td>
<td>Seasonal high water table, surface compaction, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>TeC2: Teegarden------------</td>
<td>Part of the surface layer removed by erosion, seasonal high water table, surface compaction, fair tilth, surface crusting, easily eroded, erosion hazard, limited available water capacity, root restrictive layer</td>
</tr>
<tr>
<td>ToA: Tioga---------------</td>
<td>Occasional flooding</td>
</tr>
<tr>
<td>Ua: Udorthents------------</td>
<td>Excessive slope, excessive acidity, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Ub: Udorthents------------</td>
<td>Excessive slope, excessive acidity, frost action, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Uc: Udorthents------------</td>
<td>Excessive slope, excessive acidity, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>UkC2: Upshur--------------</td>
<td>Part of the surface layer removed by erosion, surface compaction, frost action, fair tilth, surface crusting, easily eroded, erosion hazard, limited available water capacity, high clay content</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Part of the surface layer removed by erosion, depth to bedrock, high potential for ground-water pollution, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>UkD2: Upshur--------------</td>
<td>Part of the surface layer removed by erosion, excessive slope, surface compaction, frost action, fair tilth, surface crusting, easily eroded, erosion hazard, high clay content</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Part of the surface layer removed by erosion, excessive slope, depth to bedrock, high potential for ground-water pollution, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
</tbody>
</table>
Table 8.—Cropland Limitations and Hazards—Continued

<table>
<thead>
<tr>
<th>Soil name and map symbol</th>
<th>Cropland limitations and hazards</th>
</tr>
</thead>
<tbody>
<tr>
<td>UkE2:</td>
<td></td>
</tr>
<tr>
<td>Upshur-------------------</td>
<td>Part of the surface layer removed by erosion, excessive slope, surface compaction, frost action, fair tilth, surface crusting, easily eroded, erosion hazard, limited available water capacity, high clay content</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Part of the surface layer removed by erosion, excessive slope, depth to bedrock, high potential for ground-water pollution, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Ur:</td>
<td></td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>UtB:</td>
<td></td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>Utc:</td>
<td></td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>UvB:</td>
<td></td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>VaA:</td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Ponding, surface compaction, moderate potential for ground-water pollution, frost action, restricted permeability, high clay content</td>
</tr>
<tr>
<td>VbA:</td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Ponding, surface compaction, moderate potential for ground-water pollution, frost action, fair tilth, restricted permeability, high clay content</td>
</tr>
<tr>
<td>VcA:</td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Ponding, surface compaction, moderate potential for ground-water pollution, frost action, restricted permeability, high clay content</td>
</tr>
<tr>
<td>Lorain-------------------</td>
<td>Ponding, surface compaction, moderate potential for ground-water pollution, frost action, restricted permeability, high clay content</td>
</tr>
<tr>
<td>VnB:</td>
<td></td>
</tr>
<tr>
<td>Vandergrift-------------</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard, high clay content</td>
</tr>
<tr>
<td>VnC:</td>
<td></td>
</tr>
<tr>
<td>Vandergrift-------------</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, easily eroded, erosion hazard, high clay content</td>
</tr>
<tr>
<td>W:</td>
<td></td>
</tr>
<tr>
<td>Water-------------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>WaA:</td>
<td></td>
</tr>
<tr>
<td>Wadsworth--------------</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, limited available water capacity, restricted permeability, root restrictive layer</td>
</tr>
<tr>
<td>Soil name and map symbol</td>
<td>Cropland limitations and hazards</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>WaB:</td>
<td>Seasonal high water table, surface compaction, frost action, surface crusting, erosion hazard, limited available water capacity, restricted permeability, root restrictive layer</td>
</tr>
<tr>
<td>WkB:</td>
<td>Excessive slope, surface compaction, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Excessive slope, depth to bedrock, high potential for ground-water pollution, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Excessive slope, depth to bedrock, high potential for ground-water pollution, easily eroded, erosion hazard, limited available water capacity</td>
</tr>
<tr>
<td>WmC:</td>
<td>Surface compaction, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>WmD:</td>
<td>Excessive slope, surface compaction, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Surface compaction, frost action, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Excessive slope, surface compaction, frost action, surface crusting, easily eroded, erosion hazard</td>
</tr>
<tr>
<td>WoA:</td>
<td>Frequent flooding, seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action, surface crusting, high clay content</td>
</tr>
<tr>
<td>ZeA:</td>
<td>Occasional flooding, seasonal high water table, surface compaction, moderate potential for ground-water pollution, frost action</td>
</tr>
</tbody>
</table>
Table 9.—Crop Yield Index

(Estimated yields for soils with a yield index of 100 are: corn — 125 bushels; soybeans — 50 bushels; wheat — 54 bushels; oats — 80 bushels; and Orchardgrass-alfalfa hay — 5.0 tons. Refer to Crop Yield Index section in the text for more information on how this table was developed, and instructions on converting yield index numbers to estimated yields. Absence of a yield index indicates that the soil is not suited to the crop or the crop is generally not grown on the soil.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Corn</th>
<th>Soybeans</th>
<th>Wheat</th>
<th>Oats</th>
<th>Orchardgrass-alfalfa hay</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmF: Amanda--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>71</td>
<td>50</td>
<td>65</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>67</td>
<td>50</td>
<td>67</td>
<td>69</td>
<td>56</td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>50</td>
</tr>
<tr>
<td>BkE: Berks---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmB: Berks Urban Land----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmC: Berks Urban Land----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmD: Berks Urban Land----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BpF: Bethesda------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BsC2: Bogart-------------</td>
<td>78</td>
<td>70</td>
<td>67</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>BtA: Bogart-------------</td>
<td>98</td>
<td>84</td>
<td>100</td>
<td>95</td>
<td>90</td>
</tr>
<tr>
<td>BtB: Bogart-------------</td>
<td>96</td>
<td>82</td>
<td>100</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>BtC: Bogart-------------</td>
<td>85</td>
<td>74</td>
<td>72</td>
<td>72</td>
<td>86</td>
</tr>
<tr>
<td>CaA: Carlisle------------</td>
<td>85</td>
<td>80</td>
<td>81</td>
<td>94</td>
<td>68</td>
</tr>
<tr>
<td>CcB: Canfield------------</td>
<td>94</td>
<td>70</td>
<td>87</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>CcC: Canfield------------</td>
<td>86</td>
<td>66</td>
<td>83</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>CcD: Canfield------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>90</td>
</tr>
<tr>
<td>CcE: Canfield------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CeA: Carlisle------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 9.—Crop Yield Index—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Corn</th>
<th>Soybeans</th>
<th>Wheat</th>
<th>Oats</th>
<th>Orchardgrass-alfalfa hay</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD2:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>64</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChA:</td>
<td>88</td>
<td>80</td>
<td>74</td>
<td>100</td>
<td>92</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChB:</td>
<td>87</td>
<td>76</td>
<td>70</td>
<td>98</td>
<td>92</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChC:</td>
<td>78</td>
<td>72</td>
<td>59</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMB:</td>
<td>60</td>
<td>44</td>
<td>52</td>
<td>65</td>
<td>58</td>
</tr>
<tr>
<td>Conotton-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMB:</td>
<td>52</td>
<td>44</td>
<td>46</td>
<td>60</td>
<td>56</td>
</tr>
<tr>
<td>Conotton-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COB:</td>
<td>91</td>
<td>70</td>
<td>78</td>
<td>79</td>
<td>90</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COC:</td>
<td>86</td>
<td>50</td>
<td>72</td>
<td>66</td>
<td>80</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>70</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAM:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dam----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DGA:</td>
<td>81</td>
<td>76</td>
<td>83</td>
<td>---</td>
<td>80</td>
</tr>
<tr>
<td>Doles---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERC:</td>
<td>76</td>
<td>50</td>
<td>65</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Ernest--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERD:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>50</td>
</tr>
<tr>
<td>Ernest--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDB:</td>
<td>42</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>50</td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBD:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>50</td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FBF:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCB:</td>
<td>---</td>
<td>---</td>
<td>46</td>
<td>56</td>
<td>50</td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FCD:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>40</td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDA:</td>
<td>90</td>
<td>74</td>
<td>72</td>
<td>90</td>
<td>86</td>
</tr>
<tr>
<td>Fitchville---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FDB:</td>
<td>88</td>
<td>66</td>
<td>69</td>
<td>85</td>
<td>86</td>
</tr>
<tr>
<td>Fitchville---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FEA:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fluvaquents--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FNC2:</td>
<td>80</td>
<td>68</td>
<td>67</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>Fredericktown-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Corn</td>
<td>Soybeans</td>
<td>Wheat</td>
<td>Oats</td>
<td>Orchardgrass</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>--------------</td>
</tr>
<tr>
<td>FoB: Fredericktown-------</td>
<td>92</td>
<td>76</td>
<td>74</td>
<td>98</td>
<td>92</td>
</tr>
<tr>
<td>FrA: Frenchtown-----------</td>
<td>74</td>
<td>60</td>
<td>63</td>
<td>88</td>
<td>50</td>
</tr>
<tr>
<td>GaB: Gavers---------------</td>
<td>80</td>
<td>74</td>
<td>63</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td>GeC: Germano--------------</td>
<td>76</td>
<td>56</td>
<td>83</td>
<td>69</td>
<td>86</td>
</tr>
<tr>
<td>GeD: Germano--------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>76</td>
</tr>
<tr>
<td>GnB: Gilpin---------------</td>
<td>81</td>
<td>50</td>
<td>80</td>
<td>81</td>
<td>60</td>
</tr>
<tr>
<td>Gnc: Gilpin---------------</td>
<td>76</td>
<td>40</td>
<td>72</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Gnd: Gilpin---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>50</td>
</tr>
<tr>
<td>GoC: Gilpin Coshocton-----</td>
<td>86</td>
<td>44</td>
<td>72</td>
<td>75</td>
<td>62</td>
</tr>
<tr>
<td>GoD: Gilpin Coshocton-----</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>54</td>
</tr>
<tr>
<td>Ggc: Gilpin Coshocton Urban Land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GrB: Glenford-------------</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>GrC: Glenford-------------</td>
<td>91</td>
<td>60</td>
<td>85</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>GuC: Guernsey-------------</td>
<td>80</td>
<td>70</td>
<td>80</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>GuC2: Guernsey------------</td>
<td>72</td>
<td>50</td>
<td>74</td>
<td>72</td>
<td>86</td>
</tr>
<tr>
<td>GuD: Guernsey-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>80</td>
</tr>
<tr>
<td>HeB: Hazleton-------------</td>
<td>94</td>
<td>---</td>
<td>83</td>
<td>94</td>
<td>70</td>
</tr>
<tr>
<td>HeC: Hazleton-------------</td>
<td>87</td>
<td>---</td>
<td>74</td>
<td>88</td>
<td>68</td>
</tr>
<tr>
<td>HeD: Hazleton-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>64</td>
</tr>
<tr>
<td>HeE: Hazleton-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Corn</td>
<td>Soybeans</td>
<td>Wheat</td>
<td>Oats</td>
<td>Orchardgrass - alfalfa hay</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>HFF: Hasleton------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HgF: Hasleton------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKA: Holly---------------</td>
<td>74</td>
<td>64</td>
<td>65</td>
<td>71</td>
<td>76</td>
</tr>
<tr>
<td>HlB: Homewood------------</td>
<td>97</td>
<td>70</td>
<td>83</td>
<td>95</td>
<td>96</td>
</tr>
<tr>
<td>HmA: Homeworth-----------</td>
<td>88</td>
<td>76</td>
<td>85</td>
<td>94</td>
<td>84</td>
</tr>
<tr>
<td>HmB: Homeworth-----------</td>
<td>86</td>
<td>70</td>
<td>81</td>
<td>88</td>
<td>80</td>
</tr>
<tr>
<td>HoA: Homeworth-----------</td>
<td>88</td>
<td>76</td>
<td>85</td>
<td>94</td>
<td>84</td>
</tr>
<tr>
<td>HoB: Homeworth-----------</td>
<td>86</td>
<td>70</td>
<td>81</td>
<td>88</td>
<td>80</td>
</tr>
<tr>
<td>JwA: Jimtown-------------</td>
<td>86</td>
<td>54</td>
<td>74</td>
<td>88</td>
<td>80</td>
</tr>
<tr>
<td>JwB: Jimtown-------------</td>
<td>85</td>
<td>50</td>
<td>70</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>KeB: Keene---------------</td>
<td>88</td>
<td>60</td>
<td>74</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>KnB: Kensington----------</td>
<td>94</td>
<td>70</td>
<td>87</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>KnC: Kensington----------</td>
<td>86</td>
<td>66</td>
<td>83</td>
<td>96</td>
<td>96</td>
</tr>
<tr>
<td>KnD: Kensington----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>90</td>
</tr>
<tr>
<td>LnA: Lorain--------------</td>
<td>94</td>
<td>74</td>
<td>100</td>
<td>98</td>
<td>74</td>
</tr>
<tr>
<td>McB: Mechanicsburg-------</td>
<td>94</td>
<td>70</td>
<td>83</td>
<td>94</td>
<td>100</td>
</tr>
<tr>
<td>McC: Mechanicsburg-------</td>
<td>86</td>
<td>60</td>
<td>78</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>MnB: Morristown----------</td>
<td>---</td>
<td>---</td>
<td>56</td>
<td>62</td>
<td>60</td>
</tr>
<tr>
<td>MnD: Morristown----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>50</td>
</tr>
<tr>
<td>MoB: Morristown----------</td>
<td>47</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MoD: Morristown----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 9.—Crop Yield Index—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Corn</th>
<th>Soybeans</th>
<th>Wheat</th>
<th>Oats</th>
<th>Orchardgrass and alfalfa hay</th>
</tr>
</thead>
<tbody>
<tr>
<td>OdA: Odland-----------------</td>
<td>90</td>
<td>60</td>
<td>48</td>
<td>85</td>
<td>82</td>
</tr>
<tr>
<td>Olmsted-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omb: Omulga-----------------</td>
<td>88</td>
<td>74</td>
<td>83</td>
<td>81</td>
<td>96</td>
</tr>
<tr>
<td>Omc: Omulga-----------------</td>
<td>80</td>
<td>66</td>
<td>70</td>
<td>75</td>
<td>90</td>
</tr>
<tr>
<td>OrA: Orrville-----------------</td>
<td>89</td>
<td>64</td>
<td>87</td>
<td>94</td>
<td>90</td>
</tr>
<tr>
<td>Pg: Pits-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RaB: Rainsboro-----------------</td>
<td>90</td>
<td>74</td>
<td>87</td>
<td>81</td>
<td>68</td>
</tr>
<tr>
<td>RaC2: Rainsboro-----------------</td>
<td>79</td>
<td>60</td>
<td>69</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Rbc: Rainsboro-----------------</td>
<td>76</td>
<td>60</td>
<td>69</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Rea: Ravenna-----------------</td>
<td>81</td>
<td>56</td>
<td>65</td>
<td>88</td>
<td>72</td>
</tr>
<tr>
<td>ReB: Ravenna-----------------</td>
<td>78</td>
<td>56</td>
<td>61</td>
<td>88</td>
<td>70</td>
</tr>
<tr>
<td>RhD: Richland-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>60</td>
</tr>
<tr>
<td>RhE: Richland-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ReB: Rittman-----------------</td>
<td>86</td>
<td>92</td>
<td>87</td>
<td>92</td>
<td>88</td>
</tr>
<tr>
<td>RsC: Rittman-----------------</td>
<td>78</td>
<td>70</td>
<td>70</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>RsD2: Rittman-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>62</td>
</tr>
<tr>
<td>TbB: Teegarden-----------------</td>
<td>96</td>
<td>70</td>
<td>83</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td>TeC: Teegarden-----------------</td>
<td>88</td>
<td>60</td>
<td>78</td>
<td>91</td>
<td>90</td>
</tr>
<tr>
<td>TeC2: Teegarden-----------------</td>
<td>86</td>
<td>58</td>
<td>74</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>ToA: Tioga-----------------</td>
<td>92</td>
<td>72</td>
<td>91</td>
<td>94</td>
<td>76</td>
</tr>
<tr>
<td>Ua: Udorthents-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ub: Udorthents-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Corn</td>
<td>Soybeans</td>
<td>Wheat</td>
<td>Oats</td>
<td>Orchardgrass - alfalfa hay</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkC2:</td>
<td>68</td>
<td>40</td>
<td>57</td>
<td>75</td>
<td>70</td>
</tr>
<tr>
<td>Upshur------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Upshur------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkE2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ur:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UvB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaA:</td>
<td>74</td>
<td>58</td>
<td>56</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Valley------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VbA:</td>
<td>71</td>
<td>44</td>
<td>56</td>
<td>75</td>
<td>50</td>
</tr>
<tr>
<td>Valley------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VcA:</td>
<td>77</td>
<td>44</td>
<td>56</td>
<td>75</td>
<td>60</td>
</tr>
<tr>
<td>Valley------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnB:</td>
<td>72</td>
<td>70</td>
<td>74</td>
<td>81</td>
<td>60</td>
</tr>
<tr>
<td>Vandergrift-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vnc:</td>
<td>64</td>
<td>60</td>
<td>65</td>
<td>75</td>
<td>56</td>
</tr>
<tr>
<td>Vandergrift-------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaA:</td>
<td>87</td>
<td>78</td>
<td>78</td>
<td>84</td>
<td>80</td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaB:</td>
<td>83</td>
<td>74</td>
<td>70</td>
<td>81</td>
<td>78</td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Corn</td>
<td>Soybeans</td>
<td>Wheat</td>
<td>Oats</td>
<td>Orchardgrass -alfalfa hay</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>WmC:</td>
<td>86</td>
<td>60</td>
<td>74</td>
<td>76</td>
<td>90</td>
</tr>
<tr>
<td>Westmoreland--------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmD:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>90</td>
</tr>
<tr>
<td>Westmoreland--------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WoA:</td>
<td>65</td>
<td>56</td>
<td>52</td>
<td>62</td>
<td>68</td>
</tr>
<tr>
<td>Wick-----------------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZeA:</td>
<td>78</td>
<td>58</td>
<td>57</td>
<td>75</td>
<td>74</td>
</tr>
<tr>
<td>Zepernick-----------------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
Table 10.—Capability Classes and Subclasses

<table>
<thead>
<tr>
<th>Capability class</th>
<th>Capability subclass</th>
<th>Acreage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unclassified</td>
<td>---</td>
<td>56,810</td>
</tr>
<tr>
<td>1</td>
<td>---</td>
<td>4,319</td>
</tr>
<tr>
<td>2</td>
<td>e</td>
<td>66,671</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>14,006</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>153</td>
</tr>
<tr>
<td>3</td>
<td>e</td>
<td>96,813</td>
</tr>
<tr>
<td></td>
<td>w</td>
<td>4,915</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>1,678</td>
</tr>
<tr>
<td>4</td>
<td>e</td>
<td>31,236</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>4,636</td>
</tr>
<tr>
<td>5</td>
<td>w</td>
<td>4,597</td>
</tr>
<tr>
<td>6</td>
<td>e</td>
<td>24,501</td>
</tr>
<tr>
<td></td>
<td>s</td>
<td>4,015</td>
</tr>
<tr>
<td>7</td>
<td>e</td>
<td>28,677</td>
</tr>
</tbody>
</table>
Table 11.—Woodland Management

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Erosion hazard</th>
<th>Seedling mortality</th>
<th>Soil rutting hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda--------------</td>
<td>Very severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>BkB: Berks--------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>BkC: Berks--------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>BkD: Berks--------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>BkE: Berks--------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>BmB: Berks--------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks--------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks--------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF: Bethesda------------</td>
<td>Severe</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>BsC2: Bogart-------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>BtA: Bogart-------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>BtB: Bogart-------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>BtC: Bogart-------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Erosion hazard</td>
<td>Seedling mortality</td>
<td>Soil rutting hazard</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>CaA: Calcutta-</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.04</td>
<td>Wetness</td>
</tr>
<tr>
<td>CoB: Canfield-</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low</td>
</tr>
<tr>
<td>CoC: Canfield-</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.22</td>
<td>Low</td>
</tr>
<tr>
<td>CoD: Canfield-</td>
<td>Moderate</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.39</td>
<td>Wetness</td>
</tr>
<tr>
<td>CoE: Canfield-</td>
<td>Severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.67</td>
<td>Low</td>
</tr>
<tr>
<td>CeA: Carlisle-</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>ChA: Chili-</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.27</td>
<td>Low</td>
</tr>
<tr>
<td>ChB: Chili-</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td>Low</td>
</tr>
<tr>
<td>ChC: Chili-</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.13</td>
<td>Low</td>
</tr>
<tr>
<td>CmB: Conotton-</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td>Low</td>
</tr>
<tr>
<td>CmC: Conotton-</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td>Low</td>
</tr>
<tr>
<td>CoB: Coshocton-</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low</td>
</tr>
<tr>
<td>CoC: Coshocton-</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Low</td>
</tr>
<tr>
<td>CoD: Coshocton-</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.49</td>
<td>Low</td>
</tr>
<tr>
<td>DAM: Dam-</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Erosion hazard</td>
<td>Seedling mortality</td>
<td>Soil rutting hazard</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>DgA: Doles--------------</td>
<td>Slight</td>
<td>Water erosion 0.04</td>
<td>High</td>
</tr>
<tr>
<td>ErC: Ernest-------------</td>
<td>Moderate</td>
<td>Water erosion 0.26</td>
<td>High</td>
</tr>
<tr>
<td>ErD: Ernest-------------</td>
<td>Moderate</td>
<td>Water erosion 0.49</td>
<td>Low</td>
</tr>
<tr>
<td>FbB: Fairpoint----------</td>
<td>Slight</td>
<td>Water erosion 0.05</td>
<td>Low</td>
</tr>
<tr>
<td>FbD: Fairpoint----------</td>
<td>Moderate</td>
<td>Water erosion 0.28</td>
<td>Low</td>
</tr>
<tr>
<td>FbF: Fairpoint----------</td>
<td>Severe</td>
<td>Water erosion 0.92</td>
<td>Low</td>
</tr>
<tr>
<td>FcB: Fairpoint----------</td>
<td>Slight</td>
<td>Water erosion 0.10</td>
<td>Low</td>
</tr>
<tr>
<td>FcD: Fairpoint----------</td>
<td>Moderate</td>
<td>Water erosion 0.40</td>
<td>Low</td>
</tr>
<tr>
<td>FdA: Fitchville---------</td>
<td>Slight</td>
<td>Water erosion 0.02</td>
<td>High</td>
</tr>
<tr>
<td>FdD: Fitchville---------</td>
<td>Slight</td>
<td>Water erosion 0.10</td>
<td>High</td>
</tr>
<tr>
<td>FdB: Fitchville---------</td>
<td>Slight</td>
<td>Water erosion 0.01</td>
<td>High</td>
</tr>
<tr>
<td>FdC: Fitchville---------</td>
<td>Slight</td>
<td>Water erosion 0.16</td>
<td>Low</td>
</tr>
<tr>
<td>FdD2: Fredericktown-----</td>
<td>Moderate</td>
<td>Water erosion 0.34</td>
<td>Low</td>
</tr>
<tr>
<td>FbD: Fredericktown-----</td>
<td>Moderate</td>
<td>Water erosion 0.05</td>
<td>Low</td>
</tr>
<tr>
<td>FbB: Fredericktown-----</td>
<td>Slight</td>
<td>Water erosion 0.02</td>
<td>High</td>
</tr>
<tr>
<td>FbB: Fredericktown-----</td>
<td>Slight</td>
<td>Water erosion 0.10</td>
<td>High</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Erosion hazard</td>
<td>Seedling mortality</td>
<td>Soil rutting hazard</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GeC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano------------------</td>
<td>Slight</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td>Low strength</td>
</tr>
<tr>
<td>GeD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano------------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.34</td>
<td>Low strength</td>
</tr>
<tr>
<td>GnB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td>Low strength</td>
</tr>
<tr>
<td>GcC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td>Low strength</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Low strength</td>
</tr>
<tr>
<td>GcD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.34</td>
<td>Low strength</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.49</td>
<td>Low strength</td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td>Low strength</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Low strength</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>GcB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford---------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Wetness</td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford--------------</td>
<td>Moderate</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Wetness</td>
</tr>
<tr>
<td>GcC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey---------------</td>
<td>Moderate</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Wetness</td>
</tr>
<tr>
<td>GuC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey---------------</td>
<td>Moderate</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Wetness</td>
</tr>
<tr>
<td>GuD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey---------------</td>
<td>Moderate</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.49</td>
<td>Wetness</td>
</tr>
<tr>
<td>HeB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton---------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td>Low strength</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Erosion hazard</td>
<td>Seeding mortality</td>
<td>Soil rutting hazard</td>
</tr>
<tr>
<td>------------------------------</td>
<td>----------------</td>
<td>-------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HeC:</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Water erosion</td>
<td>0.16</td>
<td>Low strength</td>
</tr>
<tr>
<td>HeD:</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Water erosion</td>
<td>0.34</td>
<td>Low strength</td>
</tr>
<tr>
<td>HeE:</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Water erosion</td>
<td>0.56</td>
<td>Low strength</td>
</tr>
<tr>
<td>HfF:</td>
<td>Very severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Water erosion</td>
<td>1.00</td>
<td>Low strength</td>
</tr>
<tr>
<td>Rock Outcrop</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>HgF:</td>
<td>Very severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Water erosion</td>
<td>1.00</td>
<td>Low strength</td>
</tr>
<tr>
<td>Hka:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>Holly</td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>Hlb:</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Homewood</td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low strength</td>
</tr>
<tr>
<td>Hma:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>Homewood</td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>Hmb:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>Homewood</td>
<td>Water erosion</td>
<td>0.05</td>
<td>Wetness</td>
</tr>
<tr>
<td>Hoa:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>Homewood</td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>Hob:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>Homewood</td>
<td>Water erosion</td>
<td>0.05</td>
<td>Wetness</td>
</tr>
<tr>
<td>Jwa:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>Jimtown</td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>Jwb:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>Jimtown</td>
<td>Water erosion</td>
<td>0.05</td>
<td>Wetness</td>
</tr>
<tr>
<td>Keb:</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Keene</td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low strength</td>
</tr>
<tr>
<td>Knb:</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Kensington</td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low strength</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Erosion hazard</td>
<td>Seedling mortality</td>
<td>Soil rutting hazard</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>KnC:</td>
<td>Kensington--------</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Low strength</td>
</tr>
<tr>
<td>KnD:</td>
<td>Kensington--------</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.49</td>
<td>Low strength</td>
</tr>
<tr>
<td>LbA:</td>
<td>Lobdell------------</td>
<td>Slight</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.02</td>
<td>Wetness</td>
</tr>
<tr>
<td>LnA:</td>
<td>Lorain------------</td>
<td>Slight</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>McB:</td>
<td>Mechanicsburg-----</td>
<td>Slight</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low strength</td>
</tr>
<tr>
<td>McC:</td>
<td>Mechanicsburg-----</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Low strength</td>
</tr>
<tr>
<td>MnB:</td>
<td>Morristown---------</td>
<td>Slight</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Soil reaction</td>
</tr>
<tr>
<td>MnD:</td>
<td>Morristown---------</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.40</td>
<td>Soil reaction</td>
</tr>
<tr>
<td>MoB:</td>
<td>Morristown---------</td>
<td>Slight</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td>Soil reaction</td>
</tr>
<tr>
<td>MoD:</td>
<td>Morristown---------</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.28</td>
<td>Soil reaction</td>
</tr>
<tr>
<td>OdA:</td>
<td>Olmsted------------</td>
<td>Slight</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>Valley--------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>OmB:</td>
<td>Omulga------------</td>
<td>Slight</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low strength</td>
</tr>
<tr>
<td>OmC:</td>
<td>Omulga------------</td>
<td>Moderate</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Low strength</td>
</tr>
<tr>
<td>OrA:</td>
<td>Orrville----------</td>
<td>Slight</td>
<td>High</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.02</td>
<td>Wetness</td>
</tr>
<tr>
<td>Pg:</td>
<td>Pits--------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>RaB:</td>
<td>Rainsboro---------</td>
<td>Slight</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low strength</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Erosion hazard</td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>-----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>RaC2: Rainsboro-----------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.22</td>
</tr>
<tr>
<td>RbC: Rainsboro-----------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.22</td>
</tr>
<tr>
<td>ReA: Ravenna-------------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.02</td>
</tr>
<tr>
<td>ReB: Ravenna-------------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.10</td>
</tr>
<tr>
<td>RhD: Richland------------</td>
<td>Moderate</td>
<td>Water erosion</td>
<td>0.49</td>
</tr>
<tr>
<td>RhE: Richland------------</td>
<td>Severe</td>
<td>Water erosion</td>
<td>0.79</td>
</tr>
<tr>
<td>RsB: Rittman-------------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.10</td>
</tr>
<tr>
<td>RsC: Rittman-------------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.22</td>
</tr>
<tr>
<td>RsD2: Rittman------------</td>
<td>Moderate</td>
<td>Water erosion</td>
<td>0.39</td>
</tr>
<tr>
<td>TbB: Teegarden-----------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.10</td>
</tr>
<tr>
<td>TbC: Teegarden-----------</td>
<td>Moderate</td>
<td>Water erosion</td>
<td>0.26</td>
</tr>
<tr>
<td>TbC2: Teegarden----------</td>
<td>Moderate</td>
<td>Water erosion</td>
<td>0.26</td>
</tr>
<tr>
<td>ToA: Tioga---------------</td>
<td>Slight</td>
<td>Water erosion</td>
<td>0.02</td>
</tr>
<tr>
<td>Ua: Udorthents-----------</td>
<td>Moderate</td>
<td>Water erosion</td>
<td>0.22</td>
</tr>
<tr>
<td>Ub: Udorthents-----------</td>
<td>Moderate</td>
<td>Water erosion</td>
<td>0.22</td>
</tr>
<tr>
<td>Uc: Udorthents-----------</td>
<td>Moderate</td>
<td>Water erosion</td>
<td>0.60</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Erosion hazard</td>
<td>Seedling mortality</td>
<td>Soil rutting hazard</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>UkC2:</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.26</td>
<td>Low strength</td>
</tr>
<tr>
<td>Berks</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td>Low strength</td>
</tr>
<tr>
<td>UkD2:</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.49</td>
<td>Low strength</td>
</tr>
<tr>
<td>Berks</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.34</td>
<td>Low strength</td>
</tr>
<tr>
<td>Ur:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.10</td>
<td>Low strength</td>
</tr>
<tr>
<td>UtC:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.22</td>
<td>Low strength</td>
</tr>
<tr>
<td>UvB:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>Slight</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td>Low strength</td>
</tr>
<tr>
<td>VaA:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>VbA:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>VoA:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>Lorain-------------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.01</td>
<td>Wetness</td>
</tr>
<tr>
<td>VnB:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.05</td>
<td>Wetness</td>
</tr>
<tr>
<td>VnC:</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.16</td>
<td>Wetness</td>
</tr>
</tbody>
</table>
Table 11.—Woodland Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Erosion hazard</th>
<th>Seedling mortality</th>
<th>Soil rutting hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>W:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Water---------------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>WaA:</td>
<td>Water erosion 0.02</td>
<td>Wetness 1.00</td>
<td>Low strength 1.00</td>
</tr>
<tr>
<td>Wadsworth----------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>WaB:</td>
<td>Water erosion 0.10</td>
<td>Wetness 1.00</td>
<td>Low strength 1.00</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Very severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Very severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Very severe</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Moderate</td>
<td>Low</td>
<td>Severe</td>
</tr>
<tr>
<td>Wick----------------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>ZeA:</td>
<td>Water erosion 0.01</td>
<td>Wetness 1.00</td>
<td>Low strength 1.00</td>
</tr>
<tr>
<td>Zepernick----------------</td>
<td>Slight</td>
<td>High</td>
<td>Severe</td>
</tr>
<tr>
<td>ZeA:</td>
<td>Water erosion 0.01</td>
<td>Wetness 1.00</td>
<td>Soil reaction 0.50</td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity

(See text for definitions of terms used in this table. Absence of an entry indicates that the soil is generally not used as woodland.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Common trees</th>
<th>Site index</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cu ft/ac</td>
<td></td>
</tr>
<tr>
<td>AmF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amanda - Amanda</td>
<td>black cherry - black</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>walnut - northern</td>
<td>87</td>
<td>72</td>
<td>0</td>
<td>Scotch pine,</td>
</tr>
<tr>
<td></td>
<td>red oak - sugar</td>
<td></td>
<td></td>
<td>0</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>maple - tuliptree -</td>
<td></td>
<td></td>
<td>0</td>
<td>locust, black</td>
</tr>
<tr>
<td></td>
<td>white ash - white</td>
<td></td>
<td></td>
<td>0</td>
<td>walnut, blue</td>
</tr>
<tr>
<td></td>
<td>oak - black</td>
<td></td>
<td></td>
<td>0</td>
<td>spruce, eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>BkB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks - Virginia pine -</td>
<td>70</td>
<td>57</td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>black oak - black</td>
<td>70</td>
<td>57</td>
<td></td>
<td>cherry,</td>
</tr>
<tr>
<td></td>
<td>walnut - northern</td>
<td>70</td>
<td>57</td>
<td></td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>red oak - eastern</td>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
</tr>
<tr>
<td></td>
<td>white ash, white</td>
<td></td>
<td></td>
<td></td>
<td>red oak, white</td>
</tr>
<tr>
<td></td>
<td>oak - white</td>
<td></td>
<td></td>
<td></td>
<td>ash, white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>BkC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks - Virginia pine -</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>black oak - black</td>
<td>70</td>
<td>57</td>
<td></td>
<td>cherry,</td>
</tr>
<tr>
<td></td>
<td>walnut - northern</td>
<td>70</td>
<td>57</td>
<td></td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>red oak - eastern</td>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
</tr>
<tr>
<td></td>
<td>white ash, white</td>
<td></td>
<td></td>
<td></td>
<td>red oak, white</td>
</tr>
<tr>
<td></td>
<td>oak - white</td>
<td></td>
<td></td>
<td></td>
<td>ash, white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>BkD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks - Virginia pine -</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>black oak - black</td>
<td>70</td>
<td>57</td>
<td></td>
<td>cherry,</td>
</tr>
<tr>
<td></td>
<td>walnut - northern</td>
<td>70</td>
<td>57</td>
<td></td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>red oak - eastern</td>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
</tr>
<tr>
<td></td>
<td>white ash, white</td>
<td></td>
<td></td>
<td></td>
<td>red oak, white</td>
</tr>
<tr>
<td></td>
<td>oak - white</td>
<td></td>
<td></td>
<td></td>
<td>ash, white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>BkE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks - Virginia pine -</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>black oak - black</td>
<td>70</td>
<td>57</td>
<td></td>
<td>cherry,</td>
</tr>
<tr>
<td></td>
<td>walnut - northern</td>
<td>70</td>
<td>57</td>
<td></td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>red oak - eastern</td>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
</tr>
<tr>
<td></td>
<td>white ash, white</td>
<td></td>
<td></td>
<td></td>
<td>red oak, white</td>
</tr>
<tr>
<td></td>
<td>oak - white</td>
<td></td>
<td></td>
<td></td>
<td>ash, white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>BmB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks - Virginia pine -</td>
<td>70</td>
<td>114</td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>black oak - black</td>
<td>70</td>
<td>57</td>
<td></td>
<td>cherry,</td>
</tr>
<tr>
<td></td>
<td>walnut - northern</td>
<td>70</td>
<td>57</td>
<td></td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>red oak - eastern</td>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
</tr>
<tr>
<td></td>
<td>white ash, white</td>
<td></td>
<td></td>
<td></td>
<td>red oak, white</td>
</tr>
<tr>
<td></td>
<td>oak - white</td>
<td></td>
<td></td>
<td></td>
<td>ash, white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>Urban Land:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td>Site index</td>
<td>Volume of wood fiber</td>
<td>Trees to manage</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>----------------------</td>
<td>----------------</td>
<td></td>
</tr>
<tr>
<td>BmC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td></td>
<td>70</td>
<td>114</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black oak-------------</td>
<td>70</td>
<td>57</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>70</td>
<td>57</td>
<td>black walnut,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, northern red</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, white ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
<td></td>
</tr>
<tr>
<td>Urban Land----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BmD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td></td>
<td>70</td>
<td>114</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black oak-------------</td>
<td>70</td>
<td>57</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>70</td>
<td>57</td>
<td>black walnut,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, northern red</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, white ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
<td></td>
</tr>
<tr>
<td>Urban Land----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>BpF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethesda------------------</td>
<td></td>
<td>75</td>
<td>0</td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black cherry----------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>70</td>
<td>57</td>
<td>pine, northern red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>red maple-------------</td>
<td>---</td>
<td>0</td>
<td>oak, red pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>90</td>
<td>86</td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>ash</td>
<td></td>
</tr>
<tr>
<td>BsC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart--------------------</td>
<td></td>
<td>85</td>
<td>72</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black cherry----------</td>
<td>---</td>
<td>---</td>
<td>black walnut,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>85</td>
<td>72</td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>---</td>
<td>pine, green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>---</td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>---</td>
<td>red pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>85</td>
<td>72</td>
<td>sweetgum,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
<td></td>
</tr>
<tr>
<td>BtA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart--------------------</td>
<td></td>
<td>85</td>
<td>72</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black cherry----------</td>
<td>---</td>
<td>---</td>
<td>black walnut,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>85</td>
<td>72</td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>---</td>
<td>pine, green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>---</td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>---</td>
<td>red pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>85</td>
<td>72</td>
<td>sweetgum,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
<td></td>
</tr>
<tr>
<td>BtB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart--------------------</td>
<td></td>
<td>85</td>
<td>72</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black cherry----------</td>
<td>---</td>
<td>---</td>
<td>black walnut,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>85</td>
<td>72</td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>---</td>
<td>pine, green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>---</td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>---</td>
<td>red pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>85</td>
<td>72</td>
<td>sweetgum,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume fiber</td>
<td>Trees to manage</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>BtC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black cherry</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td>black walnut</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>black walnut,</td>
</tr>
<tr>
<td>northern red oak</td>
<td>85</td>
<td>72</td>
<td>---</td>
<td></td>
<td>eastern white</td>
</tr>
<tr>
<td>sugar maple</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td>tuliptree</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td>white ash</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white oak</td>
<td>85</td>
<td>72</td>
<td></td>
<td></td>
<td>sweetgum,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>CaA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcutta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black cherry</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td>black walnut</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>black locust, bur</td>
</tr>
<tr>
<td>northern red oak</td>
<td>80</td>
<td>57</td>
<td>---</td>
<td></td>
<td>oak, green ash,</td>
</tr>
<tr>
<td>sugar maple</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td>tuliptree</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td>white ash</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td>white oak</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>CcB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American beech</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td>American sycamore</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td>northern red oak</td>
<td>87</td>
<td>72</td>
<td>---</td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td>slippery elm</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>black locust, bur</td>
</tr>
<tr>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td>---</td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td>white ash</td>
<td>83</td>
<td>86</td>
<td>---</td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td>white oak</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>CcC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American beech</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td>American sycamore</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td>northern red oak</td>
<td>87</td>
<td>72</td>
<td>---</td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td>slippery elm</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>black locust, bur</td>
</tr>
<tr>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td>---</td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td>white ash</td>
<td>83</td>
<td>86</td>
<td>---</td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td>white oak</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>CcD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American beech</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td>American sycamore</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td>northern red oak</td>
<td>87</td>
<td>72</td>
<td>---</td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td>slippery elm</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>black locust, bur</td>
</tr>
<tr>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td>---</td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td>white ash</td>
<td>83</td>
<td>86</td>
<td>---</td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td>white oak</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>CcE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American beech</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td>American sycamore</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td>northern red oak</td>
<td>87</td>
<td>72</td>
<td>---</td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td>slippery elm</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>black locust, bur</td>
</tr>
<tr>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td>---</td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td>white ash</td>
<td>83</td>
<td>86</td>
<td>---</td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td>white oak</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume fiber</td>
<td>Trees to manage</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>--------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>CeA:</td>
<td></td>
<td></td>
<td>cu ft/ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlisle-----------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>black willow, green</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern cottonwood--</td>
<td>80</td>
<td>86</td>
<td>ash, red maple</td>
<td></td>
</tr>
<tr>
<td></td>
<td>green ash-----------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>red maple-----------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>swamp white oak-----</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CfD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut--------</td>
<td>---</td>
<td>0</td>
<td>Scotch pine, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak----</td>
<td>85</td>
<td>72</td>
<td>cherry, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple---------</td>
<td>---</td>
<td>0</td>
<td>locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>80</td>
<td>57</td>
<td>white pine, green, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td>ChA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut--------</td>
<td>---</td>
<td>0</td>
<td>Scotch pine, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak----</td>
<td>85</td>
<td>72</td>
<td>cherry, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple---------</td>
<td>---</td>
<td>0</td>
<td>locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>80</td>
<td>57</td>
<td>white pine, green, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td>ChB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut--------</td>
<td>---</td>
<td>0</td>
<td>Scotch pine, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak----</td>
<td>85</td>
<td>72</td>
<td>cherry, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple---------</td>
<td>---</td>
<td>0</td>
<td>locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>80</td>
<td>57</td>
<td>white pine, green, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td>ChC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut--------</td>
<td>---</td>
<td>0</td>
<td>Scotch pine, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak----</td>
<td>85</td>
<td>72</td>
<td>cherry, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple---------</td>
<td>---</td>
<td>0</td>
<td>locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>80</td>
<td>57</td>
<td>white pine, green, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td>Volume of wood fiber</td>
<td>Trees to manage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common trees</td>
<td>Site index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black cherry-----------</td>
<td>---</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>black oak-------------</td>
<td>---</td>
<td>0</td>
<td>European larch,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>northern red oak------</td>
<td>70</td>
<td>57</td>
<td>Norway spruce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>red maple-------------</td>
<td>---</td>
<td>0</td>
<td>black cherry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scarlet oak----------</td>
<td>---</td>
<td>0</td>
<td>black oak, black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>walnut, bur oak,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white oak------------</td>
<td>70</td>
<td>57</td>
<td>European larch,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Norway spruce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black cherry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black oak, black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>walnut, bur oak,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eastern white,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>red oak, red</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, tuliptree,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black cherry-----------</td>
<td>---</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>black oak-------------</td>
<td>---</td>
<td>0</td>
<td>European larch,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>northern red oak------</td>
<td>70</td>
<td>57</td>
<td>Norway spruce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>red maple-------------</td>
<td>---</td>
<td>0</td>
<td>black cherry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>scarlet oak----------</td>
<td>---</td>
<td>0</td>
<td>black oak, black</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>walnut, bur oak,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white oak------------</td>
<td>70</td>
<td>57</td>
<td>European larch,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Norway spruce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black cherry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black oak, black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>walnut, bur oak,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eastern white,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>red oak, red</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, tuliptree,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black cherry-----------</td>
<td>---</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>American sycamore,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sugar maple-----------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuliptree------------</td>
<td>90</td>
<td>86</td>
<td>black cherry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>black locust, bur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white oak------------</td>
<td>75</td>
<td>57</td>
<td>oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, black locust,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bur, oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black locust, bur,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>red pine, sugar maple,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black cherry-----------</td>
<td>---</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>American sycamore,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sugar maple-----------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuliptree------------</td>
<td>90</td>
<td>86</td>
<td>black cherry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>black locust, bur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white oak------------</td>
<td>75</td>
<td>57</td>
<td>oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, black locust,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bur, oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black locust, bur,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>red pine, sugar maple,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>black cherry-----------</td>
<td>---</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>American sycamore,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>sugar maple-----------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tuliptree------------</td>
<td>90</td>
<td>86</td>
<td>black cherry,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>black locust, bur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>white oak------------</td>
<td>75</td>
<td>57</td>
<td>oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, black locust,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bur, oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black locust, bur,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, eastern white</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>red pine, sugar maple,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white ash,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAM:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam-------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume of wood fiber</td>
<td>Trees to manage</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>DgA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doles---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black cherry</td>
<td>0</td>
<td></td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>57</td>
<td></td>
<td>black locust, bur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>0</td>
<td></td>
<td>oak, green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree</td>
<td>0</td>
<td></td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>57</td>
<td>tuliptree, white</td>
<td>sugar maple,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak</td>
<td>57</td>
<td>ash, white oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black cherry</td>
<td>80</td>
<td>57</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut</td>
<td>0</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>80</td>
<td>57</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>80</td>
<td>57</td>
<td>black locust, bur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>80</td>
<td>57</td>
<td>oak, eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>yellow-poplar</td>
<td>89</td>
<td>86</td>
<td>pine, green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
<td></td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black cherry</td>
<td>80</td>
<td>57</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut</td>
<td>0</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>80</td>
<td>57</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>80</td>
<td>57</td>
<td>black locust, bur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>80</td>
<td>57</td>
<td>oak, eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>yellow-poplar</td>
<td>89</td>
<td>86</td>
<td>pine, green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
<td></td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce</td>
<td></td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce</td>
<td></td>
</tr>
<tr>
<td>FbF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce</td>
<td></td>
</tr>
<tr>
<td>FcB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td>Site index</td>
<td>Volume of wood fiber</td>
<td>Trees to manage</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>---------------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>FCD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FdA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville---------------</td>
<td>northern red oak----</td>
<td>80</td>
<td>57</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak-----------------</td>
<td>90</td>
<td>72</td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
<td>blue spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, tuliptree,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
<td></td>
</tr>
<tr>
<td>FeA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluvaquents-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>black cherry----------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>0</td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>80</td>
<td>62</td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>0</td>
<td>black spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak------------</td>
<td>75</td>
<td>60</td>
<td>ash, northern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red oak, red</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, tuliptree,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, white oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
<td></td>
</tr>
<tr>
<td>FnD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>black cherry----------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>0</td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>80</td>
<td>62</td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>0</td>
<td>black spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak------------</td>
<td>75</td>
<td>60</td>
<td>ash, northern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red oak, red</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, tuliptree,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, white oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td>Trees to manage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume of wood fiber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Index</td>
<td>cu ft/ac</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoB: Fredericktown-------</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut-----------</td>
<td>---</td>
<td>0</td>
<td>Scotch pine, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>62</td>
<td>cherry, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>75</td>
<td>60</td>
<td>white pine, green</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine, tuliptree,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
<td></td>
</tr>
<tr>
<td>FrA: Frenchtown----------</td>
<td>black cherry------------</td>
<td>88</td>
<td>57</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern cottonwood----</td>
<td>---</td>
<td>0</td>
<td>Austrian pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak---------------</td>
<td>89</td>
<td>72</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>92</td>
<td>72</td>
<td>baldcypress,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>83</td>
<td>57</td>
<td>eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>93</td>
<td>100</td>
<td>cottonwood, green</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, pin oak, red maple,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, silver maple,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>swamp white oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sweetgum</td>
<td></td>
</tr>
<tr>
<td>GaB: Gavers--------------</td>
<td>pin oak---------------</td>
<td>85</td>
<td>72</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>85</td>
<td>86</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>75</td>
<td>57</td>
<td>Scotch pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>75</td>
<td>57</td>
<td>baldcypress, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>locust, black cannell,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>walnut, blue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cottonwood,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red maple, red pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sweetgum, tuliptree,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
<td></td>
</tr>
<tr>
<td>GeC: Germano-------------</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut-----------</td>
<td>---</td>
<td>0</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>---</td>
<td>0</td>
<td>black walnut, bur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>90</td>
<td>86</td>
<td>oak, eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>pine, northern red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
<td>oak, red pine, tuliptree,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white oak</td>
<td></td>
</tr>
<tr>
<td>GeD: Germano-------------</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut-----------</td>
<td>---</td>
<td>0</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>black locust,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>---</td>
<td>0</td>
<td>black walnut, bur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>90</td>
<td>86</td>
<td>oak, eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>pine, northern red</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
<td>oak, red pine, tuliptree,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white oak</td>
<td></td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Common trees</th>
<th>Site index</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnb:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>northern red oak-------</td>
<td>80</td>
<td>57</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>tuliptree--------------</td>
<td>95</td>
<td>100</td>
<td>Scotch pine, black</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>locust, black</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white pine,</td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>Gnc:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>northern red oak-------</td>
<td>80</td>
<td>57</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>tuliptree--------------</td>
<td>95</td>
<td>100</td>
<td>Scotch pine, black</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>locust, black</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white pine,</td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>Gnd:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>northern red oak-------</td>
<td>70</td>
<td>57</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>tuliptree--------------</td>
<td>90</td>
<td>86</td>
<td>Scotch pine, black</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>locust, black</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white pine,</td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>Goc:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>northern red oak-------</td>
<td>80</td>
<td>57</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>tuliptree--------------</td>
<td>95</td>
<td>100</td>
<td>Scotch pine, black</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>locust, black</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine,</td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white pine,</td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>black cherry----------</td>
<td>---</td>
<td>0</td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>0</td>
<td>black cherry</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>90</td>
<td>86</td>
<td>black locust, bur</td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine, sugar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>------------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume of wood fiber</td>
<td>Trees to manage</td>
<td></td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>norther red oak--------</td>
<td>80</td>
<td>57</td>
<td>Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree---------------</td>
<td>95</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>American sycamore, Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>norther red oak--------</td>
<td>80</td>
<td>57</td>
<td>Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>black cherry, black locust, bur oak, eastern white pine, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree---------------</td>
<td>90</td>
<td>86</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash---------------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak---------------</td>
<td>75</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford---------------</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>American sycamore, Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>norther red oak--------</td>
<td>86</td>
<td>72</td>
<td>Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree---------------</td>
<td>96</td>
<td>100</td>
<td>cherry, black locust, black walnut, blue spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash---------------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak---------------</td>
<td>---</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume of wood fiber</td>
<td>Trees to manage</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford-----------------</td>
<td></td>
<td>black cherry-</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>northern red oak----</td>
<td>86</td>
<td>72</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sugar maple---</td>
<td>---</td>
<td>0</td>
<td>Scotch pine, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tuliptree------</td>
<td>96</td>
<td>100</td>
<td>cherry, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white ash------</td>
<td>---</td>
<td>0</td>
<td>locust, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white oak------</td>
<td>---</td>
<td>0</td>
<td>walnut, blue</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>spruce, eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white pine, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey----------------</td>
<td></td>
<td>black cherry-</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>northern red oak----</td>
<td>78</td>
<td>57</td>
<td>Austrian pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sugar maple---</td>
<td>---</td>
<td>0</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tuliptree------</td>
<td>95</td>
<td>100</td>
<td>cottonwood,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white ash------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white oak------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey----------------</td>
<td></td>
<td>black cherry-</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>northern red oak----</td>
<td>78</td>
<td>57</td>
<td>Austrian pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sugar maple---</td>
<td>---</td>
<td>0</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tuliptree------</td>
<td>95</td>
<td>100</td>
<td>cottonwood,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white ash------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td>white oak------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey----------------</td>
<td></td>
<td>black cherry-</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>northern red oak----</td>
<td>70</td>
<td>57</td>
<td>Austrian pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sugar maple---</td>
<td>---</td>
<td>0</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tuliptree------</td>
<td>0</td>
<td>cottonwood,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>white ash------</td>
<td>0</td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>white oak------</td>
<td>65</td>
<td>43</td>
<td>pine, northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td></td>
<td>northern red oak----</td>
<td>70</td>
<td>57</td>
<td>Austrian pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tuliptree------</td>
<td>80</td>
<td>72</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white oak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Map symbol and soil name</td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume of wood fiber (cu ft/ac)</td>
<td>Trees to manage</td>
</tr>
<tr>
<td>HeC:</td>
<td>Hazleton-----------------</td>
<td>northern red oak---</td>
<td>70</td>
<td>57</td>
<td>Austrian pine, Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree----------</td>
<td>80</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeD:</td>
<td>Hazleton----------------</td>
<td>northern red oak---</td>
<td>70</td>
<td>57</td>
<td>Austrian pine, Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree----------</td>
<td>80</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeE:</td>
<td>Hazleton----------------</td>
<td>northern red oak---</td>
<td>70</td>
<td>57</td>
<td>Austrian pine, Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree----------</td>
<td>80</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfF:</td>
<td>Hazleton----------------</td>
<td>northern red oak---</td>
<td>70</td>
<td>57</td>
<td>Austrian pine, Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree----------</td>
<td>80</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HgF:</td>
<td>Hazleton----------------</td>
<td>northern red oak---</td>
<td>70</td>
<td>57</td>
<td>Austrian pine, Norway spruce, black cherry, black locust, black walnut, eastern white pine, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree----------</td>
<td>80</td>
<td>72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>eastern white pine--</td>
<td>75</td>
<td>143</td>
<td></td>
<td>black locust, black walnut, eastern white pine, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>northern red oak----</td>
<td>81</td>
<td>57</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree----------</td>
<td>90</td>
<td>86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Common trees</th>
<th>Site index</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
</table>
| Hka: | | | | American sycamore, American beech, American sycamore- --- 0
| Holly- | black cherry- --- 0
| east | eastern cottonwood- --- 0
| green ash- | --- 0
| pin oak- | 90 72
| red maple- | --- 0
| swamp white oak- | --- 0
| HlB: | | | | Homewood American beech- --- 0
| Homewood- | American sycamore--- 0
| northern red oak- | 87 72
| slippery elm- | --- 0
| sugar maple- | 70 43
| white ash- | 83 86
| white oak- | --- 0
| HoA: | | | | Homeworth northern red oak- 80 62
| Homeworth- | white oak- --- 62
| pin oak- | 75 62
| sugar maple- | 90 72
| white ash- | 0
| tuliptree- | 0
| black cherry- | 0
| HmA: | | | | Homeworth northern red oak- 80 62
| Homeworth- | white oak- --- 62
| pin oak- | 75 62
| sugar maple- | 90 72
| white ash- | 0
| tuliptree- | 0
| black cherry- | 0
| HmB: | | | | Homeworth northern red oak- 80 62
| Homeworth- | white oak- --- 62
| pin oak- | 75 62
| sugar maple- | 90 72
| white ash- | 0
| tuliptree- | 0
| black cherry- | 0
| HoA: | | | | Homeworth northern red oak- 80 62
| Homeworth- | white oak- --- 62
| pin oak- | 75 62
| sugar maple- | 90 72
| white ash- | 0
| tuliptree- | 0
| black cherry- | 0

Note: The table continues with additional rows for each soil name, listing potential productivity in terms of site index, volume of wood fiber, and the trees to manage.
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Site index</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>HoB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>northern red oak-------</td>
<td>80</td>
<td>62</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>white oak--------------</td>
<td>75</td>
<td>62</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>pin oak---------------</td>
<td>75</td>
<td>72</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>cottonwood,</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak</td>
</tr>
<tr>
<td>JwA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimtown------------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>85</td>
<td>72</td>
<td>Scotch pine, black</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>cherry, black</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>locust, bur oak,</td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine, sugar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak</td>
</tr>
<tr>
<td>Jwb:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimtown------------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>85</td>
<td>72</td>
<td>Scotch pine, black</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>cherry, black</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>locust, bur oak,</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine, sugar</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak</td>
</tr>
<tr>
<td>KeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keene---------------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>80</td>
<td>57</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>0</td>
<td>black locust, bur</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>95</td>
<td>100</td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>75</td>
<td>57</td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>KnB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>0</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>80</td>
<td>57</td>
<td>green ash,</td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>0</td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>red maple, silver</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>maple, sweetgum,</td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>75</td>
<td>57</td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>KnC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>0</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>80</td>
<td>57</td>
<td>green ash,</td>
</tr>
<tr>
<td></td>
<td>sugar maple----------</td>
<td>---</td>
<td>0</td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>---</td>
<td>0</td>
<td>red maple, silver</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>maple, sweetgum,</td>
</tr>
<tr>
<td></td>
<td>white oak-----------</td>
<td>75</td>
<td>57</td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Common trees</td>
<td>Site index</td>
<td>cu ft/ac</td>
</tr>
<tr>
<td>KnD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td>black cherry-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>black walnut-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>75</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black cherry, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>walnut, bur oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>red maple, silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maple, sweetgum,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobdell-----------------</td>
<td>black cherry-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>87</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>96</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black cherry, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>walnut, bur oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LnA:</td>
<td>eastern white pine----</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>pin oak---------------</td>
<td>85</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>red maple-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>balcypress,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cottonwood, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, pin oak, red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maple, river</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>birch, silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>maple, swamp white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg-----------</td>
<td>black cherry-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>black walnut-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>75</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black cherry, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>locust, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>walnut, eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white pine, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg-----------</td>
<td>black cherry-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>black walnut-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>75</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black cherry, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>locust, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>walnut, eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white pine, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, northern red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown---------------</td>
<td>American sycamore------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>black cherry-----------</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>black locust----------</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>black oak-------------</td>
<td>70</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>eastern cottonwood----</td>
<td>---</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>73</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>red maple------------</td>
<td>100</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>88</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>50</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>60</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Scotch pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Virginia pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bigtooth aspen,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>black ash, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>locust, black</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>walnut, eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cottonwood,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>silver maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white ash, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>spruce</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Common trees</td>
<td>Site index</td>
<td>Volume of wood fiber</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>MnD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American sycamore</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black cherry</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black locust</td>
<td>68</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black oak</td>
<td>70</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>eastern cottonwood</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>northern red oak</td>
<td>73</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>red maple</td>
<td>100</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>silver maple</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tuliptree</td>
<td>88</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>white ash</td>
<td>50</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>white oak</td>
<td>60</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American sycamore</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black cherry</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black locust</td>
<td>68</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black oak</td>
<td>70</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>eastern cottonwood</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>northern red oak</td>
<td>73</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>red maple</td>
<td>100</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>silver maple</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tuliptree</td>
<td>88</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>white ash</td>
<td>50</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>white oak</td>
<td>60</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American sycamore</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black cherry</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black locust</td>
<td>68</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>black oak</td>
<td>70</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>eastern cottonwood</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>northern red oak</td>
<td>73</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>red maple</td>
<td>100</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>silver maple</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tuliptree</td>
<td>88</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>white ash</td>
<td>50</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>white oak</td>
<td>60</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OdA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmsted</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>northern red oak</td>
<td>80</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>pin oak</td>
<td>86</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td>red maple</td>
<td>---</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>sugar maple</td>
<td>80</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>tuliptree</td>
<td>90</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

| | | | | birch, silver maple, sugar maple, swamp white oak, sweetgum, white ash |
Table 12—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Site index</th>
<th>Volume fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>OdA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley--------------------</td>
<td>eastern white pine--</td>
<td>55</td>
<td>86</td>
<td>American sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>red maple---------------</td>
<td>50</td>
<td>29</td>
<td>Norway spruce, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td>OmB:</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>American sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td>Omulga-------------------</td>
<td>black walnut------------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>black cherry, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>black locust, bur red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
<td>oak, eastern white cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash, american sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>OmC:</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>American sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td>Omulga-------------------</td>
<td>black walnut------------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>black cherry, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>black locust, bur red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
<td>oak, eastern white cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash, american sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>OrA:</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>American sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td>Orrville-----------------</td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>Norway spruce, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>pin oak---------------</td>
<td>85</td>
<td>72</td>
<td>black cherry, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>80</td>
<td>57</td>
<td>black locust, bur red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>90</td>
<td>86</td>
<td>oak, eastern white cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash, american sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>Pg:</td>
<td></td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Pits---------------------</td>
<td></td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>RaB:</td>
<td>black cherry------------</td>
<td>---</td>
<td>0</td>
<td>American sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td>Rainsboro----------------</td>
<td>black walnut------------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80</td>
<td>57</td>
<td>black cherry, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>---</td>
<td>0</td>
<td>black locust, bur red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
<td>oak, eastern white cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>---</td>
<td>0</td>
<td>pine, green ash, american sycamore, baldcypress, eastern cottonwood, green ash, pin oak, red maple, river birch, silver maple, swamp white oak, sweetgum</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Common trees</th>
<th>Site index</th>
<th>Volume fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cu ft/ac</td>
<td></td>
</tr>
<tr>
<td>RaC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro---------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>black walnut--------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td>white oak------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>RbC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro--------</td>
<td>black cherry--------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>black walnut--------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td>white oak------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>ReA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenna-------------</td>
<td>black oak-----------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>pin oak-------------</td>
<td>85 72</td>
<td></td>
<td>0</td>
<td>oak, green ash,</td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>85 57</td>
<td></td>
<td>0</td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>90 86</td>
<td></td>
<td>0</td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>ReB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenna-------------</td>
<td>black oak-----------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>pin oak-------------</td>
<td>85 72</td>
<td></td>
<td>0</td>
<td>oak, green ash,</td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>85 57</td>
<td></td>
<td>0</td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>90 86</td>
<td></td>
<td>0</td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>RhD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richland---------------</td>
<td>yellow-poplar--------</td>
<td>90 86</td>
<td></td>
<td>0</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree</td>
</tr>
<tr>
<td>RhE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richland---------------</td>
<td>yellow-poplar--------</td>
<td>90 86</td>
<td></td>
<td>0</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>80 57</td>
<td></td>
<td>0</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash------------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>black walnut---------</td>
<td>---</td>
<td>0</td>
<td>0</td>
<td>white oak,</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential productivity</td>
<td>Common trees</td>
<td>Site index of wood fiber</td>
<td>Volume of wood fiber</td>
<td>Trees to manage</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>RsB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>black cherry</td>
<td>0</td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>90</td>
<td>72</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>tuliptree</td>
<td>0</td>
<td></td>
<td></td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>0</td>
<td></td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td>white oak</td>
<td>0</td>
<td></td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>RsC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>black cherry</td>
<td>0</td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>90</td>
<td>72</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>tuliptree</td>
<td>0</td>
<td></td>
<td></td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>0</td>
<td></td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td>white oak</td>
<td>0</td>
<td></td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>RsD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>black cherry</td>
<td>0</td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>90</td>
<td>72</td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>tuliptree</td>
<td>0</td>
<td></td>
<td></td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>0</td>
<td></td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td>white oak</td>
<td>0</td>
<td></td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>TeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>American beech</td>
<td>0</td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>American sycamore</td>
<td>0</td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>87</td>
<td>72</td>
<td></td>
<td>Virginia pine,</td>
</tr>
<tr>
<td></td>
<td>slippery elm</td>
<td>0</td>
<td></td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td></td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>83</td>
<td>86</td>
<td></td>
<td>black oak,</td>
</tr>
<tr>
<td></td>
<td>white oak</td>
<td>0</td>
<td></td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
<tr>
<td>TeC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>American beech</td>
<td>0</td>
<td></td>
<td></td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>American sycamore</td>
<td>0</td>
<td></td>
<td></td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>87</td>
<td>72</td>
<td></td>
<td>Virginia pine,</td>
</tr>
<tr>
<td></td>
<td>slippery elm</td>
<td>0</td>
<td></td>
<td></td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>70</td>
<td>43</td>
<td></td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>83</td>
<td>86</td>
<td></td>
<td>black oak,</td>
</tr>
<tr>
<td></td>
<td>white oak</td>
<td>0</td>
<td></td>
<td></td>
<td>oak, eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Common trees</th>
<th>Site index</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>American sycamore, Norway spruce, Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>TeC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>American beech, American sycamore, slippery elm, sugar maple, white ash, white oak</td>
</tr>
<tr>
<td>Teegarden</td>
<td>American beech---------</td>
<td>---</td>
<td>0</td>
<td></td>
<td>American sycamore, Norway spruce, Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>American sycamore------</td>
<td>---</td>
<td>0</td>
<td></td>
<td>Norway spruce, Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>northern red oak-------</td>
<td>87</td>
<td>72</td>
<td></td>
<td>Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>slippery elm-----------</td>
<td>---</td>
<td>0</td>
<td></td>
<td>Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>sugar maple------------</td>
<td>70</td>
<td>43</td>
<td></td>
<td>Norway spruce, Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>white ash-------------</td>
<td>83</td>
<td>86</td>
<td></td>
<td>Norway spruce, Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>white oak-------------</td>
<td>---</td>
<td>0</td>
<td></td>
<td>Norway spruce, Virginia pine, black cherry, black locust, black oak, bur oak, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>Tioga---------------------</td>
<td>northern red oak------</td>
<td>75</td>
<td>57</td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>sugar maple-----------</td>
<td>67</td>
<td>43</td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td></td>
<td>tuliptree-------------</td>
<td>85</td>
<td>86</td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>Ua:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>Ub:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, tuliptree, white ash, white oak</td>
</tr>
<tr>
<td>Upshur--------------------</td>
<td>Virginia pine---------</td>
<td>66</td>
<td>100</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>eastern white pine----</td>
<td>80</td>
<td>143</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>65</td>
<td>43</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>80</td>
<td>72</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Virginia pine---------</td>
<td>70</td>
<td>114</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>black oak------------</td>
<td>70</td>
<td>57</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>70</td>
<td>57</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td>Upshur--------------------</td>
<td>Virginia pine---------</td>
<td>70</td>
<td>114</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>eastern white pine----</td>
<td>75</td>
<td>129</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>northern red oak------</td>
<td>65</td>
<td>43</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>tuliptree------------</td>
<td>90</td>
<td>0</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Virginia pine---------</td>
<td>70</td>
<td>114</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>black oak------------</td>
<td>60</td>
<td>43</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>60</td>
<td>43</td>
<td></td>
<td>Norway spruce, black cherry, black walnut, green ash, northern red oak, white oak, white spruce</td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Common trees</th>
<th>Potential productivity</th>
<th>Site index</th>
<th>Volume of wood fiber cu ft/ac</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uke2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-------------------</td>
<td>Virginia pine----- 70 114</td>
<td>Norway spruce, black chest, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine-- 75 129</td>
<td>black cherry, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak---- 65 43</td>
<td>black cherry, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree-------- 90 0</td>
<td>eastern white pine, green ash, northern red oak, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Virginia pine----- 70 114</td>
<td>Norway spruce, black cherry, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black oak----------- 70 57</td>
<td>black cherry, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak---- 70 57</td>
<td>black cherry, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ur:</td>
<td>Urban Land-------- ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UtB:</td>
<td>Urban Land-------- ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>American beech------ --- 0</td>
<td>American sycamore, Norway spruce, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American sycamore--- --- 0</td>
<td>Norway spruce, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak---- 87 72</td>
<td>black cherry, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>slippery elm-------- --- 0</td>
<td>black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple-------- 70 43</td>
<td>pine, green ash, northern red oak, sugar maple, tuliptree, white ash, white oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash---------- 83 86</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak---------- --- 0</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtC:</td>
<td>Urban Land-------- ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>American beech------ --- 0</td>
<td>American sycamore, Norway spruce, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American sycamore--- --- 0</td>
<td>Norway spruce, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak---- 87 72</td>
<td>black cherry, black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>slippery elm-------- --- 0</td>
<td>black locust, Bur oak, eastern white pine, northern red oak, white ash, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple-------- 70 43</td>
<td>pine, green ash, northern red oak, sugar maple, tuliptree, white ash, white oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash---------- 83 86</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak---------- --- 0</td>
<td>northern red oak, sugar maple, tuliptree, white ash, white oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtVb:</td>
<td>Urban Land-------- ---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>black cherry-------- --- 0</td>
<td>Douglas fir, Norway spruce, Scotch pine, black spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>black walnut-------- --- 0</td>
<td>Douglas fir, Norway spruce, Scotch pine, black spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak---- 85 72</td>
<td>Douglas fir, Norway spruce, Scotch pine, black spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple-------- --- 0</td>
<td>Douglas fir, Norway spruce, Scotch pine, black spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree--------- --- 0</td>
<td>Douglas fir, Norway spruce, Scotch pine, black spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash---------- --- 0</td>
<td>Douglas fir, Norway spruce, Scotch pine, black spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak--------- 80 57</td>
<td>Douglas fir, Norway spruce, Scotch pine, black spruce, eastern white pine, green ash, northern red oak, red pine, tuliptree, white ash, white oak, white spruce</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Site index</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Common trees</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaA: Valley</td>
<td>eastern white pine</td>
<td>55</td>
<td>86</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>red maple</td>
<td>50</td>
<td>29</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>baldcypress,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cottonwood, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, pin oak, red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, river</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>birch, silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, swamp white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, sweetgum</td>
</tr>
<tr>
<td>VbA: Valley</td>
<td>eastern white pine</td>
<td>55</td>
<td>86</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>red maple</td>
<td>50</td>
<td>29</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>baldcypress,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cottonwood, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, pin oak, red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, river</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>birch, silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, swamp white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, sweetgum</td>
</tr>
<tr>
<td>VcA: Valley</td>
<td>eastern white pine</td>
<td>55</td>
<td>86</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>red maple</td>
<td>50</td>
<td>29</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>baldcypress,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cottonwood, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, pin oak, red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, river</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>birch, silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, swamp white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, sweetgum</td>
</tr>
<tr>
<td>Lorain:</td>
<td>northern white pine</td>
<td>90</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak</td>
<td>80</td>
<td>0</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>pin oak</td>
<td>85</td>
<td>72</td>
<td>baldcypress,</td>
</tr>
<tr>
<td></td>
<td>red maple</td>
<td>---</td>
<td>0</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td>tuliptree</td>
<td>90</td>
<td>0</td>
<td>cottonwood, green</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ash, pin oak, red</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, river</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>birch, silver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>maple, swamp white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, sweetgum</td>
</tr>
<tr>
<td>VnB: Vandergrift</td>
<td>northern red oak</td>
<td>76</td>
<td>57</td>
<td>Austrian pine,</td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>75</td>
<td>43</td>
<td>eastern redcedar,</td>
</tr>
<tr>
<td></td>
<td>tuliptree</td>
<td>86</td>
<td>86</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>75</td>
<td>43</td>
<td>pine, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>VnC: Vandergrift</td>
<td>northern red oak</td>
<td>76</td>
<td>57</td>
<td>Austrian pine,</td>
</tr>
<tr>
<td></td>
<td>sugar maple</td>
<td>75</td>
<td>43</td>
<td>eastern redcedar,</td>
</tr>
<tr>
<td></td>
<td>tuliptree</td>
<td>86</td>
<td>86</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>white ash</td>
<td>75</td>
<td>43</td>
<td>pine, tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
<tr>
<td>W: Water</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Common trees</th>
<th>Site index (cu ft/ft²)</th>
<th>Volume (cu ft/ac)</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>WaA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td>American beech-----</td>
<td>---0</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American sycamore---</td>
<td>--- 0</td>
<td>black locust, bur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black oak--------</td>
<td>85 72</td>
<td>oak, bur oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak--</td>
<td>85 72</td>
<td>green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak---------</td>
<td>90 72</td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slippery elm------</td>
<td>--- 0</td>
<td>sugar maple,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple------</td>
<td>--- 0</td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash--------</td>
<td>--- 0</td>
<td>ash, white oak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak--------</td>
<td>--- 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td>American beech-----</td>
<td>---0</td>
<td>American sycamore,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>American sycamore---</td>
<td>--- 0</td>
<td>black locust, bur</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black oak--------</td>
<td>85 72</td>
<td>oak, bur oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak--</td>
<td>85 72</td>
<td>green ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak---------</td>
<td>90 72</td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slippery elm------</td>
<td>--- 0</td>
<td>sugar maple,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>sugar maple------</td>
<td>--- 0</td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white ash--------</td>
<td>--- 0</td>
<td>ash, white oak</td>
<td></td>
</tr>
<tr>
<td></td>
<td>white oak--------</td>
<td>--- 0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>eastern white pine--</td>
<td>75 143</td>
<td>black locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak--</td>
<td>81 57</td>
<td>walnut, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree--------</td>
<td>90 86</td>
<td>white pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Virginia pine-----</td>
<td>70 114</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black oak--------</td>
<td>70 57</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak--</td>
<td>70 57</td>
<td>black walnut,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, northern red</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, white ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
<td></td>
</tr>
<tr>
<td>WkF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>eastern white pine--</td>
<td>75 143</td>
<td>black locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak--</td>
<td>81 57</td>
<td>walnut, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree--------</td>
<td>90 86</td>
<td>white pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Virginia pine-----</td>
<td>70 114</td>
<td>Norway spruce,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>black oak--------</td>
<td>70 57</td>
<td>black cherry,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak--</td>
<td>70 57</td>
<td>black walnut,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>eastern white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pine, northern red</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>oak, white ash,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
<td></td>
</tr>
<tr>
<td>WmC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>eastern white pine--</td>
<td>70 129</td>
<td>black locust, black</td>
<td></td>
</tr>
<tr>
<td></td>
<td>northern red oak--</td>
<td>75 57</td>
<td>walnut, eastern</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tuliptree--------</td>
<td>85 86</td>
<td>white pine,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>tuliptree, white</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ash, white oak</td>
<td></td>
</tr>
</tbody>
</table>
Table 12.—Woodland Productivity—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential productivity</th>
<th>Site index</th>
<th>Volume of wood fiber</th>
<th>Trees to manage</th>
</tr>
</thead>
<tbody>
<tr>
<td>WmC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>black cherry---------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>80</td>
<td>57</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>sugar maple---------</td>
<td>---</td>
<td>0</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>90</td>
<td>86</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td>bur pine,</td>
</tr>
<tr>
<td></td>
<td>white oak----------</td>
<td>75</td>
<td>57</td>
<td>green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>WmD:</td>
<td>eastern white pine--</td>
<td>75</td>
<td>143</td>
<td>black locust,</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>northern red oak----</td>
<td>81</td>
<td>57</td>
<td>black walnut,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>90</td>
<td>86</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, northern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>black cherry---------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td></td>
<td>northern red oak-----</td>
<td>80</td>
<td>57</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>sugar maple---------</td>
<td>---</td>
<td>0</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>90</td>
<td>86</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td>bur pine,</td>
</tr>
<tr>
<td></td>
<td>white oak----------</td>
<td>75</td>
<td>57</td>
<td>green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak</td>
</tr>
<tr>
<td>WoA:</td>
<td>black cherry---------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td>Wick--------------------</td>
<td>eastern cottonwood--</td>
<td>---</td>
<td>0</td>
<td>Austrian pine,</td>
</tr>
<tr>
<td></td>
<td>green ash-----------</td>
<td>---</td>
<td>0</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>pin oak-------------</td>
<td>90</td>
<td>72</td>
<td>baldcypress,</td>
</tr>
<tr>
<td></td>
<td>red maple----------</td>
<td>65</td>
<td>43</td>
<td>bur oak, eastern</td>
</tr>
<tr>
<td></td>
<td>swamp white oak-----</td>
<td>---</td>
<td>0</td>
<td>arborvitae,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>eastern cottonwood,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>green ash, pin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oak, red maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>river birch,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>silver maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>swamp white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sweetgum,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash</td>
</tr>
<tr>
<td>ZeA:</td>
<td>black cherry---------</td>
<td>---</td>
<td>0</td>
<td>American sycamore,</td>
</tr>
<tr>
<td>Zepernick---------------</td>
<td>northern red oak-----</td>
<td>60</td>
<td>57</td>
<td>Norway spruce,</td>
</tr>
<tr>
<td></td>
<td>pin oak-------------</td>
<td>85</td>
<td>72</td>
<td>black cherry,</td>
</tr>
<tr>
<td></td>
<td>sugar maple---------</td>
<td>80</td>
<td>57</td>
<td>black locust,</td>
</tr>
<tr>
<td></td>
<td>tuliptree-----------</td>
<td>90</td>
<td>86</td>
<td>bur oak, eastern</td>
</tr>
<tr>
<td></td>
<td>white ash-----------</td>
<td>---</td>
<td>0</td>
<td>cottonwood,</td>
</tr>
<tr>
<td></td>
<td>white oak----------</td>
<td>---</td>
<td>0</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>pine, green ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>northern red oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>red pine,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sugar maple,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tuliptree,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white ash,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white oak,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>white spruce</td>
</tr>
</tbody>
</table>
Table 13.—Woodland Harvesting Activities

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Limitations affecting construction of haul roads and log landings</th>
<th>Suitability for roads (natural surface)</th>
<th>Harvest equipment operability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Limiting features</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AmP:</td>
<td>Amanda</td>
<td>Severe</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Soil slippage</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>BkB:</td>
<td>Berks</td>
<td>Moderate</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>BkC:</td>
<td>Berks</td>
<td>Moderate</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>BkD:</td>
<td>Berks</td>
<td>Severe</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>BkB:</td>
<td>Berks</td>
<td>Severe</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>BkB:</td>
<td>Berks</td>
<td>Moderate</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>BmB:</td>
<td>Berks</td>
<td>Moderate</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC:</td>
<td>Berks</td>
<td>Moderate</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD:</td>
<td>Berks</td>
<td>Severe</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BpP:</td>
<td>Bethesda</td>
<td>Severe</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Soil slippage</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>BsC2:</td>
<td>Bogart</td>
<td>Moderate</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtA:</td>
<td>Bogart</td>
<td>Moderate</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 13.—Woodland Harvesting Activities—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Limitations affecting construction of haul roads and log landings</th>
<th>Suitability for roads (natural surface)</th>
<th>Harvest equipment operability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BtB: Bogart--------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>BtC: Bogart--------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CaA: Calcutta------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CoB: Canfield------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CoC: Canfield------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CoD: Canfield------------</td>
<td>Moderate</td>
<td>Slope 0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CoE: Canfield------------</td>
<td>Moderate</td>
<td>Slope 0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CeA: Carlisle------------</td>
<td>Severe</td>
<td>Low strength 1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Cfd2: Chili--------------</td>
<td>Moderate</td>
<td>Slope 0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td>ChA: Chili---------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too sandy 0.50</td>
</tr>
<tr>
<td>ChB: Chili---------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too sandy 0.50</td>
</tr>
<tr>
<td>ChC: Chili---------------</td>
<td>Moderate</td>
<td>Low strength 0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too sandy 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Limitations affecting construction of haul roads and log landings</td>
<td>Suitability for roads (natural surface)</td>
<td>Harvest equipment operability</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>CmB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton-----------------</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>CmC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton-----------------</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>CoB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>CoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>CoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>CoB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>CoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>DAM:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam----------------------</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doles--------------------</td>
<td>Moderate Low strength 0.50</td>
<td>Poorly suited Depth to saturated zone 1.00</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>ErC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest-------------------</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest-------------------</td>
<td>Moderate Slope 0.50</td>
<td>Poorly suited Slope 1.00</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Slight Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Severe Soil slippage 1.00</td>
<td>Poorly suited Soil slippage 1.00</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>FbF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Severe Soil slippage 1.00</td>
<td>Poorly suited Soil slippage 1.00</td>
<td>Poorly suited Low strength 1.00</td>
</tr>
<tr>
<td>FcB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Limitations affecting construction of haul roads and log landings</td>
<td>Suitability for roads (natural surface)</td>
<td>Harvest equipment operability</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FcD:</td>
<td>Fairpoint-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Soil slippage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>FdA:</td>
<td>Fitchville------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>FdB:</td>
<td>Fitchville------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>FeA:</td>
<td>Fluvaquents-----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>1.00</td>
<td>Wetness</td>
</tr>
<tr>
<td></td>
<td>Wetness</td>
<td>1.00</td>
<td>Flooding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>FnC2:</td>
<td>Fredericktown---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>FnD2:</td>
<td>Fredericktown---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>FoB:</td>
<td>Fredericktown---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>FrA:</td>
<td>Frenchtown------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>GaB:</td>
<td>Gavers----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>GeC:</td>
<td>Germano---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slight</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>GeD:</td>
<td>Germano---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>GnB:</td>
<td>Gilpin----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>GnC:</td>
<td>Gilpin----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Limitations affecting construction of haul roads and log landings</td>
<td>Suitability for roads (natural surface)</td>
<td>Harvest equipment operability</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin------------------</td>
<td>Moderate Slope 0.50</td>
<td>Poorly suited Slope 1.00</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>GoC:</td>
<td>Moderate Slope 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate Slope 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td>Depth to saturated zone 0.50</td>
</tr>
<tr>
<td>GoD:</td>
<td>Moderate Slope 0.50</td>
<td>Poorly suited Slope 1.00</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td>GpC:</td>
<td>Moderate Slope 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Moderate Slope 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td>Depth to saturated zone 0.50</td>
</tr>
<tr>
<td>Urban Land--------------</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>GrB:</td>
<td>Moderate Low strength 0.50</td>
<td>Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.50</td>
<td></td>
</tr>
<tr>
<td>GrC:</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Slope 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.50</td>
<td>Depth to saturated zone 0.50</td>
</tr>
<tr>
<td>GuC:</td>
<td>Severe Soil slippage 1.00</td>
<td>Poorly suited Soil slippage 1.00</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Slope 0.50</td>
<td>Depth to saturated zone 0.50</td>
</tr>
<tr>
<td>GuC2:</td>
<td>Severe Soil slippage 1.00</td>
<td>Poorly suited Soil slippage 1.00</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Slope 0.50</td>
<td>Depth to saturated zone 0.50</td>
</tr>
</tbody>
</table>

Table 13.—Woodland Harvesting Activities—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Limitations affecting construction of haul roads and log landings</th>
<th>Suitability for roads (natural surface)</th>
<th>Harvest equipment operability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GuD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td>Severe</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Soil slippage</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>HeB:</td>
<td>Hasleton----------------------------</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Hasleton----------------</td>
<td>Moderate</td>
<td>Low strength</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>HeC:</td>
<td>Hasleton----------------------------</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Hasleton----------------</td>
<td>Moderate</td>
<td>Slope</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>HeD:</td>
<td>Hasleton----------------------------</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Hasleton----------------</td>
<td>Severe</td>
<td>Slope</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>HeE:</td>
<td>Hasleton----------------------------</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Hasleton----------------</td>
<td>Severe</td>
<td>Slope</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>HfF:</td>
<td>Hasleton----------------------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>Hasleton----------------</td>
<td>Severe</td>
<td>Slope</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>HgF:</td>
<td>Hasleton----------------------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>Hasleton----------------</td>
<td>Severe</td>
<td>Slope</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Severe</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>HkA:</td>
<td>Holly------------------------------</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Holly-------------------</td>
<td>Severe</td>
<td>Flooding</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HlB:</td>
<td>Homewood----------------------------</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Homewood---------------</td>
<td>Moderate</td>
<td>Low strength</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmA:</td>
<td>Homeworth--------------------------</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Homeworth--------------</td>
<td>Moderate</td>
<td>Low strength</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmB:</td>
<td>Homeworth--------------------------</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Homeworth--------------</td>
<td>Moderate</td>
<td>Low strength</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HoA:</td>
<td>Homeworth--------------------------</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Homeworth--------------</td>
<td>Moderate</td>
<td>Low strength</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
</tbody>
</table>

Table 13.—Woodland Harvesting Activities—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Limitations affecting construction of haul roads and log landings</th>
<th>Suitability for roads (natural surface)</th>
<th>Harvest equipment operability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HoB:</td>
<td>Moderate Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>JwA:</td>
<td>Moderate Low strength 0.50 Poorly suited Depth to saturated zone 1.00</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>JwB:</td>
<td>Moderate Low strength 0.50 Too sandy Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>KeB:</td>
<td>Moderate Low strength 0.50 Poorly suited Depth to saturated zone 1.00</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>KnB:</td>
<td>Moderate Low strength 0.50 Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>KnC:</td>
<td>Moderate Low strength 0.50 Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td>Moderate Slope 0.50 Low strength 0.50 Poorly suited Slope 1.00</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td>Severe Flooding 1.00 Low strength 0.50 Poorly suited Flooding 1.00</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>LnA:</td>
<td>Moderate Low strength 0.50 Poorly suited Depth to saturated zone 1.00</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>McB:</td>
<td>Moderate Low strength 0.50 Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>McC:</td>
<td>Moderate Low strength 0.50 Too sandy Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>MnB:</td>
<td>Moderate Low strength 0.50 Moderately suited Low strength 0.50</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>MnD:</td>
<td>Severe Soil slippage 1.00 Slope 0.50 Poorly suited Soil slippage 1.00</td>
<td>Moderately suited Low strength 0.50</td>
<td></td>
</tr>
</tbody>
</table>

Table 13.—Woodland Harvesting Activities—Continued
Table 13.—Woodland Harvesting Activities—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Limitations affecting construction of haul roads and log landings</th>
<th>Suitability for roads (natural surface)</th>
<th>Harvest equipment operability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>MoB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown---------------</td>
<td>Slight</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>MoD:</td>
<td>Severe</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Morristown---------------</td>
<td>Soil slippage 1.00</td>
<td>Soil slippage 1.00</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Slope 1.00</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td>OdA:</td>
<td>Moderate</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Olmsted------------------</td>
<td>Low strength 0.50</td>
<td>Ponding 1.00</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>Valley--------------------</td>
<td>Moderate</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Ponding 1.00</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>OmB:</td>
<td>Moderate</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Omulga-------------------</td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.50</td>
<td></td>
</tr>
<tr>
<td>OmC:</td>
<td>Moderate</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Omulga-------------------</td>
<td>Low strength 0.50</td>
<td>Slope 0.50</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.50</td>
<td></td>
</tr>
<tr>
<td>OrA:</td>
<td>Severe</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Orrville-----------------</td>
<td>Flooding 1.00</td>
<td>Flooding 1.00</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>Pg:</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReA:</td>
<td>Moderate</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Rainsboro----------------</td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.50</td>
<td></td>
</tr>
<tr>
<td>RbC:</td>
<td>Moderate</td>
<td>Moderately suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Rainsboro----------------</td>
<td>Low strength 0.50</td>
<td>Slope 0.50</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.50</td>
<td></td>
</tr>
<tr>
<td>ReA:</td>
<td>Moderate</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Ravenna------------------</td>
<td>Low strength 0.50</td>
<td>Depth to saturated zone 1.00</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.50</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Limitations affecting construction of haul roads and log landings</td>
<td>Suitability for roads (natural surface)</td>
<td>Harvest equipment operability</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td></td>
<td>Value</td>
</tr>
<tr>
<td>ReB:</td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>RhD:</td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>RhE:</td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>RsB:</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>RsC:</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>RsD2:</td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>TeB:</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>TeC:</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>TeC2:</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>ToA:</td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td></td>
<td>Flooding</td>
</tr>
<tr>
<td>Us:</td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Ub:</td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td></td>
<td>Slope</td>
</tr>
</tbody>
</table>
Table 13.—Woodland Harvesting Activities—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Limitations affecting construction of haul roads and log landings</th>
<th>Suitability for roads (natural surface)</th>
<th>Harvest equipment operability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>Pits:</td>
<td>Not Rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Soil slippage</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>Berks:</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Soil slippage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>Berks:</td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>UkE2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Soil slippage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td>Severe</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>Uc:</td>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>UkB:</td>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>Uc:</td>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UvB:</td>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili</td>
<td>Moderate</td>
<td></td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Moderately suited</td>
</tr>
<tr>
<td></td>
<td>Too sandy</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>VaA: Valley</td>
<td>Moderate</td>
<td></td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Limitations affecting construction of haul roads and log landings</td>
<td>Suitability for roads (natural surface)</td>
<td>Harvest equipment operability</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>VbA: Valley--------------</td>
<td>Moderate Low strength</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Poorly suited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>VcA: Valley--------------</td>
<td>Moderate Low strength</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Poorly suited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Lorain------------------</td>
<td>Moderate Low strength</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Poorly suited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>VnB: Vandergrift--------</td>
<td>Moderate Low strength</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Moderately suited</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>VnC: Vandergrift--------</td>
<td>Severe Soil slippage</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>W: Water-----------------</td>
<td>Not Rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>WaA: Wadsworth-----------</td>
<td>Moderate Low strength</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Moderately suited</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>WaB: Wadsworth-----------</td>
<td>Moderate Low strength</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Moderately suited</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>WkE: Westmoreland-------</td>
<td>Severe Soil slippage</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Soil slippage</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Severe Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Low strength</td>
</tr>
<tr>
<td>WkF: Westmoreland-------</td>
<td>Severe Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Soil slippage</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Low strength</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Severe Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Low strength</td>
</tr>
</tbody>
</table>

Table 13.—Woodland Harvesting Activities—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Limitations affecting construction of haul roads and log landings</th>
<th>Suitability for roads (natural surface)</th>
<th>Harves equipment operability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>WmC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland---</td>
<td>Moderate Low strength 0.50 Slope 0.50 Low strength 0.50</td>
<td>Moderately suited</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>Coshocton------------</td>
<td>Moderate Low strength 0.50 Slope 0.50 Low strength 0.50</td>
<td>Moderately suited</td>
<td>Moderately suited Low strength 0.50</td>
</tr>
<tr>
<td>WmD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland---</td>
<td>Moderate Slope 0.50 Low strength 0.50 Slope 1.00 Low strength 0.50</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>Coshocton------------</td>
<td>Moderate Slope 0.50 Low strength 0.50 Slope 1.00 Low strength 0.50</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>WoA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wick-------------------</td>
<td>Severe Flooding 1.00 Low strength 0.50 Slope 1.00 Low strength 0.50</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
<tr>
<td>ZeA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zepernick-----------</td>
<td>Severe Flooding 1.00 Low strength 0.50 Slope 1.00 Low strength 0.50</td>
<td>Poorly suited</td>
<td>Moderately suited</td>
</tr>
</tbody>
</table>
Table 14.—Woodland Regeneration Activities

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Suitability for mechanical planting</th>
<th>Suitability for site preparation</th>
<th>Potential for damage to soil by fire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.94</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.88</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.94</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>BtA: Bogart--------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>BtB: Bogart--------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>BtC: Bogart--------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>CaA: Calcutta------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>CaB: Canfield------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>CcC: Canfield------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>CcD: Canfield------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope 0.75</td>
<td>Slope 0.75</td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>CcE: Canfield------------</td>
<td>Uns suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 0.75</td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>CeA: Carlisle------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>CfD2: Chili---------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope 0.75</td>
<td>Slope 0.75</td>
<td>Texture/surface depth/rock fragments 0.30</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChA: Chili---------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Too sandy 0.50</td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>ChB: Chili---------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Too sandy 0.50</td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td>ChC: Chili---------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td></td>
<td>Texture/rock fragments 0.01</td>
</tr>
<tr>
<td></td>
<td>Too sandy 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content 0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmB: Conotton------------</td>
<td>Uns suited</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content 0.85</td>
<td>Rock fragment content 0.50</td>
<td>Texture/rock fragments 0.50</td>
</tr>
<tr>
<td>CmC: Conotton------------</td>
<td>Uns suited</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content 0.94</td>
<td>Rock fragment content 0.50</td>
<td>Texture/rock fragments 0.50</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 14.—Woodland Regeneration Activities—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Suitability for mechanical planting</th>
<th>Suitability for site preparation</th>
<th>Potential for damage to soil by fire</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>CoB: Cosscocton-----------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>CoC: Cosscocton-----------</td>
<td>Moderately suited</td>
<td>0.50</td>
<td>Well suited</td>
</tr>
<tr>
<td>CoD: Cosscocton-----------</td>
<td>Poorly suited</td>
<td>Slope</td>
<td>0.75</td>
</tr>
<tr>
<td>DAM: Dam-----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA: Doles--------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>ErC: Ernest--------------</td>
<td>Moderately suited</td>
<td>0.50</td>
<td>Well suited</td>
</tr>
<tr>
<td>ErD: Ernest--------------</td>
<td>Poorly suited</td>
<td>0.75</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>FbB: Fairpoint-----------</td>
<td>Unsuited</td>
<td>Rock fragment content 0.93</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>FbD: Fairpoint-----------</td>
<td>Unsuited</td>
<td>Rock fragment content 0.87</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>FbF: Fairpoint-----------</td>
<td>Unsuited</td>
<td>1.00</td>
<td>Unsuited</td>
</tr>
<tr>
<td>FcB: Fairpoint-----------</td>
<td>Unsuited</td>
<td>Rock fragment content 0.99</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>FcD: Fairpoint-----------</td>
<td>Poorly suited</td>
<td>Rock fragment content 0.88</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>FdA: Fitchville----------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>FdB: Fitchville----------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FeA:</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Not rated</td>
</tr>
<tr>
<td>Fluvaquents------------</td>
<td>Wetness 0.75</td>
<td>Wetness 0.75</td>
<td></td>
</tr>
<tr>
<td>FnC2:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Fredericktown---------</td>
<td>Slope 0.50</td>
<td>Texture/rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnD2:</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td>Fredericktown---------</td>
<td>Slope 0.75</td>
<td>Texture/rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoB:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Fredericktown---------</td>
<td>Rock fragment content</td>
<td>Texture/rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td>FrA:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Frenchtown------------</td>
<td>Slope 0.75</td>
<td>Texture/surface depth/rock fragments 0.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeA:</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Germano---------------</td>
<td>Slope 0.50</td>
<td>Texture/rock fragments 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeD:</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Germano---------------</td>
<td>Slope 0.75</td>
<td>Texture/surface depth/rock fragments 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnB:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Gilpin----------------</td>
<td>Rock fragment content</td>
<td>Texture/rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnC:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Gilpin----------------</td>
<td>Slope 0.50</td>
<td>Texture/surface depth/rock fragments 0.30</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnD:</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td>Gilpin----------------</td>
<td>Slope 0.75</td>
<td>Texture/rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoC:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Gilpin----------------</td>
<td>Slope 0.50</td>
<td>Texture/rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton-------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Texture/rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>----------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.75</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.25</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.75</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.25</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.75</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.25</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.05</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.05</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.75</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.25</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Uns suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HFF: Hazleton----------</td>
<td>Uns suited</td>
<td>Slope 1.00</td>
<td>Uns suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content 0.97</td>
<td>Rock fragment content 0.50</td>
</tr>
<tr>
<td>Rock Outcrop----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>HgF: Hazleton----------</td>
<td>Uns suited</td>
<td>Slope 1.00</td>
<td>Uns suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content 0.68</td>
<td>Rock fragment content 0.50</td>
</tr>
<tr>
<td>Westmoreland----------</td>
<td>Uns suited</td>
<td>Slope 1.00</td>
<td>Uns suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content 0.25</td>
<td></td>
</tr>
<tr>
<td>HkA: Holly-------------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>HlB: Homewood----------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>Hma: Homeworth--------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>Hmb: Homeworth--------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>HoA: Homeworth--------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>HoB: Homeworth--------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>JWA: Jimtown----------</td>
<td>Moderately suited</td>
<td>Too sandy 0.50</td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>JWB: Jimtown----------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>KaB: Keene-------------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>KnB: Kensington-------</td>
<td>Well suited</td>
<td></td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td></td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Moderate suited</td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Poorly suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington------------</td>
<td></td>
<td>Poorly suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td></td>
<td>Well suited</td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LnA:</td>
<td></td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stickiness</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McB:</td>
<td></td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>Mechanicsburg--------</td>
<td></td>
<td>Too sandy</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragment content</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McC:</td>
<td></td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>Mechanicsburg--------</td>
<td></td>
<td>Slope</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too sandy</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnB:</td>
<td></td>
<td>Poorly suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>Morristown------------</td>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnD:</td>
<td></td>
<td>Uns suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>Morristown------------</td>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoB:</td>
<td></td>
<td>Uns suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>Morristown------------</td>
<td></td>
<td>Rock fragment content</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoD:</td>
<td></td>
<td>Uns suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>Morristown------------</td>
<td></td>
<td>Rock fragment content</td>
<td>0.88</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OdA:</td>
<td></td>
<td>Well suited</td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-----------------</td>
<td></td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stickiness</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OmB:</td>
<td></td>
<td>Well suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>Omulga-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OmC:</td>
<td></td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>Omulga-----------------</td>
<td></td>
<td>Slope</td>
<td>0.50</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>OrrA:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Orrville----------------</td>
<td></td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Pg:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Pits-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RaB:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Rainsboro---------------</td>
<td></td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>RaC2:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Rainsboro---------------</td>
<td>Slope</td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>RbC:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Rainsboro---------------</td>
<td>Slope</td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td>ReA:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Ravenna----------------</td>
<td></td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>ReB:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Ravenna----------------</td>
<td></td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>RhD:</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td>Richland---------------</td>
<td>Slope</td>
<td>Slope</td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.75</td>
<td>0.01</td>
</tr>
<tr>
<td>RhE:</td>
<td>Unsuited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td>Richland---------------</td>
<td>Slope</td>
<td>Slope</td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.75</td>
<td>0.01</td>
</tr>
<tr>
<td>ReB:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Rittman---------------</td>
<td></td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>RsC:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Rittman---------------</td>
<td>Slope</td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>RsD2:</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td>Rittman---------------</td>
<td>Slope</td>
<td>Slope</td>
<td>Texture/surface</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>0.75</td>
<td>0.30</td>
</tr>
<tr>
<td>TeB:</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Teegarden------------</td>
<td></td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>TeC:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Teegarden------------</td>
<td>Slope</td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>TeC2:</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Teegarden------------</td>
<td>Slope</td>
<td></td>
<td>Texture/rock</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioga-----------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Ud:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents------------</td>
<td>Unsuited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Ub:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents------------</td>
<td>Unsuit</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Pits-----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur----------------</td>
<td>Moderately suited</td>
<td>Poorly suited</td>
<td>High</td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur----------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td>UkE2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur----------------</td>
<td>Unsuit</td>
<td>Poorly suited</td>
<td>High</td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Unsuit</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td>Ur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>------------</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>UvB:</td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>UvC:</td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>UtB:</td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>VaA:</td>
<td>Valley</td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>VbA:</td>
<td>Valley</td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>VcA:</td>
<td>Valley</td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>Lorain</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>VnB:</td>
<td>Vandergrift</td>
<td>Well suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>VnC:</td>
<td>Vandergrift</td>
<td>Moderately suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>W:</td>
<td>Water</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>WaA:</td>
<td>Wadsworth</td>
<td>Well suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>WaB:</td>
<td>Wadsworth</td>
<td>Well suited</td>
<td>Well suited</td>
</tr>
<tr>
<td>WkB:</td>
<td>Westmoreland</td>
<td>Uns suited</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>0.75</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Suitability for mechanical planting</td>
<td>Suitability for site preparation</td>
<td>Potential for damage to soil by fire</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------</td>
<td>Unsuited</td>
<td>Poorly suited</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.87</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>WkF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland---------</td>
<td>Unsuited</td>
<td>Unsuited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Berks---------------</td>
<td>Unsuited</td>
<td>Unsuited</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Rock fragment content</td>
<td>0.75</td>
<td>Rock fragment content</td>
</tr>
<tr>
<td>WmC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland--------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Coshocton------------</td>
<td>Moderately suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>WmD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland--------</td>
<td>Poorly suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.75</td>
<td>Poorly suited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton------------</td>
<td>Poorly suited</td>
<td>Poorly suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.75</td>
<td>Poorly suited</td>
</tr>
<tr>
<td>WoA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wick-------------------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td>ZeA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zepernick-----------</td>
<td>Well suited</td>
<td>Well suited</td>
<td>Low</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
</tr>
<tr>
<td>AmF: Amanda</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
</tr>
<tr>
<td>BkB: Berks</td>
<td>Amur honeysuckle; common lilac; siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
</tr>
<tr>
<td>BkC: Berks</td>
<td>Amur honeysuckle; common lilac; siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td>---</td>
</tr>
<tr>
<td>BkD: Berks</td>
<td>Amur honeysuckle; common lilac; siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td>---</td>
</tr>
<tr>
<td>BkE: Berks</td>
<td>Amur honeysuckle; common lilac; siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td>---</td>
</tr>
<tr>
<td>BmB: Berks</td>
<td>Amur honeysuckle; common lilac; siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td>---</td>
</tr>
<tr>
<td>BmC: Berks</td>
<td>Amur honeysuckle; common lilac; siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td>---</td>
</tr>
<tr>
<td>BmD: Berks</td>
<td>Amur honeysuckle; common lilac; siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
</tr>
<tr>
<td>BpF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethesda-----------------</td>
<td>gray dogwood;</td>
<td>American</td>
<td>---</td>
</tr>
<tr>
<td>manyflower</td>
<td>cranberrybush;</td>
<td></td>
<td>spruce; eastern</td>
</tr>
<tr>
<td>cotoneaster;</td>
<td>Amur honeysuckle</td>
<td></td>
<td>arborvitae;</td>
</tr>
<tr>
<td>Siberian peashrub;</td>
<td></td>
<td></td>
<td>Washington</td>
</tr>
<tr>
<td>silky dogwood</td>
<td></td>
<td></td>
<td>hawthorn; white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fir</td>
</tr>
<tr>
<td>BtA:</td>
<td>silky dogwood</td>
<td>American</td>
<td>Amur privet;</td>
</tr>
<tr>
<td>Bogart-----------------</td>
<td>crandberrybush;</td>
<td></td>
<td>blue spruce;</td>
</tr>
<tr>
<td></td>
<td>Amur honeysuckle</td>
<td></td>
<td>spruce; eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn; white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fir</td>
</tr>
<tr>
<td>BtB:</td>
<td>silky dogwood</td>
<td>American</td>
<td>Amur privet;</td>
</tr>
<tr>
<td>Bogart-----------------</td>
<td>crandberrybush;</td>
<td></td>
<td>blue spruce;</td>
</tr>
<tr>
<td></td>
<td>Amur honeysuckle</td>
<td></td>
<td>spruce; eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn; white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fir</td>
</tr>
<tr>
<td>BtC:</td>
<td>silky dogwood</td>
<td>American</td>
<td>Amur privet;</td>
</tr>
<tr>
<td>Bogart-----------------</td>
<td>crandberrybush;</td>
<td></td>
<td>blue spruce;</td>
</tr>
<tr>
<td></td>
<td>Amur honeysuckle</td>
<td></td>
<td>spruce; eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn; white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fir</td>
</tr>
<tr>
<td>CaA:</td>
<td>American</td>
<td>Amur honeysuckle;</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td>Calcutta-----------------</td>
<td>cranberrybush</td>
<td></td>
<td>green ash;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>osageorange</td>
</tr>
<tr>
<td>CcB:</td>
<td>American</td>
<td>Amur honeysuckle;</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>cranberrybush</td>
<td></td>
<td>green ash;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>osageorange</td>
</tr>
<tr>
<td>CcC:</td>
<td>silky dogwood</td>
<td>American</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>crandberrybush;</td>
<td></td>
<td>blue spruce;</td>
</tr>
<tr>
<td></td>
<td>Amur honeysuckle</td>
<td></td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn; white</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>fir</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td><8</td>
<td>8-15</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>CcD: Canfield-----------</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcE: Canfield-----------</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CeA: Carlisle-----------</td>
<td>common ninebark; sargent crabapple; silky dogwood; American cranberrybush; common lilac; nannyberry; southern arrowwood</td>
<td>Black Hills spruce</td>
<td>eastern white pine; green ash; Norway spruce</td>
</tr>
<tr>
<td>Cfd2: Chili-------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; autumn olive; eastern redcedar; radiant crabapple; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChA: Chili-------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; autumn olive; eastern redcedar; radiant crabapple; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChB: Chili-------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; autumn olive; eastern redcedar; radiant crabapple; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChC: Chili-------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; autumn olive; eastern redcedar; radiant crabapple; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmB: Conotton-----------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; autumn olive; eastern redcedar; radiant crabapple; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmC: Conotton-----------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; autumn olive; eastern redcedar; radiant crabapple; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>CoB: Coshocton------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; eastern white pine; pin oak</td>
</tr>
<tr>
<td>CoC: Coshocton------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; eastern white pine; pin oak</td>
</tr>
<tr>
<td>CoD: Coshocton------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; eastern white pine; pin oak</td>
</tr>
<tr>
<td>DgA: Doles---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine; pin oak</td>
</tr>
<tr>
<td>ErC: Ernest---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; southern arrowwood; Tatarian honeysuckle</td>
<td>Austrian pine; common hackberry; eastern redcedar; osageorange; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td>ErD: Ernest---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; southern arrowwood; Tatarian honeysuckle</td>
<td>Austrian pine; common hackberry; eastern redcedar; osageorange; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td>FbB: Fairpoint-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FbD: Fairpoint-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FbF: Fairpoint-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FcB: Fairpoint-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FcD: Fairpoint-------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
</tr>
<tr>
<td>FdA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville--------------</td>
<td>silky dogwood</td>
<td>American</td>
<td>blue spruce;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cranberrybush;</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur honesuckle;</td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur privet</td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white fir</td>
</tr>
<tr>
<td>FdB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville--------------</td>
<td>silky dogwood</td>
<td>American</td>
<td>blue spruce;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cranberrybush;</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur honesuckle;</td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur privet</td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white fir</td>
</tr>
<tr>
<td>FeA:</td>
<td>Fluvaquents---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>Amur honesuckle;</td>
<td>autumn olive;</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td></td>
<td>common lilac;</td>
<td>eastern redcedar;</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>Siberian pea shrub</td>
<td></td>
<td>pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiant crabapple;</td>
<td>jack pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington hawthorn</td>
<td>red pine</td>
</tr>
<tr>
<td>FnD2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>Amur honesuckle;</td>
<td>autumn olive;</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td></td>
<td>common lilac;</td>
<td>eastern redcedar;</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>Siberian pea shrub</td>
<td></td>
<td>pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiant crabapple;</td>
<td>jack pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington hawthorn</td>
<td>red pine</td>
</tr>
<tr>
<td>FoB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>Amur honesuckle;</td>
<td>autumn olive;</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td></td>
<td>common lilac;</td>
<td>eastern redcedar;</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>Siberian pea shrub</td>
<td></td>
<td>pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiant crabapple;</td>
<td>jack pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington hawthorn</td>
<td>red pine</td>
</tr>
<tr>
<td>FrA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frenchtown--------------</td>
<td>silky dogwood</td>
<td>American</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cranberrybush;</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur honesuckle;</td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur privet</td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white fir</td>
</tr>
<tr>
<td>GaB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gavers-------------------</td>
<td>silky dogwood</td>
<td>American</td>
<td>blue spruce;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cranberrybush;</td>
<td>eastern</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur honesuckle;</td>
<td>arborvitae;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amur privet</td>
<td>Washington</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>hawthorn;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>white fir</td>
</tr>
<tr>
<td>GeC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano------------------</td>
<td>Amur honesuckle;</td>
<td>autumn olive;</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td></td>
<td>common lilac;</td>
<td>eastern redcedar;</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>Siberian pea shrub</td>
<td></td>
<td>pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiant crabapple;</td>
<td>jack pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington hawthorn</td>
<td>red pine</td>
</tr>
<tr>
<td>GeD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano------------------</td>
<td>Amur honesuckle;</td>
<td>autumn olive;</td>
<td>Austrian pine;</td>
</tr>
<tr>
<td></td>
<td>common lilac;</td>
<td>eastern redcedar;</td>
<td>eastern white</td>
</tr>
<tr>
<td></td>
<td>Siberian pea shrub</td>
<td></td>
<td>pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>radiant crabapple;</td>
<td>jack pine;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Washington hawthorn</td>
<td>red pine</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td><8</td>
<td>8-15</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>----</td>
<td>-----</td>
</tr>
<tr>
<td>GnB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15.—Windbreaks and Environmental Plantings—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trees having predicted 20-year average height, in feet, of--</th>
<th><8</th>
<th>8-15</th>
<th>16-25</th>
<th>26-35</th>
<th>>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>blue spruce; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hawthorn; white fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Norway spruce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford-----------------</td>
<td>silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>blue spruce; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hawthorn; white fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford-----------------</td>
<td>silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>American</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>blue spruce; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hawthorn; white fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GUC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td>American cranberrybush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amur honeysuckle; Amur privet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ash; osageorange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td>American cranberrybush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amur honeysuckle; Amur privet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ash; osageorange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td>American cranberrybush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amur honeysuckle; Amur privet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; green</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ash; osageorange</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>autumn olive; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>autumn olive; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>redcedar; radiant crabapple; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Austrian pine; eastern</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15.—Windbreaks and Environmental Plantings—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trees having predicted 20-year average height, in feet, of—</th>
<th><8</th>
<th>8-15</th>
<th>16-25</th>
<th>26-35</th>
<th>>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>HeD: Hazleton</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redecder; radiant crabapple; Washington hawthorn</td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HeE: Hazleton</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redecder; radiant crabapple; Washington hawthorn</td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HFF: Hazleton</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redecder; radiant crabapple; Washington hawthorn</td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HhG: Hazleton</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
<td>autumn olive; eastern redecder; radiant crabapple; Washington hawthorn</td>
<td>Austrian pine; eastern white pine; jack pine; red pine</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HhG: Westmoreland</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; eastern white pine; Norway spruce</td>
<td>pin oak</td>
<td></td>
</tr>
<tr>
<td>HkA: Holly</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>Austrian pine; blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>eastern white pine; Norway spruce</td>
<td>pin oak</td>
<td></td>
</tr>
<tr>
<td>H1B: Homewood</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; eastern white pine; Norway spruce</td>
<td>pin oak</td>
<td></td>
</tr>
<tr>
<td>HmA: Homeworth</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; eastern white pine; Norway spruce</td>
<td>pin oak</td>
<td></td>
</tr>
<tr>
<td>HmB: Homeworth</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; eastern white pine; Norway spruce</td>
<td>pin oak</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
<td>26-35</td>
<td>>35</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>HoA: Homeworth------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American</td>
<td>blue spruce; eastern</td>
<td>Austrian pine; eastern white pine; pin oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cranberrybush; Amur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>honeysuckle; Amur privet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HoB: Homeworth------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American</td>
<td>blue spruce; eastern</td>
<td>Austrian pine; eastern white pine; pin oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cranberrybush; Amur</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>honeysuckle; Amur privet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jwa: Jimtown--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; silky dogwood</td>
<td>blue spruce; eastern</td>
<td>Austrian pine; eastern white pine; pin oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jwb: Jimtown--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; silky dogwood</td>
<td>blue spruce; eastern</td>
<td>Austrian pine; eastern white pine; pin oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knb: Kensington-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet; Washington hawthorn</td>
<td>eastern arborvitae; eastern redcedar; osageorange</td>
<td>Austrian pine; eastern white pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnC: Kensington-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet; Washington hawthorn</td>
<td>eastern arborvitae; eastern redcedar; osageorange</td>
<td>Austrian pine; eastern white pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnD: Kensington-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet; Washington hawthorn</td>
<td>eastern arborvitae; eastern redcedar; osageorange</td>
<td>Austrian pine; eastern white pine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lba: Lobdell--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern</td>
<td>Austrian pine; eastern white pine; pin oak</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
<td>26-35</td>
<td>>35</td>
<td></td>
</tr>
<tr>
<td>LnA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush; Amur honeysuckle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amur privet; Amur harvartia; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MccB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush; Amur honeysuckle; Amur privet; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eastern arborvita; eastern redcedar; osageorance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MccC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush; Amur honeysuckle; Amur privet; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eastern arborvita; eastern redcedar; osageorance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnbB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eastern redcedar; jack pine; osageorance; Russian olive; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>honeylocust; northern catalpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MndD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eastern redcedar; jack pine; osageorance; Russian olive; Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>honeylocust; northern catalpa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mob:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gray dogwood; Siberian peashrub; silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amur maple; common lilac; eastern redcedar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eastern white pine; Norris spruce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mod:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gray dogwood; Siberian peashrub; silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amur maple; common lilac; eastern redcedar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--- jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eastern white pine; Norris spruce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OdaA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmsted-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush; Amur honeysuckle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amur privet; Amur harvartia; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American pine; blue spruce; eastern arborvita; Washington hawthorn; white fir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
<td>26-35</td>
<td>>35</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>OdA: Valley--------------</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>American pine; blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine;</td>
<td>pin oak</td>
</tr>
<tr>
<td>OmB: Omulga--------------</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine;</td>
<td>---</td>
</tr>
<tr>
<td>OmC: Omulga--------------</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine;</td>
<td>---</td>
</tr>
<tr>
<td>OrA: Orrville------------</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle</td>
<td>American pine; blue spruce; eastern arborvitae; Washington hawthorn; white fir</td>
<td></td>
<td>eastern white pine;</td>
<td>pin oak</td>
</tr>
<tr>
<td>RaB: Rainsboro------------</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine;</td>
<td>---</td>
</tr>
<tr>
<td>RaC2: Rainsboro-----------</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine;</td>
<td>---</td>
</tr>
<tr>
<td>RbC: Rainsboro------------</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine;</td>
<td>---</td>
</tr>
<tr>
<td>ReA: Ravenna-------------</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td></td>
<td></td>
<td>eastern white pine;</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
<td>26-35</td>
<td>>35</td>
<td></td>
</tr>
<tr>
<td>ReB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenna-----------------</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redbud; southern arrowwood; Washington hawthorn</td>
<td>Austrian pine; green ash; osage orange</td>
<td>eastern white pine; pin oak</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>RhD:</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle</td>
<td>Amur privet; blue spruce; eastern arborvitae; Washington hawthorn</td>
<td>Austrian pine</td>
<td>eastern white pine; pin oak</td>
<td></td>
</tr>
<tr>
<td>RhS:</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle</td>
<td>Amur privet; blue spruce; eastern arborvitae; Washington hawthorn</td>
<td>Austrian pine</td>
<td>eastern white pine; pin oak</td>
<td></td>
</tr>
<tr>
<td>RsB:</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redbud; southern arrowwood; Washington hawthorn</td>
<td>Austrian pine; green ash; osage orange</td>
<td>eastern white pine; pin oak</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>RsC:</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redbud; southern arrowwood; Washington hawthorn</td>
<td>Austrian pine; green ash; osage orange</td>
<td>eastern white pine; pin oak</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>RsD2:</td>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redbud; southern arrowwood; Washington hawthorn</td>
<td>Austrian pine; green ash; osage orange</td>
<td>eastern white pine; pin oak</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>TsB:</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn</td>
<td>Austrian pine</td>
<td>eastern white pine; pin oak</td>
<td></td>
</tr>
<tr>
<td>TeC:</td>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>blue spruce; eastern arborvitae; Washington hawthorn</td>
<td>Austrian pine</td>
<td>eastern white pine; pin oak</td>
<td></td>
</tr>
</tbody>
</table>
Table 15.—Windbreaks and Environmental Plantings—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trees having predicted 20-year average height, in feet, of--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8</td>
</tr>
<tr>
<td>TeC2:</td>
<td></td>
</tr>
<tr>
<td>Teegarden---------------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
</tr>
<tr>
<td>Tioga--------------------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Ua:</td>
<td></td>
</tr>
<tr>
<td>Udorthents--------------</td>
<td>---</td>
</tr>
<tr>
<td>Ub:</td>
<td></td>
</tr>
<tr>
<td>Udorthents--------------</td>
<td>---</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
</tr>
<tr>
<td>Udorthents--------------</td>
<td>---</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Ud:</td>
<td></td>
</tr>
<tr>
<td>Udorthents--------------</td>
<td>---</td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>---</td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
</tr>
<tr>
<td>Upshur-------------------</td>
<td>American cranberrybush</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Amur honeysuckle; common lilac; Siberian peashrub; Tatarian honeysuckle</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
</tr>
<tr>
<td>Upshur-------------------</td>
<td>American cranberrybush</td>
</tr>
</tbody>
</table>
Table 15.—Windbreaks and Environmental Plantings—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th><8</th>
<th>8-15</th>
<th>16-25</th>
<th>26-35</th>
<th>>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>UkD2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tatarian honesuckle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amur honeysuckle;</td>
<td>autumn olive;</td>
<td>eastern redcedar;</td>
<td>eastern white pine;</td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td>eastern crabapple;</td>
<td>Washington hawthorn</td>
<td>jack pine; red pine</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Siberian peashrub;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tatarian honesuckle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Austrian pine;</td>
<td>eastern white pine;</td>
<td>pin oak</td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>common hackberry;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>orangeholly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tatarian honesuckle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amur honeysuckle;</td>
<td>autumn olive;</td>
<td>eastern redcedar;</td>
<td>eastern white pine;</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>eastern redcedar;</td>
<td>eastern crabapple;</td>
<td>Washington hawthorn</td>
<td>jack pine; red pine</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>southern arrowwood;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Tatarian honesuckle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Austrian pine;</td>
<td>eastern white pine;</td>
<td>pin oak</td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Austrian pine;</td>
<td>eastern white pine;</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Austrian pine;</td>
<td>eastern white pine;</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>UvB: Urban land---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Austrian pine;</td>
<td>eastern white pine;</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>UvB: Urban land---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Austrian pine;</td>
<td>eastern white pine;</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>jack pine; red pine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Chili--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>common lilac;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Siberian peashrub</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>American pine;</td>
<td>eastern white pine;</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>cranberrybush;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Norway spruce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Valley-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American pine;</td>
<td>blue spruce;</td>
<td>eastern white pine;</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>cranberrybush;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Amur privet</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Austrian pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>blue spruce;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>eastern white pine;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Arborvitae;</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Washington hawthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Norway spruce</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>pin oak</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trees having predicted 20-year average height, in feet, of--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><8</td>
<td>8-15</td>
<td>16-25</td>
<td>26-35</td>
<td>>35</td>
</tr>
<tr>
<td>VbA: Valley--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>American pine; blue spruce; eastern arborvitae; Washington</td>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VcA: Valley--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle; Amur privet</td>
<td>American pine; blue spruce; eastern arborvitae; Washington</td>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain-------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>silky dogwood</td>
<td>American cranberrybush; Amur honeysuckle</td>
<td>American pine; blue spruce; eastern arborvitae; Washington</td>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vnb: Vandergrift--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Washington hawthorn</td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vnc: Vandergrift--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Tatarian honeysuckle; Washington hawthorn</td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaA: Wadsworth-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Tatarian honeysuckle; Washington hawthorn</td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaB: Wadsworth-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American cranberrybush</td>
<td>Amur honeysuckle; Amur privet; eastern redcedar; southern arrowwood; Tatarian honeysuckle; Washington hawthorn</td>
<td>Austrian pine; green ash; osageorange</td>
<td>eastern white pine; pin oak</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 15.—Windbreaks and Environmental Plantings—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trees having predicted 20-year average height, in feet, of--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8</td>
</tr>
<tr>
<td>WkE: Westmoreland--------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>autumn olive; Amur honeysuckle; common lilac;</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WkF: Westmoreland--------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>autumn olive; Amur honeysuckle; common lilac;</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WmC: Westmoreland--------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton-----------------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WmD: Westmoreland--------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton-----------------</td>
<td>silky dogwood</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Columbiana County, Ohio
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trees having predicted 20-year average height, in feet, of--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>WoA:</td>
<td></td>
</tr>
<tr>
<td>Wick---------------------</td>
<td></td>
</tr>
<tr>
<td>ZeA:</td>
<td></td>
</tr>
</tbody>
</table>
Table 16.—Recreational Development Part 1

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Camp areas</th>
<th>Picnic areas</th>
<th>Playgrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda-----------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>0.21</td>
<td>Restricted</td>
</tr>
<tr>
<td>BkB: Berks------------</td>
<td>Somewhat limited</td>
<td>0.25</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.25</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.40</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.27</td>
<td>Gravel content</td>
</tr>
<tr>
<td>BkC: Berks------------</td>
<td>Somewhat limited</td>
<td>0.40</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.40</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.27</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.95</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>BkD: Berks------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.25</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.97</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>BkE: Berks------------</td>
<td>Somewhat limited</td>
<td>0.22</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.25</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.97</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>BmB: Berks------------</td>
<td>Somewhat limited</td>
<td>0.25</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.25</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.97</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Urban Land-------- Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks------------</td>
<td>Somewhat limited</td>
<td>0.40</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.40</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.25</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.97</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Urban Land-------- Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.25</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.95</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Urban Land-------- Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF: Bethesda--------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>1.00</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>0.21</td>
<td>Restricted</td>
</tr>
<tr>
<td></td>
<td>permeability</td>
<td>0.21</td>
<td>permeability</td>
</tr>
<tr>
<td>Camp areas</td>
<td>Picnic areas</td>
<td>Playgrounds</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>BsC2: Bogart</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtA: Bogart</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtB: Bogart</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcA: Calcutta</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcB: Canfield</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcC: Canfield</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcD: Canfield</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcE: Canfield</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CeA: Carlisle</td>
<td>Very limited</td>
<td>Slope</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cfd2: Chili</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 16.—Recreational Development Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Camp areas</th>
<th>Picnic areas</th>
<th>Playgrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>ChA: Chili--------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.06</td>
</tr>
<tr>
<td>ChB: Chili--------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.06</td>
</tr>
<tr>
<td>ChC: Chili--------------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.16</td>
<td>Slope 0.16</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.06</td>
</tr>
<tr>
<td>CmB: Conotton----------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.27</td>
<td>Gravel content 0.27</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.06</td>
</tr>
<tr>
<td>CmC: Conotton----------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.06</td>
</tr>
<tr>
<td>CoB: Coshocton---------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to 0.99</td>
<td>Depth to 0.76</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td>Restricted 0.21</td>
<td>Restricted 0.21</td>
<td>Permeability 0.21</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.27</td>
<td>Gravel content 0.27</td>
<td>Permeability 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.06</td>
</tr>
<tr>
<td>CoC: Coshocton---------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to 0.99</td>
<td>Depth to 0.76</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted 0.21</td>
<td>Restricted 0.21</td>
<td>Permeability 0.21</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.27</td>
<td>Gravel content 0.27</td>
<td>Permeability 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.06</td>
</tr>
<tr>
<td>DAM: Dam---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DgA: Doles-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to 1.00</td>
<td>Depth to 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted 0.21</td>
<td>Restricted 0.21</td>
<td>Permeability 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErC: Ernest------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to 1.00</td>
<td>Depth to 0.84</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted 0.21</td>
<td>Restricted 0.21</td>
<td>Permeability 0.21</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.45</td>
</tr>
<tr>
<td>ErD: Ernest------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to 0.93</td>
<td>Depth to 0.58</td>
<td>Slope 0.93</td>
</tr>
<tr>
<td></td>
<td>Restricted 0.21</td>
<td>Restricted 0.21</td>
<td>Permeability 0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.45</td>
</tr>
<tr>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
<td>-----------------------------------</td>
<td>-------</td>
</tr>
<tr>
<td>Camp areas</td>
<td></td>
<td>Picnic areas</td>
<td></td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td>Gravel content</td>
<td>0.21</td>
<td>Gravel content</td>
<td>0.21</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td></td>
<td>Restricted permeability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td>Gravel content</td>
<td>1.00</td>
<td>Gravel content</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>0.21</td>
<td>Restricted</td>
<td>0.21</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Gravel content</td>
<td>1.00</td>
</tr>
<tr>
<td>Restricted</td>
<td>0.21</td>
<td>Restricted</td>
<td>0.21</td>
</tr>
<tr>
<td>permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat limited</td>
<td>0.21</td>
<td>Restricted</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FcD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Gravel content</td>
<td>1.00</td>
</tr>
<tr>
<td>Restricted</td>
<td>0.21</td>
<td>Restricted</td>
<td>0.21</td>
</tr>
<tr>
<td>permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FdA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to</td>
<td>1.00</td>
<td>saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>saturated zone</td>
<td>0.21</td>
<td>Restricted</td>
<td>0.21</td>
</tr>
<tr>
<td>permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FdB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to</td>
<td>1.00</td>
<td>saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>saturated zone</td>
<td>0.21</td>
<td>Restricted</td>
<td>0.21</td>
</tr>
<tr>
<td>permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluviaquents—-</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>FnC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Somewhat limited</td>
<td>0.40</td>
<td>Slope</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnD2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown—-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 16.—Recreational Development Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Camp areas</th>
<th>Picnic areas</th>
<th>Playgrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FoB: Fredericktown------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>FrA: Frenchtown---------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>GaB: Gavers------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>GeC: Germano-----------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>GeD: Germano-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>GnB: Gilpin------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>GnC: Gilpin------------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>GnD: Gilpin------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>GoC: Gilpin------------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>GoD: Gilpin------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Camp areas</td>
<td>Picnic areas</td>
<td>Playgrounds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GoD:</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Coshocton------------</td>
<td>Slope 0.99</td>
<td>Depth to saturated zone 0.76</td>
<td>Depth to saturated zone 0.99</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td></td>
<td>Depth to 1.00</td>
<td>Depth to saturated zone 0.76</td>
<td>Depth to saturated zone 0.99</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td>Urban Land------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>GrB:</td>
<td>Very limited</td>
<td>Depth to 1.00</td>
<td>Depth to 1.00</td>
</tr>
<tr>
<td>Glenford-------------</td>
<td>Depth to saturated zone 0.21</td>
<td>Depth to saturated zone 0.21</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>GrC:</td>
<td>Very limited</td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td>Glenford-------------</td>
<td>Depth to saturated zone 0.89</td>
<td>Depth to saturated zone 0.89</td>
<td>Slope 0.43</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td>GuC:</td>
<td>Very limited</td>
<td>Depth to 1.00</td>
<td>Depth to 1.00</td>
</tr>
<tr>
<td>Guernsey-------------</td>
<td>Depth to saturated zone 0.43</td>
<td>Depth to saturated zone 0.43</td>
<td>Slope 0.43</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td>GuC2:</td>
<td>Very limited</td>
<td>Depth to 1.00</td>
<td>Depth to 1.00</td>
</tr>
<tr>
<td>Guernsey-------------</td>
<td>Depth to saturated zone 0.43</td>
<td>Depth to saturated zone 0.43</td>
<td>Slope 0.43</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------------</td>
<td>-------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>GuD:</td>
<td>Guernsey</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.43</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>HeB:</td>
<td>Hazleton</td>
<td>Not limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td></td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td>and soil name</td>
<td></td>
<td>and soil name</td>
</tr>
<tr>
<td></td>
<td>Camp areas</td>
<td></td>
<td>Picnic areas</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td></td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td></td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td>GuD:</td>
<td>Guernsey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.43</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>HeB:</td>
<td>Hazleton</td>
<td>Not limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.40</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.05</td>
<td>Slope</td>
</tr>
<tr>
<td>HlB:</td>
<td>Homewood</td>
<td>Somewhat limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.96</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
<td>Depth to saturated zone</td>
</tr>
</tbody>
</table>

Table 16.—Recreational Development Part 1—Continued
Table 16.—Recreational Development Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Camp areas</th>
<th>Picnic areas</th>
<th>Playgrounds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HoA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>HoB: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>1.00</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>JWA: Jimtown-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>JWB: Jimtown-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>KeB: Keene---------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>KnB: Kensington-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>KnC: Kensington-----------</td>
<td>Somewhat limited</td>
<td>Slope</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>KnD: Kensington-----------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>LbA: Lobdell-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>LnA: Lorain--------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>McB: Mechanicsburg-------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Somewhat limited</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>McC: Mechanicsburg-------</td>
<td>Somewhat limited</td>
<td>Slope</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Camp areas</td>
<td>Picnic areas</td>
<td>Playgrounds</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>MnB: Morristown--------</td>
<td>Somewhat limited</td>
<td>0.21</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Restricted permeability</td>
<td>0.99</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>MnD: Morristown--------</td>
<td>Very limited Slope</td>
<td>1.00</td>
<td>Very limited Slope</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Restricted permeability</td>
<td>0.21</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>MoB: Morristown--------</td>
<td>Somewhat limited Gravel content</td>
<td>0.26</td>
<td>Somewhat limited Gravel content</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Restricted permeability</td>
<td>0.21</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>OdA: Olmsted-----------</td>
<td>Very limited Depth to saturated zone</td>
<td>1.00</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Ponds</td>
<td>1.00</td>
<td>Ponds</td>
</tr>
<tr>
<td>Valley------------------</td>
<td>Very limited Depth to saturated zone</td>
<td>1.00</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Ponds</td>
<td>1.00</td>
<td>Ponds</td>
</tr>
<tr>
<td>OmB: Omulga------------</td>
<td>Somewhat limited Depth to saturated zone</td>
<td>0.98</td>
<td>Somewhat limited Depth to saturated zone</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>OmC: Omulga------------</td>
<td>Very limited Depth to saturated zone</td>
<td>0.99</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Slope</td>
<td>0.40</td>
<td>Slope</td>
</tr>
<tr>
<td>OsA: Orrville----------</td>
<td>Very limited Depth to saturated zone</td>
<td>1.00</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Flooding</td>
<td>0.60</td>
<td>Flooding</td>
</tr>
<tr>
<td>Pg: Pits---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Camp areas</td>
<td>Picnic areas</td>
<td>Playgrounds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>RaB:</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.93</td>
</tr>
<tr>
<td>Rainsboro-------------</td>
<td>Slope</td>
<td>0.16</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>RaC2:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>0.99</td>
</tr>
<tr>
<td>Rainsboro-----------</td>
<td>Slope</td>
<td>0.16</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>RbC:</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.96</td>
</tr>
<tr>
<td>Rainsboro---------</td>
<td>Slope</td>
<td>0.16</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Restrict</td>
<td>Restricted permeability</td>
<td>0.87</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>ReA:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Ravenna-----------</td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>ReB:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Ravenna--------</td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>RhD:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Richland---------</td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>RhE:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Richland---------</td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>RaB:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Rittman---------</td>
<td>Slope</td>
<td>0.30</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>RaC:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Rittman---------</td>
<td>Slope</td>
<td>0.16</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>RaD2:</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Rittman--------</td>
<td>Slope</td>
<td>0.16</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>TeB:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Camp areas</td>
<td>Picnic areas</td>
<td>Playgrounds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>TeC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden---------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>TeC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden---------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioga--------------------</td>
<td>Very limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Flooding 1.00</td>
<td></td>
<td>Flooding 0.60</td>
</tr>
<tr>
<td>Ua:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Udorthents---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Ub:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Uc:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur--------------------</td>
<td>Somewhat limited</td>
<td>Restricted</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.96</td>
<td>Restricted permeability 0.96</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Restricted permeability 0.96</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Somewhat limited</td>
<td>Slope 0.40</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.25</td>
<td>Gravel content 0.25</td>
<td>Gravel content 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.90</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur--------------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.96</td>
<td>Restricted permeability 0.96</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Restricted permeability 0.96</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.27</td>
<td>Gravel content 0.27</td>
<td>Gravel content 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td>Uke2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur--------------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.96</td>
<td>Restricted permeability 0.96</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.40</td>
<td>Slope 0.40</td>
<td>Restricted permeability 0.96</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.25</td>
<td>Gravel content 0.25</td>
<td>Gravel content 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td>Ua:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>UlB:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-------------------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.47</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.21</td>
<td>Slope 0.50</td>
<td>Depth to saturated zone 0.47</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Camp areas</td>
<td>Picnic areas</td>
<td>Playgrounds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>UvC: Urban Land----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.93</td>
<td>Depth to saturated zone 0.58</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.16</td>
<td>Slope 0.16</td>
<td>Depth to saturated zone 0.93</td>
</tr>
<tr>
<td>UvB: Urban Land----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited Slope 0.50</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaA: Valley--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.99</td>
<td>Restricted permeability 0.99</td>
<td></td>
</tr>
<tr>
<td>VbA: Valley--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.99</td>
<td>Restricted permeability 0.99</td>
<td></td>
</tr>
<tr>
<td>VcA: Valley--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.99</td>
<td>Restricted permeability 0.99</td>
<td></td>
</tr>
<tr>
<td>Lorain-------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 1.00</td>
<td>Restricted permeability 1.00</td>
<td></td>
</tr>
<tr>
<td>VnB: Vandergrift--------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 0.96</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.96</td>
<td>Restricted permeability 0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Slope 0.94</td>
<td></td>
</tr>
<tr>
<td>VnC: Vandergrift--------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 0.96</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.96</td>
<td>Restricted permeability 0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Slope 0.40</td>
<td>Restricted permeability 0.96</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Camp areas</td>
<td>Picnic areas</td>
<td>Playgrounds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>W:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>WaA:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td>Depth to saturated zone</td>
<td>0.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>WaB:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>WkE:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>WmC:</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>0.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Wmd:</td>
<td>Depth to bedrock</td>
<td>0.99</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Slope</td>
<td>0.55</td>
<td>Slope</td>
</tr>
<tr>
<td>WmD:</td>
<td>Depth to saturated zone</td>
<td>0.55</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>1.00</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>WoA:</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Wick--------------------</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Flooding</td>
<td>1.00</td>
<td>0.40</td>
<td>1.00</td>
</tr>
<tr>
<td>ZeA:</td>
<td>Flooding</td>
<td>1.00</td>
<td>Flooding</td>
</tr>
</tbody>
</table>
Table 17.—Recreational Development Part 2

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Paths and trails</th>
<th>Off-road motorcycle trails</th>
<th>Golf fairways</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Water erosion 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>BkB: Berks-------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.68</td>
<td>Gravel content 0.25</td>
<td>Depth to bedrock 0.06</td>
</tr>
<tr>
<td>BkC: Berks-------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Not limited</td>
<td>Not limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.95</td>
<td>Gravel content 0.27</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td>BkD: Berks-------------</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.70</td>
<td>Not limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Droughty 0.99</td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.22</td>
<td>Large stones</td>
<td>content</td>
</tr>
<tr>
<td>BkE: Berks-------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 0.66</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.99</td>
<td>Depth to bedrock 0.97</td>
<td>Gravel content 0.22</td>
</tr>
<tr>
<td></td>
<td>Gravel content 0.22</td>
<td>Large stones</td>
<td>content</td>
</tr>
<tr>
<td>BkB: Berks-------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Not limited</td>
<td>Not limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.99</td>
<td>Depth to bedrock 0.97</td>
<td>Gravel content 0.25</td>
</tr>
<tr>
<td>Urban Land-------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks-------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Not limited</td>
<td>Not limited</td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Gravel content 0.25</td>
<td></td>
</tr>
<tr>
<td>Urban Land-------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks-------------</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.70</td>
<td>Not limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Depth to bedrock 0.95</td>
<td>Gravel content 0.25</td>
</tr>
<tr>
<td>Urban Land-------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BpF: Bethesda</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Droughty</td>
</tr>
<tr>
<td>BsC2: Bogart</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>BtA: Bogart</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>0.62</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>BtB: Bogart</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>0.73</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>BtC: Bogart</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>0.44</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>CaA: Calcutta</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>CcB: Canfield</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>0.62</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>CcC: Canfield</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>CcD: Canfield</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.62</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>CcE: Canfield</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>0.18</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>CaA: Carlisle</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>1.00</td>
<td>Organic matter</td>
</tr>
<tr>
<td></td>
<td>content</td>
<td></td>
<td>content</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td>CfD2: Chili</td>
<td>Somewhat limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.19</td>
<td>Slope</td>
</tr>
<tr>
<td>ChA: Chili</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td>ChB: Chili</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>ChB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Not limited</td>
</tr>
<tr>
<td>ChC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>CmB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton--------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Gravel content</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton--------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Gravel content</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton-----------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.44</td>
<td>Depth to saturated zone</td>
<td>0.44</td>
</tr>
<tr>
<td>CoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.44</td>
<td>Depth to saturated zone</td>
<td>0.44</td>
</tr>
<tr>
<td>CoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.44</td>
<td>Depth to saturated zone</td>
<td>0.44</td>
</tr>
<tr>
<td>DAM:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam--------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doles--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>ErC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.62</td>
<td>Depth to saturated zone</td>
<td>0.62</td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.18</td>
<td>Depth to saturated zone</td>
<td>0.18</td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gravel content</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>0.44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Large stones content</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FbD: Fairpoint----------</td>
<td>Somewhat limited Slope</td>
<td>0.24</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>FbF: Fairpoint----------</td>
<td>Very limited Slope</td>
<td>1.00</td>
<td>Very limited Slope</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.19</td>
<td>Droughty</td>
</tr>
<tr>
<td>FcB: Fairpoint----------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.24</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>FcD: Fairpoint----------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>FdA: Fitchville----------</td>
<td>Very limited Depth to saturated zone</td>
<td>1.00</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>FdB: Fitchville----------</td>
<td>Very limited Depth to saturated zone</td>
<td>1.00</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.19</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.24</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>FeA: Fluvaquents--------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.24</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>Fc2: Fredericktown------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.70</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>FnB: Fredericktown------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.70</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>FaA: Frenchtown---------</td>
<td>Very limited Depth to saturated zone</td>
<td>1.00</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>GaB: Gavers-------------</td>
<td>Very limited Depth to saturated zone</td>
<td>1.00</td>
<td>Very limited Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>GeC: Germano-----------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.24</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>GeD: Germano-----------</td>
<td>Somewhat limited Slope</td>
<td>0.70</td>
<td>Not limited Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>GnB: Gilpin------------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.70</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.51</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Large stones</td>
<td>0.03</td>
<td>Large stones</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GnC:</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Slope 0.70</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.84</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saturated zone 0.70</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 1.00</td>
<td>Droughty 0.10</td>
</tr>
<tr>
<td>GnD:</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Slope 0.70</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saturated zone 0.70</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 1.00</td>
<td>Droughty 0.05</td>
</tr>
<tr>
<td>GoC:</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Slope 0.70</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saturated zone 0.70</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 1.00</td>
<td>Droughty 0.05</td>
</tr>
<tr>
<td>Coshocton-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.75</td>
<td></td>
</tr>
<tr>
<td>Depth to saturated zone 0.44</td>
<td>Depth to saturated zone 0.44</td>
<td>Slope 0.26</td>
<td></td>
</tr>
<tr>
<td>GoD:</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Slope 0.70</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saturated zone 0.70</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 1.00</td>
<td>Droughty 0.05</td>
</tr>
<tr>
<td>Urban Land----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>GrB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Glenford------------------</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>GrC:</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Glenford------------------</td>
<td>Depth to saturated zone 0.92</td>
<td>Depth to saturated zone 0.92</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td>GuC:</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.88</td>
</tr>
<tr>
<td>Guernsey------------------</td>
<td>Depth to saturated zone 0.73</td>
<td>Depth to saturated zone 0.73</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td>GuC2:</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.98</td>
</tr>
<tr>
<td>Guernsey------------------</td>
<td>Depth to saturated zone 0.98</td>
<td>Depth to saturated zone 0.98</td>
<td>Slope 0.99</td>
</tr>
<tr>
<td>GuD:</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.70</td>
</tr>
<tr>
<td>Guernsey------------------</td>
<td>Slope 0.70</td>
<td>Water erosion 1.00</td>
<td>Depth to saturated zone 0.70</td>
</tr>
<tr>
<td>GuD2:</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.98</td>
</tr>
<tr>
<td>Guernsey------------------</td>
<td>Depth to saturated zone 0.98</td>
<td>Depth to saturated zone 0.98</td>
<td>Slope 0.99</td>
</tr>
<tr>
<td>GuD3:</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Depth to bedrock 0.70</td>
</tr>
<tr>
<td>Guernsey------------------</td>
<td>Slope 0.70</td>
<td>Water erosion 1.00</td>
<td>Depth to saturated zone 0.70</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>HeB: Hazleton------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Not limited</td>
</tr>
<tr>
<td>HeC: Hazleton------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>HeD: Hazleton------------</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>HeE: Hazleton------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>HfF: Hazleton------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>HgF: Hazleton------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>HkA: Holly---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>HlA: Homewood-------------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.04</td>
</tr>
<tr>
<td>HmA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>HmB: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>HoA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>HoB: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>JwA: Jimtown-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>JwB: Jimtown-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>KeB: Keene---------------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.44</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>KnB: Kensington----------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.44</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>KnC: Kensington----------</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>KnD: Kensington----------</td>
<td>Very limited</td>
<td>Water erosion Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>LnA: Lobdell-------------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.73</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>LnA: Lorain-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>McB: Mechanicsburg-------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Not limited</td>
</tr>
<tr>
<td>MnB: Morristown----------</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>MnD: Morristown----------</td>
<td>Very limited</td>
<td>Water erosion Slope 0.24</td>
<td>Very limited</td>
</tr>
<tr>
<td>MoB: Morristown----------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Not limited</td>
</tr>
<tr>
<td>MoD: Morristown----------</td>
<td>Somewhat limited</td>
<td>Slope 0.24</td>
<td>Not limited</td>
</tr>
<tr>
<td>OdA: Olmsted-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Valley---------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>OmB: Omulga-------------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.32</td>
</tr>
<tr>
<td>OmC: Omulga-------------</td>
<td>Very limited</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>OrA: Orrville------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Pg: Pits----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>RaB: Rainsboro-----------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.18</td>
</tr>
<tr>
<td>RaC2: Rainsboro----------</td>
<td>Very limited</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>RbC: Rainsboro-----------</td>
<td>Very limited</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>ReA: Ravenna-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>ReB: Ravenna-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>RhD: Richland------------</td>
<td>Very limited</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>RhE: Richland------------</td>
<td>Very limited</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>RsB: Rittman-------------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.98</td>
</tr>
<tr>
<td>RsC: Rittman-------------</td>
<td>Very limited</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.92</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>----------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 limiting features | Value | Rating class and |
 limiting features | Value | Rating class and |
 limiting features | Value |
<p>| RsD2: | | | |
| Rittman----------------| Very limited | Very limited | Very limited |
| | Depth to saturated zone | Depth to saturated zone | Depth to saturated zone |
| | Water erosion | Water erosion | Slope |
| | Slope | 0.19 | Droughty |
| TeB: | | | |
| Teegarden-------------| Very limited | Very limited | Very limited |
| | Depth to saturated zone | Depth to saturated zone | Depth to saturated zone |
| TeC: | | | |
| Teegarden-------------| Very limited | Very limited | Somewhat limited |
| | Water erosion | Water erosion | Depth to saturated zone |
| | Slope | 0.92 | Slope |
| | Depth to saturated zone | Depth to saturated zone | Depth to saturated zone |
| TeC2: | | | |
| Teegarden-------------| Very limited | Very limited | Somewhat limited |
| | Water erosion | Water erosion | Depth to saturated zone |
| | Slope | 0.92 | Slope |
| | Depth to saturated zone | Depth to saturated zone | Depth to saturated zone |
| ToA: | | | |
| Tioga-----------------| Not limited | Not limited | Somewhat limited |
| Udorthents-------------| Somewhat limited | Not limited | Not rated |
| | Slope | 0.03 | |
| Ub: | | | |
| Udorthents-------------| Somewhat limited | Not limited | Not rated |
| | Slope | 0.03 | |
| Uc: | | | |
| Udorthents-------------| Very limited | Slope | Not rated |
| | 1.00 | | |
| Pits--------------------| Not rated | Not rated | Not rated |
| UkJ2: | | | |
| Upshur-----------------| Very limited | Very limited | Somewhat limited |
| | Water erosion | Water erosion | Slope |
| | Slope | 1.00 | Droughty |
| Berks------------------| Not limited | Not limited | Very limited |
| | Droughty | 1.00 | Depth to bedrock |
| | Slope bedrock | 0.90 | Slope |
| | Slope | 0.26 | Gravel content |
| UkJD2: | | | |
| Upshur-----------------| Very limited | Very limited | Very limited |
| | Water erosion | Water erosion | Slope |
| | Slope | 0.70 | |
| Berks------------------| Somewhat limited | Not limited | Very limited |
| | Slope | 0.70 | Slope |
| | Droughty | 1.00 | Depth to bedrock |
| | Slope bedrock | 0.97 | Gravel content |
| | Slope | 0.27 | |</p>
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Paths and trails</th>
<th>Off-road motorcycle trails</th>
<th>Golf fairways</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>Uke2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Berks:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Uc:</td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield:</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Vca:</td>
<td>Valley</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.18</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Vba:</td>
<td>Valley</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.18</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Vca:</td>
<td>Valley</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.18</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Lorain:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.18</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Vnb:</td>
<td>Vandergrift</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.86</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Vnc:</td>
<td>Vandergrift</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.86</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Paths and trails</td>
<td>Off-road motorcycle trails</td>
<td>Golf fairways</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>---------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Map symbol</td>
<td>Value</td>
<td>Map symbol</td>
</tr>
<tr>
<td>W:</td>
<td></td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Water-------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Woa:</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Wadsworth--------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>WKB:</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Westmoreland-----------</td>
<td>Very limited Water erosion 1.00</td>
<td>Very limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Berks------------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Wmc:</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Westmoreland-----------</td>
<td>Very limited Water erosion 1.00</td>
<td>Very limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td>Very limited Water erosion 1.00</td>
<td>Very limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Wmd:</td>
<td>Very limited Depth to saturated zone 0.44</td>
<td>Depth to saturated zone 0.44</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td>Westmoreland-----------</td>
<td>Very limited Water erosion 1.00</td>
<td>Very limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td>Very limited Water erosion 1.00</td>
<td>Very limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Woa:</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Wick--------------------</td>
<td>Very limited Depth to saturated zone 0.40</td>
<td>Depth to saturated zone 0.40</td>
<td>Very limited</td>
</tr>
<tr>
<td>Zea:</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
</tbody>
</table>
Table 18.—Wildlife Habitat

(See text for definitions of terms used in this table. Absence of an entry indicates that no rating is applicable.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential for habitat elements</th>
<th>Potential as habitat for--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grain and seed crops</td>
<td>Grasses and legumes</td>
</tr>
<tr>
<td>BkB: Berks</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>BkC: Berks</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>BkD: Berks</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>BkR: Berks</td>
<td>Very poor.</td>
<td>Fair</td>
</tr>
<tr>
<td>BmB: Berks</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>BmC: Berks</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>BmD: Berks</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>BtA: Bogart</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>BtB: Bogart</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>BtC: Bogart</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>CaA: Calcutta</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>CcB: Canfield</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential for habitat elements</td>
<td>Potential as habitat for--</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Grain and seed crops</td>
<td>Grasses and legumes</td>
</tr>
<tr>
<td>CcC: Canfield-----------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>CcD: Canfield-----------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>CeA: Carlisle------------</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>CED2: Chili--------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>ChA: Chili---------------</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>ChB: Chili---------------</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>ChC: Chili---------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>ChD: Conohton------------</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>ChE: Conohton------------</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>CoB: Coshotocton---------</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>CoC: Coshotocton---------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>CoD: Coshotocton---------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>DgA: Doles--------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>ErC: Ernest--------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>ErD: Ernest--------------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
</tbody>
</table>
Table 18.—Wildlife Habitat—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential for habitat elements</th>
<th>Potential as habitat for--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grain and seed crops</td>
<td>Grasses and legumes</td>
</tr>
<tr>
<td>FcB: Fairpoint----------</td>
<td>Fair</td>
<td>Fair</td>
</tr>
<tr>
<td>FcD: Fairpoint----------</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>FdA: Fitchville---------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>FdB: Fitchville---------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>FOB: Fredericktown------</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Fra: Frenchtown---------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Gab: Gavers-------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grain and seed crops</td>
<td>Grasses and legumes</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>GnB:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gnc:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Gnd:</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>GoC:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Coshocton---------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>GoD:</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Coshocton---------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Gpc:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Coshocton---------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Grb:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Glenford-----------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Grc:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Guc:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>GuC2:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>GuD:</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>HEB:</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
Table 18.—Wildlife Habitat—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grain and seed crops</th>
<th>Grasses and legumes</th>
<th>Wild herbaceous plants</th>
<th>Hardwood trees</th>
<th>Coniferous plants</th>
<th>Wetland plants</th>
<th>Shallow water areas</th>
<th>Openland wildlife</th>
<th>Woodland wildlife</th>
<th>Wetland wildlife</th>
</tr>
</thead>
<tbody>
<tr>
<td>HkA: Holly---------------</td>
<td>Fair</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>HmA: Homeworth-----------</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>good</td>
<td>Fair</td>
</tr>
<tr>
<td>HoA: Homeworth-----------</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>JWA: Jimtown-------------</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential for habitat elements</td>
<td>Potential as habitat for--</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grain crops</td>
<td>Grasses and legumes</td>
<td>Wild herbaceous plants</td>
<td>Hardwood trees</td>
<td>Coniferous plants</td>
<td>Wetland plants</td>
<td>Shallow water areas</td>
<td>Openland wildlife</td>
<td>Woodland wildlife</td>
<td>Wetland wildlife</td>
</tr>
<tr>
<td>KnB:</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Very poor</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td>Very poor</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td>Poor</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td>Very poor</td>
<td>Fair</td>
<td>Good</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>LniA:</td>
<td>Fair</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>McB:</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg-----------</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td>Very poor</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>MnB:</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Poor</td>
<td>Very poor</td>
<td>Fair</td>
<td>Fair</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>MnD:</td>
<td>Poor</td>
<td>Fair</td>
<td>Fair</td>
<td>Fair</td>
<td>Very poor</td>
<td>Very poor</td>
<td>Poor</td>
<td>Fair</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>MoB:</td>
<td>Very poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Very poor</td>
<td>Poor</td>
<td>Very poor</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>MoD:</td>
<td>Very poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Very poor</td>
<td>Very poor</td>
<td>Poor</td>
<td>Very poor</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>OdA:</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>Valley------------------</td>
<td>Very poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td>OmB:</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Poor</td>
<td>Very poor</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>OmC:</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td>Very poor</td>
<td>Good</td>
<td>Good</td>
<td>Very poor</td>
<td></td>
</tr>
<tr>
<td>OrA:</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td>Fair</td>
<td>Good</td>
<td>Good</td>
<td>Fair</td>
<td></td>
</tr>
</tbody>
</table>
Table 18.—Wildlife Habitat—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential for habitat elements</th>
<th>Potential as habitat for—</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grain and seed crops</td>
<td>Grasses and legumes</td>
</tr>
<tr>
<td>RaB: Rainsboro-----------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>RaC2: Rainsboro----------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>RbC: Rainsboro------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>ReA: Ravenna-------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>ReB: Ravenna-------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>RhD: Richland------------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>ReB: Rittman------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>RsC: Rittman------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>RsD2: Rittman-----------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>TeB: Teegarden-----------</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>TeC: Teegarden-----------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>TcC2: Teegarden----------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>ToA: Tioga---------------</td>
<td>Good</td>
<td>Good</td>
</tr>
</tbody>
</table>
Table 18.—Wildlife Habitat—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential for habitat elements</th>
<th>Potential as habitat for--</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grain and seed crops</td>
<td>Grasses and legumes</td>
</tr>
<tr>
<td>Ukc2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Ukd2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Ukb2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>Very poor.</td>
<td>Fair</td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Very poor.</td>
<td>Fair</td>
</tr>
<tr>
<td>Utc:</td>
<td>Canfield------------</td>
<td>Fair</td>
</tr>
<tr>
<td>Utc:</td>
<td>Canfield------------</td>
<td>Fair</td>
</tr>
<tr>
<td>Uvb:</td>
<td>Canfield------------</td>
<td>Fair</td>
</tr>
<tr>
<td>VaA:</td>
<td>Valley--------------</td>
<td>Very poor.</td>
</tr>
<tr>
<td>Vba:</td>
<td>Valley--------------</td>
<td>Very poor.</td>
</tr>
<tr>
<td>Vca:</td>
<td>Valley--------------</td>
<td>Very poor.</td>
</tr>
<tr>
<td>Lorain--------------------</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Vnb:</td>
<td>Vandergrift--------</td>
<td>Fair</td>
</tr>
<tr>
<td>Vnc:</td>
<td>Vandergrift--------</td>
<td>Fair</td>
</tr>
<tr>
<td>WaA:</td>
<td>Wadsworth----------</td>
<td>Fair</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grain and seed crops</td>
<td>Grasses and legumes</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>WaB:</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>WkE:</td>
<td>Very poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Very poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very poor</td>
<td>Poor</td>
</tr>
<tr>
<td>WkF:</td>
<td>Very poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Very poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very poor</td>
<td>Poor</td>
</tr>
<tr>
<td>WmC:</td>
<td>Very poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Fair</td>
<td>Good</td>
</tr>
<tr>
<td>WmD:</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td>Woa:</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>ZeA:</td>
<td>Poor</td>
<td>Poor</td>
</tr>
</tbody>
</table>

Table 18.—Wildlife Habitat—Continued
Table 19.—Construction Materials Part 1

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 1.0. The greater the value, the greater the likelihood that the bottom layer or thickest layer of the soil is a source of sand or gravel. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of gravel</th>
<th>Potential source of sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>AmF: Amanda--------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BkE: Berks---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BmB: Berks---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>BpF: Bethesda------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BsC2: Bogart--------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BtA: Bogart--------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>BtB: Bogart--------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of gravel</td>
<td>Potential source of sand</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>BtC: Bogart</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CaA: Calcutta</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CcB: Canfield</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CcC: Canfield</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CcD: Canfield</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CeA: Carlisle</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CfD2: Chili</td>
<td>Good</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>1.00</td>
</tr>
<tr>
<td>ChA: Chili</td>
<td>Good</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>1.00</td>
</tr>
<tr>
<td>ChB: Chili</td>
<td>Good</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>1.00</td>
</tr>
<tr>
<td>ChC: Chili</td>
<td>Good</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>1.00</td>
</tr>
<tr>
<td>CmB: Conotton</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CmC: Conotton</td>
<td>Good</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>1.00</td>
</tr>
<tr>
<td>CoB: Coshcoton</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CoC: Coshcoton</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>CoD: Coshcoton</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>DAM: Dam</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of gravel</td>
<td>Potential source of sand</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>DgA: Doles---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>ErC: Ernest---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>ErD: Ernest---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FbB: Fairpoint------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FbD: Fairpoint------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FbF: Fairpoint------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FcB: Fairpoint------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FcD: Fairpoint------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FdA: Fitchville-----------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FdB: Fitchville-----------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FeA: Fluvaquents---------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FnC2: Fredericktown-------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FnD2: Fredericktown-------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FoB: Fredericktown-------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>FrA: Frenchtown------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GaB: Gavers---------------</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 19.—Construction Materials Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of gravel</th>
<th>Potential source of sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>GeC:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Germano</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GeD:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Germano</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GnB:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GnC:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GoC:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Coshocton</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GoD:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Coshocton</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GpC:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GuC2:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Guernsey</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>GuD:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Guernsey</td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Urban Land---------------- Not rated Not rated

GrB: | Poor | | Poor | |
| Glenford | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | Bottom layer | 0.00 | Bottom layer | 0.00 |
GrC: | Poor | | Poor | |
| Glenford | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | Bottom layer | 0.00 | Bottom layer | 0.00 |
GuC: | Poor | | Poor | |
| Guernsey | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | Bottom layer | 0.00 | Bottom layer | 0.00 |
GuC2: | Poor | | Poor | |
| Guernsey | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | Bottom layer | 0.00 | Bottom layer | 0.00 |
GuD: | Poor | | Poor | |
<p>| Guernsey | Thickest layer | 0.00 | Thickest layer | 0.00 |
| | Bottom layer | 0.00 | Bottom layer | 0.00 |</p>
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of gravel</th>
<th>Potential source of sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>HeB:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HeC:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HeD:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HeE:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HfF:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Rock Outcrop:</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>HgF:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Westmoreland:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HkA:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Holly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HlB:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Homewood</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HmA:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Homeworth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HmB:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Homeworth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HoA:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Homeworth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>HoB:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Homeworth</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>JwA:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Jimtown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>JwB:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Jimtown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>KeB:</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Keene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Table 19.—Construction Materials Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of gravel</th>
<th>Potential source of sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>KnB: Kensington----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>KnC: Kensington----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>KnD: Kensington----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>LhA: Lobdell-------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>LnA: Lorain--------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>McB: Mechanicsburg-------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>McC: Mechanicsburg-------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>MnB: Morristown----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>MnD: Morristown----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>MoB: Morristown----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>MoD: Morristown----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>OdA: Olmsted-------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>OmB: Omulga--------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>OmC: Omulga--------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>OrA: Orrville------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>Pg: Pits----------------</td>
<td>Not rated</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
</tbody>
</table>
Table 19.—Construction Materials Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of gravel</th>
<th>Potential source of sand</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>RaB: Rainsboro-----------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>RaC2: Rainsboro----------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>RbC: Rainsboro------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>ReA: Ravenna-------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>ReB: Ravenna-------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>RhD: Richland------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>RhE: Richland------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>RsB: Rittman-------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>RsC: Rittman-------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>RsD2: Rittman-------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>TeB: Teegarden-----------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>TeC: Teegarden-----------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>TeC2: Teegarden----------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>ToA: Tioga---------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Ua: Udorthents------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Ub: Udorthents------------</td>
<td>Poor</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of gravel</td>
<td>Potential source of sand</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>Uc: Udorthents</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Pits</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>UkC2: Upshur</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Berks</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>UkD2: Upshur</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Berks</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Ur: Urban Land</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>UtB: Urban Land</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>UkC: Urban Land</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>UrB: Urban Land</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>VaA: Valley</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>VbA: Valley</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>VoA: Valley</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Thickest layer</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Bottom layer</td>
<td>0.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of gravel</td>
<td>Potential source of sand</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class</td>
<td>Value</td>
</tr>
<tr>
<td>VcA: Lorain--------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>VrB: Vandergrift---------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>VrC: Vandergrift---------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>W: Water-----------------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>WaA: Wadsworth-----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>WaB: Wadsworth-----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>WkE: Westmoreland--------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>WkF: Westmoreland--------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>WmC: Westmoreland--------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>WmD: Westmoreland--------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>WoA: Wick----------------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
<tr>
<td>ZeA: Zepernick-----------</td>
<td>Poor</td>
<td>Thickest layer 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bottom layer 0.00</td>
</tr>
</tbody>
</table>
Table 20.—Construction Materials Part 2

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.00 to 0.99. The smaller the value, the greater the limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of reclamation material</th>
<th>Potential source of roadfill</th>
<th>Potential source of topsoil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda---------------</td>
<td>Fair</td>
<td>Shrink-swell 0.87</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Organic matter 0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Depth to bedrock 0.00</td>
<td>Rock fragments 0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.93</td>
<td>Slope 0.00</td>
<td>Too acid 0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Depth to bedrock 0.00</td>
<td>Rock fragments 0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.05</td>
<td>Slope 0.00</td>
<td>Too acid 0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Depth to bedrock 0.00</td>
<td>Rock fragments 0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.10</td>
<td>Slope 0.50</td>
<td>Too acid 0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Depth to bedrock 0.00</td>
<td>Rock fragments 0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.03</td>
<td>Slope 0.00</td>
<td>Depth to bedrock 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid 0.92</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Depth to bedrock 0.00</td>
<td>Rock fragments 0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.03</td>
<td>Slope 0.00</td>
<td>Depth to bedrock 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid 0.92</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Depth to bedrock 0.00</td>
<td>Rock fragments 0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.05</td>
<td>Slope 0.50</td>
<td>Rock fragments 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BpF: Bethesda--------</td>
<td>Fair</td>
<td></td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.12</td>
<td>Cobble content</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobble content</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BsC2: Bogart---------</td>
<td>Good</td>
<td>Poor</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtA: Bogart----------</td>
<td>Good</td>
<td>Poor</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wetness depth</td>
</tr>
<tr>
<td>BtB: Bogart----------</td>
<td>Fair</td>
<td>Poor</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtC: Bogart----------</td>
<td>Good</td>
<td>Poor</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaA: Calcutta--------</td>
<td>Poor</td>
<td>Poor</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>CcB: Canfield--------</td>
<td>Fair</td>
<td>Poor</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcC: Canfield--------</td>
<td>Fair</td>
<td>Poor</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcD: Canfield--------</td>
<td>Fair</td>
<td>Poor</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material Rating class and limiting features</td>
<td>Potential source of roadfill Rating class and limiting features</td>
<td>Potential source of topsoil Rating class and limiting features</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CcE: Canfield-----------</td>
<td>Fair Droughty 0.67 Wetness depth 0.24</td>
<td>Poor Slope 0.00 Hard to reclaim (dense layer) 0.20 Wetness depth 0.24 Too acid 0.97</td>
<td></td>
</tr>
<tr>
<td>CcA: Carlisle-----------</td>
<td>Not rated Wind erosion 0.00</td>
<td>Poor Wetness depth 0.00 Hard to reclaim (rock fragments) 0.00</td>
<td>Not rated</td>
</tr>
<tr>
<td>CChD2: Chili-------------</td>
<td>Fair No organic matter limitation 0.99 Slope 0.02</td>
<td>Poor Slope 0.00 Rock fragments 0.08</td>
<td></td>
</tr>
<tr>
<td>ChA: Chili---------------</td>
<td>Fair Organic matter content low 0.99 Slope 0.00</td>
<td>Poor Rock fragments 0.00 Hard to reclaim (rock fragments) 0.95</td>
<td></td>
</tr>
<tr>
<td>CChB: Chili--------------</td>
<td>Good</td>
<td>Poor Slope 0.00 Rock fragments 0.00</td>
<td></td>
</tr>
<tr>
<td>CcC: Conototton----------</td>
<td>Fair Organic matter content low 0.92 Slope 0.00</td>
<td>Poor Rock fragments 0.00 Hard to reclaim (rock fragments) 0.68</td>
<td></td>
</tr>
<tr>
<td>CmB: Conototton---------</td>
<td>Good</td>
<td>Poor Slope 0.00 Rock fragments 0.00</td>
<td></td>
</tr>
<tr>
<td>CmC: Conototton---------</td>
<td>Fair Organic matter content low 0.80 Slope 0.00</td>
<td>Poor Rock fragments 0.00 Hard to reclaim (rock fragments) 0.68</td>
<td></td>
</tr>
<tr>
<td>CoB: Coshocton-----------</td>
<td>Fair Organic matter content low 0.66 Slope 0.00</td>
<td>Poor Wetness depth 0.14</td>
<td></td>
</tr>
<tr>
<td>CoC: Coshocton-----------</td>
<td>Fair Too acid 0.68 Organic matter content low 0.91 Water erosion 0.99 Low strength 0.22 Depth to bedrock 0.74 Shrink-swell 0.89</td>
<td>Poor Slope 0.00 Wetness depth 0.14 Hard to reclaim (rock fragments) 0.43 Slope 0.74 Too acid 0.79 Rock fragments 0.80</td>
<td></td>
</tr>
<tr>
<td>CoD: Coshocton-----------</td>
<td>Fair Organic matter content low 0.43 Slope 0.00</td>
<td>Poor Slope 0.00</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>DAM:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dam-</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doles-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.99</td>
<td>Slope 0.00</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.00</td>
<td>Shrink-swell 0.97</td>
<td></td>
</tr>
<tr>
<td>ErC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.09</td>
<td>Slope 0.00</td>
<td>Wetness depth 0.09</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Low strength 0.00</td>
<td>Rock fragments 0.42</td>
</tr>
<tr>
<td></td>
<td>Wetness depth 0.09</td>
<td>Slope 0.50</td>
<td>Rock fragments 0.46</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.87</td>
<td>Too acid 0.97</td>
<td>Too acid 0.97</td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.50</td>
<td>Low strength 0.00</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.83</td>
<td>Wetness depth 0.24</td>
<td>Wetness depth 0.24</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Slope 0.50</td>
<td>Rock fragments 0.46</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.95</td>
<td>Too acid 0.95</td>
<td>Too acid 0.50</td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.12</td>
<td>Slope 0.00</td>
<td>Hard to reclaim 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(rock fragments)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.12</td>
<td>Slope 0.04</td>
<td>Hard to reclaim 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(rock fragments)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.12</td>
<td>Cobble content 0.66</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FcB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.76</td>
<td>Slope 0.00</td>
<td>Too clayey 0.63</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Cobble content 0.56</td>
<td>Rock fragments 0.88</td>
</tr>
<tr>
<td></td>
<td>Cobble content 0.99</td>
<td>Shrink-swell 0.87</td>
<td></td>
</tr>
<tr>
<td>FcD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.76</td>
<td>Slope 0.04</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Cobble content 0.84</td>
<td>Too clayey 0.63</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FdA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.87</td>
<td></td>
</tr>
<tr>
<td>FdB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville-</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.95</td>
<td></td>
</tr>
<tr>
<td>FeA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluvaquents-</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>FnC2: Fredericktown-----</td>
<td>Good</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Slope 0.00</td>
<td>Rock fragments 0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.00</td>
<td>Hard to reclaim (rock fragments) 0.68</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnD2: Fredericktown-----</td>
<td>Good</td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Rock fragments 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard to reclaim (rock fragments) 0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoB: Fredericktown------</td>
<td>Good</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Slope 0.00</td>
<td>Rock fragments 0.66</td>
<td></td>
</tr>
<tr>
<td>FrA: Frenchtown----------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.33</td>
<td>Wetness depth 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetness depth 0.00</td>
<td>Too acid 0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaB: Gavers--------------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.44</td>
<td>Wetness depth 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wetness depth 0.00</td>
<td>Too acid 0.83</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeC: Germano-------------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.26</td>
<td>Depth to bedrock 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.79</td>
<td>Rock fragments 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.68</td>
<td>Slope 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeD: Germano-------------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.25</td>
<td>Depth to bedrock 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.79</td>
<td>Too acid 0.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.68</td>
<td>Slope 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnB: Gilpin--------------</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.01</td>
<td>Depth to bedrock 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.03</td>
<td>Rock fragments 0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.68</td>
<td>Slope 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnC: Gilpin--------------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.08</td>
<td>Depth to bedrock 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.16</td>
<td>Too acid 0.59</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.68</td>
<td>Slope 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rock fragments 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Fair</td>
<td>0.12</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.35</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.68</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Fair</td>
<td>0.68</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.83</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>GpC:</td>
<td>Fair</td>
<td>0.58</td>
<td>Poor</td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Droughty</td>
<td>0.38</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.54</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.68</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>GrB:</td>
<td>Fair</td>
<td>0.90</td>
<td>Poor</td>
</tr>
<tr>
<td>Glenford----------------</td>
<td>Water erosion</td>
<td>0.90</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>GrC:</td>
<td>Fair</td>
<td>0.90</td>
<td>Poor</td>
</tr>
<tr>
<td>Glenford----------------</td>
<td>Water erosion</td>
<td>0.90</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td></td>
<td>Too clayey 0.03</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter 0.56</td>
<td>Low strength 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 0.90</td>
<td>Wetness depth 0.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.12</td>
<td>Rock fragments 0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC2:</td>
<td></td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td></td>
<td>Too clayey 0.03</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter 0.56</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 0.90</td>
<td>Low strength 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell 0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuD:</td>
<td></td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td></td>
<td>Too clayey 0.00</td>
<td>Low strength 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter 0.49</td>
<td>Wetness depth 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 0.90</td>
<td>Shrink-swell 0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeB:</td>
<td></td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Hazleton---------------</td>
<td></td>
<td>Droughty 0.54</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.68</td>
<td>Depth to bedrock 0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter 0.87</td>
<td></td>
</tr>
<tr>
<td>HeC:</td>
<td></td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Hazleton---------------</td>
<td></td>
<td>Droughty 0.60</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.68</td>
<td>Depth to bedrock 0.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter 0.80</td>
<td></td>
</tr>
<tr>
<td>HeD:</td>
<td></td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Hazleton---------------</td>
<td></td>
<td>Organic matter 0.32</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.68</td>
<td>Depth to bedrock 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.99</td>
<td>Hard to reclaim 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid 0.59</td>
</tr>
<tr>
<td>HeE:</td>
<td></td>
<td>Fair</td>
<td>Poor</td>
</tr>
<tr>
<td>Hazleton---------------</td>
<td></td>
<td>Too acid 0.68</td>
<td>Depth to bedrock 0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.76</td>
<td>Hard to reclaim 0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter 0.76</td>
<td>Rock fragments 0.00</td>
</tr>
</tbody>
</table>

Table 20.—Construction Materials Part 2—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of reclamation material</th>
<th>Rating class and limiting features</th>
<th>Value</th>
<th>Potential source of roadfill</th>
<th>Rating class and limiting features</th>
<th>Value</th>
<th>Potential source of topsoil</th>
<th>Rating class and limiting features</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfF: Hasleton-----------</td>
<td>Fair</td>
<td>Organic matter 0.40</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.47</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Outcrop------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfP: Hasleton-----------</td>
<td>Fair</td>
<td>Organic matter 0.29</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.68</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Fair</td>
<td>Organic matter 0.42</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.42</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HkA: Holly--------------</td>
<td>Good</td>
<td>Organic matter 0.40</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.47</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HlB: Homewood------------</td>
<td>Fair</td>
<td>Organic matter 0.42</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.42</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmA: Homeworth----------</td>
<td>Fair</td>
<td>Organic matter 0.40</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.47</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmB: Homeworth----------</td>
<td>Fair</td>
<td>Organic matter 0.40</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.47</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HoA: Homeworth----------</td>
<td>Fair</td>
<td>Organic matter 0.40</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.47</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HoB: Homeworth----------</td>
<td>Fair</td>
<td>Organic matter 0.40</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.47</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jwa: Jimtown------------</td>
<td>Good</td>
<td>Organic matter 0.40</td>
<td>0.00</td>
<td>Droughty</td>
<td>0.47</td>
<td>0.00</td>
<td>Too acid</td>
<td>0.68</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content low</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.99</td>
<td>Rock fragments</td>
<td>0.97</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JWB:</td>
<td>Good</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimtown------------------</td>
<td></td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.00</td>
<td>Rock fragments 0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KeB:</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keene--------------------</td>
<td></td>
<td>Slope 0.00</td>
<td>Wetness depth 0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter content low 0.67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.00</td>
<td>Rock fragments 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.14</td>
<td>Too acid 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnB:</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td></td>
<td>Slope 0.00</td>
<td>Hard to reclaim 0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.53</td>
<td>Rock fragments 0.49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.97</td>
<td>Wetness depth 0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.99</td>
<td>Too acid 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnC:</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td></td>
<td>Slope 0.50</td>
<td>Slope 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.53</td>
<td>Rock fragments 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.97</td>
<td>Wetness depth 0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.99</td>
<td>Too acid 0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td>Fair</td>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td></td>
<td>Slope 0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.53</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobdell-----------------</td>
<td></td>
<td>Slope 0.00</td>
<td>Wetness depth 0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter content low 0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wetness depth 0.07</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LnA:</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain------------------</td>
<td></td>
<td>Wetness depth 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McB:</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg-----------</td>
<td></td>
<td>Slope 0.00</td>
<td>Hard to reclaim 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter content low 0.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 0.99</td>
<td>Rock fragments 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.58</td>
<td>Too acid 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McC:</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg-----------</td>
<td></td>
<td>Slope 0.00</td>
<td>Hard to reclaim 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter content low 0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 0.99</td>
<td>Rock fragments 0.05</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.58</td>
<td>Slope 0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.78</td>
<td>Too acid 0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnB:</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown--------------</td>
<td></td>
<td>Slope 0.00</td>
<td>Hard to reclaim 0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 0.90</td>
<td>Cobble content 0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.87</td>
<td>Shrink-swell 0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Slope</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hard to reclaim</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(dense layer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cobble content</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter content low</td>
<td>0.12</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hard to reclaim</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(dense layer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobble content</td>
<td>0.95</td>
<td>Cobble content</td>
<td>0.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.99</td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hard to reclaim</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(rock fragments)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter content low</td>
<td>0.12</td>
<td>Slope</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hard to reclaim</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(dense layer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cobble content</td>
<td>0.95</td>
<td>Cobble content</td>
<td>0.23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.99</td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hard to reclaim</td>
<td>0.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(rock fragments)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OdA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmsted------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.92</td>
<td>Wetness depth</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td></td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.00</td>
<td>Wetness depth</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.68</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Too clayey</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
<td>0.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.96</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OmB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omulga------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.68</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Low strength</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter content low</td>
<td>0.93</td>
<td>Wetness depth</td>
<td>0.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.85</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OmC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omulga------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.66</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.68</td>
<td>Low strength</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Wetness depth</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter content low</td>
<td>0.98</td>
<td>Too acid</td>
<td>0.93</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orrville-----------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Wetness depth</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pg:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RaB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Hard to reclaim</td>
<td>0.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(dense layer)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter content low</td>
<td>0.94</td>
<td>Low strength</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wetness depth</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.95</td>
<td>Wetness depth</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RaC2:</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro---------------</td>
<td>Water erosion</td>
<td>0.90</td>
<td>Poor</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.90</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter content low</td>
<td>0.93</td>
<td>Wetness depth</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RbC:</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro---------------</td>
<td>Droughty</td>
<td>0.88</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Low strength</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wetness depth</td>
<td>0.29</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ReA:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenna-----------------</td>
<td>Droughty</td>
<td>0.47</td>
<td>Wetness depth</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.92</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Low strength</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReB:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenna-----------------</td>
<td>Droughty</td>
<td>0.65</td>
<td>Wetness depth</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.92</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Low strength</td>
<td>0.78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhD:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richland----------------</td>
<td>Water erosion</td>
<td>0.99</td>
<td>Slope</td>
<td>0.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wetness depth</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RhE:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richland----------------</td>
<td>Water erosion</td>
<td>0.99</td>
<td>Slope</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Wetness depth</td>
<td>0.62</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReB:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman----------------</td>
<td>Droughty</td>
<td>0.18</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Low strength</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.92</td>
<td>Wetness depth</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>RsC:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman----------------</td>
<td>Droughty</td>
<td>0.38</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Low strength</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.92</td>
<td>Wetness depth</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RsD2:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman----------------</td>
<td>Droughty</td>
<td>0.05</td>
<td>Wetness depth</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.90</td>
<td>Low strength</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.92</td>
<td>Shrink-swell</td>
<td>0.87</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeB:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>Droughty</td>
<td>0.29</td>
<td>Wetness depth</td>
<td>0.00</td>
<td>Wetness depth</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.68</td>
<td>Slope</td>
<td>0.00</td>
<td>Hard to reclaim (dense layer)</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeC:</td>
<td>Water erosion</td>
<td>0.99</td>
<td>Shrink-swell</td>
<td>0.92</td>
<td>Rock fragments</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>0.53</td>
<td>Slope</td>
<td>0.00</td>
<td>Wetness depth</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Too acid</td>
<td>0.68</td>
<td>Wetness depth</td>
<td>0.02</td>
<td>Hard to reclaim (dense layer)</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water erosion</td>
<td>0.99</td>
<td>Shrink-swell</td>
<td>0.87</td>
<td>Slope</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td></td>
<td>Rock fragments</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeC2:</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>Droughty</td>
<td>0.53</td>
<td>Slope</td>
<td>0.00</td>
<td>Wetness depth</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.68</td>
<td>Wetness depth</td>
<td>0.02</td>
<td>Hard to reclaim (dense layer)</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Shrink-swell</td>
<td>0.87</td>
<td>Slope</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poor</td>
<td></td>
<td>Rock fragments</td>
<td>0.95</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToA:</td>
<td>Fair</td>
<td>Poor</td>
<td>Good</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioga</td>
<td>Water erosion</td>
<td>0.99</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Not rated</td>
<td>Poor</td>
<td>Not rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.00</td>
<td>Hard to reclaim (dense layer)</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ub:</td>
<td>Not rated</td>
<td>Poor</td>
<td>Not rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Droughty</td>
<td>0.00</td>
<td>Slope</td>
<td>0.00</td>
<td>Not rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uc:</td>
<td>Not rated</td>
<td>Good</td>
<td>Not rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hard to reclaim (dense layer)</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Rock fragments</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkC2:</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td></td>
<td>Too clayey</td>
<td>0.00</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter content low</td>
<td>0.12</td>
<td>Low strength</td>
<td>0.00</td>
<td>Slope</td>
<td>0.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty</td>
<td>0.93</td>
<td>Depth to bedrock</td>
<td>0.12</td>
<td>Rock fragments</td>
<td>0.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Shrink-swell</td>
<td>0.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.00</td>
<td>Depth to bedrock</td>
<td>0.00</td>
<td>Rock fragments</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.10</td>
<td>Slope</td>
<td>0.00</td>
<td>Depth to bedrock</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
<td>0.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkD2:</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td></td>
<td>Too clayey</td>
<td>0.00</td>
<td>Low strength</td>
<td>0.00</td>
<td>Slope</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Organic matter content low</td>
<td>0.14</td>
<td>Shrink-swell</td>
<td>0.35</td>
<td>Too clayey</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Slope</td>
<td>0.50</td>
<td>Rock fragments</td>
<td>0.82</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 20.—Construction Materials Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of reclamation material</th>
<th>Potential source of roadfill</th>
<th>Potential source of topsoil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>UkD2: Berks--------------</td>
<td>Poor</td>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.03</td>
<td>Rock fragments</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkE2: Upshur-------------</td>
<td>Poor</td>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.00</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.08</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Poor</td>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.03</td>
<td>Rock fragments</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ur: Urban Land-----------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>UtB: Urban Land----------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Fair</td>
<td></td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.81</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtC: Urban Land----------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Fair</td>
<td></td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.43</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.99</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UvB: Urban Land----------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td>Fair</td>
<td></td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Organic matter</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaA: Valley--------------</td>
<td>Poor</td>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.00</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.68</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>VbA: Valley--------------</td>
<td>Poor</td>
<td></td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.00</td>
<td>Wetness depth</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>0.68</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Potential source of reclamation material</td>
<td>Potential source of roadfill</td>
<td>Potential source of topsoil</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>VoA: Valley-------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.00</td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.68</td>
<td>Slope 0.00</td>
<td>Too clayey 0.00</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.22</td>
<td>Shrink-swell 0.96</td>
<td></td>
</tr>
<tr>
<td>Lorain-----------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.00</td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.00</td>
<td>Too clayey 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength 0.00</td>
<td>Shrink-swell 0.12</td>
<td></td>
</tr>
<tr>
<td>VnB: Vandergrift-------</td>
<td>Fair</td>
<td>Poor</td>
<td>Fair</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.02</td>
<td>Slope 0.00</td>
<td>Too clayey 0.02</td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.99</td>
<td>Low strength 0.00</td>
<td>Wetness depth 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.04</td>
<td>Hard to reclaim (rock fragments) 0.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.12</td>
<td>Rock fragments 0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.95</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td>VnC: Vandergrift-------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.00</td>
<td>Slope 0.00</td>
<td>Too clayey 0.00</td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.85</td>
<td>Low strength 0.00</td>
<td>Wetness depth 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.12</td>
<td>Rock fragments 0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.74</td>
<td></td>
</tr>
<tr>
<td>W: Water----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>WaA: Wadsworth---------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.38</td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Slope 0.00</td>
<td>Hard to reclaim (dense layer) 0.10</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.92</td>
<td>Low strength 0.00</td>
<td>Too acid 0.91</td>
</tr>
<tr>
<td>Shrink-swell 0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaB: Wadsworth---------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.65</td>
<td>Wetness depth 0.00</td>
<td>Wetness depth 0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Slope 0.00</td>
<td>Hard to reclaim (dense layer) 0.29</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.92</td>
<td>Low strength 0.00</td>
<td>Too acid 0.88</td>
</tr>
<tr>
<td>Shrink-swell 0.87</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE: Westmoreland------</td>
<td>Fair</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.31</td>
<td>Depth to bedrock 0.58</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Hard to reclaim (rock fragments) 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rock fragments 0.00</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks------------------</td>
<td>Poor</td>
<td>Poor</td>
<td>Poor</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Depth to bedrock 0.00</td>
<td>Slope 0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.10</td>
<td>Rock fragments 0.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter content low 0.82</td>
<td>Depth to bedrock 0.10</td>
<td>Too acid 0.92</td>
</tr>
</tbody>
</table>

Table 20.—Construction Materials Part 2—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Potential source of reclamation material</th>
<th>Potential source of roadfill</th>
<th>Potential source of topsoil</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and value limiting features</td>
<td>Rating class and value limiting features</td>
<td>Rating class and value limiting features</td>
</tr>
<tr>
<td>WkF:</td>
<td>Fair</td>
<td>Good</td>
<td>Poor</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter 0.23</td>
<td>Slope</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>content low 0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.98</td>
<td>Hard to reclaim (rock fragments)</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Rock fragments</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Depth to bedrock</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>Wetness depth 0.14</td>
<td>Too acid</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Poor</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty 0.00</td>
<td>Slope</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.03</td>
<td>Rock fragments</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Organic matter 0.74</td>
<td>Depth to bedrock</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td>Too acid</td>
<td>0.92</td>
</tr>
<tr>
<td>WmC:</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter 0.45</td>
<td>Slope</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td>Hard to reclaim (rock fragments)</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Rock fragments</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Too acid</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td>Wetness depth 0.14</td>
<td>Too acid</td>
<td>0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter 0.67</td>
<td>Wetness depth</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.68</td>
<td>Rock fragments</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Slope</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.22</td>
<td>Too acid</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.87</td>
<td>Rock fragments</td>
<td>0.78</td>
</tr>
<tr>
<td>WmD:</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter 0.37</td>
<td>Slope</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td>Hard to reclaim (rock fragments)</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Rock fragments</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.99</td>
<td>Too clayey</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organic matter 0.29</td>
<td>Slope</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>content low</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.68</td>
<td>Rock fragments</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Slope</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Wetness depth</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.87</td>
<td>Rock fragments</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.67</td>
</tr>
<tr>
<td>WoA:</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Wick--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.90</td>
<td>Wetness depth</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength 0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZeA:</td>
<td>Fair</td>
<td>Poor</td>
<td></td>
</tr>
<tr>
<td>Zepernick---------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid 0.18</td>
<td>Wetness depth</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 0.99</td>
<td>Slope</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.00</td>
<td>Too acid</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.87</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 21.—Building Site Development Part 1

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Dwellings without basements</th>
<th>Dwellings with basements</th>
<th>Small commercial buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda--------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.06</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.90</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>BmB: Berks---------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.97</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.97</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.95</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF: Bethesda-------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>1.00</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.06</td>
<td>Large stones content</td>
</tr>
</tbody>
</table>
Table 21.—Building Site Development Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Dwellings without basements</th>
<th>Dwellings with basements</th>
<th>Small commercial buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BsC2: Bogart-------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.04</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>BtA: Bogart--------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.04</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>BtB: Bogart--------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.04</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>BtC: Bogart--------------</td>
<td>Somewhat limited</td>
<td>0.99</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.04</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Caa: Calcutta------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.04</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Ccb: Canfield------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.04</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Ccc: Canfield------------</td>
<td>Somewhat limited</td>
<td>0.99</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.04</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Ccd: Canfield------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Cce: Canfield------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.93</td>
<td>Slope</td>
</tr>
<tr>
<td>Cea: Carlisle------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Fonding</td>
<td>1.00</td>
<td>Fonding</td>
</tr>
<tr>
<td></td>
<td>Subsidence</td>
<td>1.00</td>
<td>Subsidence</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Organic matter content</td>
<td>1.00</td>
<td>Organic matter content</td>
</tr>
<tr>
<td>Cfd2: Chili--------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Cha: Chili---------------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td>CbB: Chili---------------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Dwellings without basements</td>
<td>Dwellings with basements</td>
<td>Small commercial buildings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>ChC:</td>
<td>Somewhat limited</td>
<td>Slope 0.04</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>CmB:</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>Conotton-----------------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.99</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>CoB:</td>
<td>Very limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Very limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>CoC:</td>
<td>Somewhat limited</td>
<td>Slope 0.04</td>
<td>Very limited</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>Dam:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Doles--------------------</td>
<td>Very limited</td>
<td>Slope 0.04</td>
<td>Very limited</td>
</tr>
<tr>
<td>ErC:</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>Ernest-------------------</td>
<td>Very limited</td>
<td>Slope 0.04</td>
<td>Very limited</td>
</tr>
<tr>
<td>ErD:</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>FbB:</td>
<td>Somewhat limited</td>
<td>Slope 0.04</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>FbD:</td>
<td>Somewhat limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>FbF:</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Dwellings without basements</td>
<td>Dwellings with basements</td>
<td>Small commercial buildings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FcB: Fairpoint------------</td>
<td>Somewhat limited</td>
<td>Shrink-swell 0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope</td>
<td>Very limited</td>
</tr>
<tr>
<td>FcD: Fairpoint------------</td>
<td>Very limited</td>
<td>Shrink-swell 0.50</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Shrink-swell 0.50</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>FdA: Fitchville------------</td>
<td>Very limited</td>
<td>Shrink-swell 0.50</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Shrink-swell 0.50</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>FeA: Fluvaquents-----------</td>
<td>Very limited</td>
<td>Ponding 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Flooding 1.00</td>
<td>Flooding</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Shrink-swell 0.50</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>FnC2: Fredericktown--------</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope</td>
<td>Very limited</td>
</tr>
<tr>
<td>FdD: Fredericktown--------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope</td>
<td>Very limited</td>
</tr>
<tr>
<td>FoB: Fredericktown--------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Not limited</td>
<td>Somewhat limited</td>
<td>Slope 0.10</td>
</tr>
<tr>
<td>FrA: Frenchtown------------</td>
<td>Very limited</td>
<td>Ponding 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Shrink-swell 0.50</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>GaB: Gavers----------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>GeC: Germano---------------</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Slope</td>
<td>Very limited</td>
</tr>
<tr>
<td>GeD: Germano---------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope</td>
<td>Very limited</td>
</tr>
<tr>
<td>GnB: Gilpin----------------</td>
<td>Somewhat limited</td>
<td>Depth to hard bedrock 0.97</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td>Depth to hard bedrock</td>
<td>Depth to hard bedrock 0.97</td>
</tr>
<tr>
<td>GnC: Gilpin----------------</td>
<td>Somewhat limited</td>
<td>Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Slope</td>
<td>Very limited</td>
</tr>
</tbody>
</table>
Table 21—Building Site Development Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Dwellings without basements</th>
<th>Dwellings with basements</th>
<th>Small commercial buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GnD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Slope</td>
<td>0.26</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>GrB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>1.00</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>Slippage</td>
<td>0.50</td>
<td></td>
<td>Slippage</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td>Slippage</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Dwellings without basements</td>
<td>Dwellings with basements</td>
<td>Small commercial buildings</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GuC2: Guernsey</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>1.00</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GuD: Guernsey</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>1.00</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>1.00</td>
<td>Slippage</td>
</tr>
<tr>
<td>HeB: Hazleton</td>
<td>Not limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>HeC: Hazleton</td>
<td>Somewhat limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>HeD: Hazleton</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>HeE: Hazleton</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Hff: Hazleton</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Rock Outcrop</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Hgf: Hazleton</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Hka: Holly</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>1.00</td>
<td>Flooding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Hlb: Homewood</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.26</td>
<td>Slippage</td>
</tr>
<tr>
<td>Hma: Homeworth</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Dwellings without basements</td>
<td>Dwellings with basements</td>
<td>Small commercial buildings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HmB: Homeworth---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>HoA: Homeworth---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>HoB: Homeworth---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>JwA: Jimtown------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>KeB: Keene-------------</td>
<td>Somewhat limited</td>
<td>0.99</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>KnB: Kensington--------</td>
<td>Somewhat limited</td>
<td>0.99</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>KnC: Kensington--------</td>
<td>Somewhat limited</td>
<td>0.50</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>KnD: Kensington--------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.47</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>LbA: Lobdell------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>1.00</td>
<td>Flooding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>LnA: Lorain-------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>1.00</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>McB: Mechanicsburg------</td>
<td>Not limited</td>
<td></td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Dwellings without basements</td>
<td>Dwellings with basements</td>
<td>Small commercial buildings</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>McC: Mechanicsburg-----</td>
<td>Somewhat limited Shrink-swell 0.50</td>
<td>Slope 1.00</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>MnB: Morristown--------</td>
<td>Somewhat limited Shrink-swell 0.50</td>
<td>Slope 1.00</td>
<td>Somewhat limited Shrink-swell 0.50</td>
</tr>
<tr>
<td>MnD: Morristown--------</td>
<td>Very limited Slope 1.00</td>
<td>Shrink-swell 0.50</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>MoB: Morristown--------</td>
<td>Somewhat limited Shrink-swell 0.50</td>
<td>Slope 1.00</td>
<td>Somewhat limited Shrink-swell 0.50</td>
</tr>
<tr>
<td>OdA: Olmsted-----------</td>
<td>Very limited Ponding 1.00</td>
<td>Depth to 1.00</td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td>Valley------------------</td>
<td>Very limited Ponding 1.00</td>
<td>Depth to 1.00</td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td>OmB: Omulga------------</td>
<td>Somewhat limited Depth to 0.98</td>
<td>Shrink-swell 0.50</td>
<td>Somewhat limited Depth to 0.98</td>
</tr>
<tr>
<td>OmC: Omulga------------</td>
<td>Somewhat limited Depth to 0.99</td>
<td>Shrink-swell 0.50</td>
<td>Somewhat limited Depth to 0.99</td>
</tr>
<tr>
<td>OrA: Orrville----------</td>
<td>Very limited Flooding 1.00</td>
<td>Depth to 1.00</td>
<td>Very limited Flooding 1.00</td>
</tr>
<tr>
<td>Pg: Pits---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>RaB: Rainsboro---------</td>
<td>Somewhat limited Depth to 0.93</td>
<td>Shrink-swell 0.50</td>
<td>Somewhat limited Depth to 0.93</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Dwellings without basement</td>
<td>Dwellings with basement</td>
<td>Small commercial buildings</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>RaC2: Rainsboro-----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>0.99</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Slope</td>
</tr>
<tr>
<td>RbC: Rainsboro-----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>0.87</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Slope</td>
</tr>
<tr>
<td>ReA: Ravenna--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>RhD: Richland-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saturated zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>RhE: Richland-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saturated zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>RsB: Rittman-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Slope</td>
</tr>
<tr>
<td>RsC: Rittman-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Slope</td>
</tr>
<tr>
<td>RsD2: Rittman-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>TeB: Teegarden------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>saturated zone</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.10</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Dwellings without basements</td>
<td>Dwellings with basements</td>
<td>Small commercial buildings</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------</td>
<td>-------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>TeC: Teegarden------------</td>
<td>Very limited Depth to saturated zone 1.00 Shrink-swell 0.50 Slope 0.26</td>
<td>Very limited Depth to saturated zone 1.00 Shrink-swell 0.50 Slope 0.26</td>
<td>Very limited Depth to saturated zone 1.00 Shrink-swell 0.50 Slope 0.26</td>
</tr>
<tr>
<td>TeC2: Teegarden------------</td>
<td>Very limited Depth to saturated zone 1.00 Shrink-swell 0.50 Slope 0.26</td>
<td>Very limited Depth to saturated zone 1.00 Shrink-swell 0.50 Slope 0.26</td>
<td>Very limited Depth to saturated zone 1.00 Shrink-swell 0.50 Slope 0.26</td>
</tr>
<tr>
<td>ToA: Tioga----------------</td>
<td>Very limited Flooding 1.00</td>
<td>Very limited Flooding 1.00</td>
<td>Very limited Flooding 1.00</td>
</tr>
<tr>
<td>Udorthents----------</td>
<td>Somewhat limited Slope 0.91</td>
<td>Somewhat limited Slope 0.91</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Ub: Udorthents----------</td>
<td>Somewhat limited Slope 0.91</td>
<td>Somewhat limited Slope 0.91</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Uc: Udorthents----------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Pits----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Ukc2: Upshur------------</td>
<td>Very limited Shrink-swell 1.00 Slippage 0.50 Slope 0.26</td>
<td>Very limited Shrink-swell 1.00 Slippage 0.50 Slope 0.26</td>
<td>Very limited</td>
</tr>
<tr>
<td>Berks----------------</td>
<td>Somewhat limited Slope 0.26</td>
<td>Somewhat limited Depth to soft bedrock 0.90 Slope 0.26</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Ukd2: Upshur------------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Berks----------------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Uke2: Upshur------------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Berks----------------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td>Ur: Urban Land-----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Ut: Urban Land-----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield------</td>
<td>Somewhat limited Depth to saturated zone 0.47</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Somewhat limited Slope 0.47</td>
</tr>
</tbody>
</table>

Table 21.—Building Site Development Part 1—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Dwellings without basements</th>
<th>Dwellings with basements</th>
<th>Small commercial buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>UvB: Urban Land-----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.93</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.04</td>
<td>Slope 0.04</td>
<td>Depth to saturated zone 0.93</td>
</tr>
<tr>
<td>UvB: Urban Land-----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Somewhat limited Value 0.10</td>
</tr>
<tr>
<td>VaA: Valley---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>VbA: Valley---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>VoA: Valley---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>Lorain--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 1.00</td>
<td>Shrink-swell 1.00</td>
<td>Shrink-swell 1.00</td>
</tr>
<tr>
<td>VnB: Vandergrift----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 1.00</td>
<td>Shrink-swell 1.00</td>
<td>Shrink-swell 1.00</td>
</tr>
<tr>
<td>VnC: Vandergrift----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 1.00</td>
<td>Shrink-swell 1.00</td>
<td>Shrink-swell 1.00</td>
</tr>
<tr>
<td>W: Water-----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>WaA: Wadsworth------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>WaB: Wadsworth------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
</tbody>
</table>

Table 21.—Building Site Development Part 1—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Dwellings without basements</th>
<th>Dwellings with basements</th>
<th>Small commercial buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>WkE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Berks</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Depth to hard bedrock</td>
<td>0.90</td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>WkF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Slippage</td>
<td>0.50</td>
<td></td>
<td>Slippage</td>
</tr>
<tr>
<td>Berks</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>bedrock</td>
</tr>
<tr>
<td>WmC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>Somewhat limited</td>
<td>0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Slope</td>
<td>0.50</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton</td>
<td>Somewhat limited</td>
<td>0.99</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Slope</td>
<td>0.50</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>WmD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>WoA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wick</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Flooding</td>
<td>1.00</td>
<td></td>
<td>Flooding</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>ZeA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zepernick</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Flooding</td>
<td>1.00</td>
<td></td>
<td>Flooding</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td>Shrink-swell</td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td>BkB: Berks------------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.06</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>BkC: Berks------------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.95</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>BkD: Berks------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.90</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Droughty</td>
</tr>
<tr>
<td>BkE: Berks------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.97</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Large stones</td>
</tr>
<tr>
<td>BmB: Berks------------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.97</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content</td>
</tr>
<tr>
<td>Urban Land-------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks------------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.97</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content</td>
</tr>
<tr>
<td>Urban Land-------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BmD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bethesda</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>1.00</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Large stones content</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>BsC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>BtA:</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.83</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>BtB:</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.88</td>
<td>Cutbanks cave</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>BtC:</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>CaA:</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>CcB:</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>CcC:</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Local roads and streets</td>
<td>Shallow excavations</td>
<td>Lawns and landscaping</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>CcD: Canfield-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.83</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CcB: Canfield-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.56</td>
<td>Slope</td>
</tr>
<tr>
<td>CeA: Carlisle-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Subsidence</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>CfD2: Chili-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>ChA: Chili-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Cutbanks cave</td>
</tr>
<tr>
<td>ChB: Chili-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Cutbanks cave</td>
</tr>
<tr>
<td>ChC: Chili-------------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>CmB: Conotton----------</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Gravel content</td>
</tr>
<tr>
<td>CmC: Conotton----------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>CoB: Coshocton---------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>CoC: Coshocton---------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>CoD:</td>
<td></td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>DAM:</td>
<td></td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Doles--------------------</td>
<td></td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>ErC:</td>
<td></td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength</td>
<td>0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>0.56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>0.50</td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
<td>Not limited</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>0.50</td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slippage</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>0.50</td>
</tr>
<tr>
<td>FfB:</td>
<td></td>
<td>Very limited</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>0.50</td>
</tr>
<tr>
<td>FcB:</td>
<td></td>
<td>Somewhat limited</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action</td>
<td>0.50</td>
</tr>
<tr>
<td>FcD:</td>
<td></td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Local roads and streets</td>
<td>Shallow excavations</td>
<td>Lawns and landscaping</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FdA: Fitchville--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Low strength</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>Shrink-swell</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>FdB: Fitchville--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Frost action</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Low strength</td>
<td>Low strength</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>Shrink-swell</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>FeA: Fluvaquents--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>Flooding</td>
<td>Flooding</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>Ponding</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>FnC2: Fredericktown-----</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td>FdD2: Fredericktown-----</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td>FoB: Fredericktown------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Cutbanks cave</td>
<td>1.00</td>
</tr>
<tr>
<td>FrA: Frenchtown---------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>Slope</td>
<td>Gravel content</td>
</tr>
<tr>
<td>GaB: Gavers------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Depth to soft bedrock</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Low strength</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Shrink-swell</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>GeC: Germano------------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Depth to soft bedrock</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Low strength</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Shrink-swell</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>GeD: Germano------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Depth to soft bedrock</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Low strength</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Shrink-swell</td>
<td>Shrink-swell</td>
</tr>
<tr>
<td>GnB: Gilpin-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>Depth to hard bedrock</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Droughty</td>
<td>Droughty</td>
</tr>
<tr>
<td>GnC: Gilpin-------------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>Droughty</td>
<td>Droughty</td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>GnP:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Frost action</td>
<td>0.50</td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Low strength</td>
<td>0.50</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Frost action</td>
<td>0.50</td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.75</td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Low strength</td>
<td>0.50</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Frost action</td>
<td></td>
<td>0.64</td>
<td>0.65</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>Low strength</td>
<td></td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Shrink-swell</td>
<td></td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>GnD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Frost action</td>
<td></td>
<td>0.46</td>
<td>0.46</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Low strength</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td></td>
<td>0.50</td>
<td>0.50</td>
</tr>
<tr>
<td>Slope</td>
<td></td>
<td>0.26</td>
<td>0.26</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>GrB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Low strength</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GrC: Glenford------------</td>
<td>Very limited</td>
<td>Frost action 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td></td>
</tr>
<tr>
<td>GuC: Guernsey------------</td>
<td>Very limited</td>
<td>Frost action 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 1.00</td>
<td>Slippage 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 1.00</td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slippage 0.50</td>
<td></td>
</tr>
<tr>
<td>GuC2: Guernsey-----------</td>
<td>Very limited</td>
<td>Frost action 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 1.00</td>
<td>Slippage 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 1.00</td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slippage 0.50</td>
<td></td>
</tr>
<tr>
<td>GuD: Guernsey------------</td>
<td>Very limited</td>
<td>Frost action 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shrink-swell 1.00</td>
<td>Slippage 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 1.00</td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.96</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slippage 0.50</td>
<td></td>
</tr>
<tr>
<td>HeB: Hazleton------------</td>
<td>Somewhat limited</td>
<td>Frost action 0.50</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td>HeC: Hazleton------------</td>
<td>Somewhat limited</td>
<td>Frost action 0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td></td>
</tr>
<tr>
<td>HeD: Hazleton------------</td>
<td>Very limited</td>
<td>Frost action 0.50</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td>HeE: Hazleton------------</td>
<td>Very limited</td>
<td>Frost action 0.50</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td>Hff: Hazleton------------</td>
<td>Very limited</td>
<td>Frost action 0.50</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td>Not rated</td>
<td>Frost action 0.50</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
<td></td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HgF: Hazleton------------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Cutbanks cave 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Westmoreland--------------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited Cutbanks cave 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td>Slippage</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td>Depth to hard bedrock</td>
<td>0.50</td>
</tr>
<tr>
<td>Holly--------------------</td>
<td>Very limited Flooding 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Very limited Flooding 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Flooding</td>
<td>0.80</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Homewood-----------------</td>
<td>Somewhat limited Frost action 0.50</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Somewhat limited Depth to saturated zone 0.35</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Too clayey</td>
<td>0.50</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Too clayey</td>
<td>0.50</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Too clayey</td>
<td>0.50</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Too clayey</td>
<td>0.50</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>Very limited Cutbanks cave 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>Very limited Cutbanks cave 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>KeB: Keene---------------</td>
<td>Very limited Frost action 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Somewhat limited Depth to saturated zone 0.75</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>KnB: Kensington-----------</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>KnC: Kensington-----------</td>
<td>Somewhat limited</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>KnD: Kensington-----------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>LbA: Lobdell--------------</td>
<td>Very limited</td>
<td>Flooding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>LnA: Lorain---------------</td>
<td>Very limited</td>
<td>Flooding</td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>McB: Mechanicsburg--------</td>
<td>Somewhat limited</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>McC: Mechanicsburg--------</td>
<td>Somewhat limited</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>MnB: Morristown-----------</td>
<td>Somewhat limited</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>MnD: Morristown-----------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>MoB: Morristown-----------</td>
<td>Somewhat limited</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Large stones content</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td>Gravel content</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Large stones content</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Local roads and streets</td>
<td>Shallow excavations</td>
<td>Lawns and landscaping</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>MoD:</td>
<td>Morristown</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.50</td>
<td>Large stones content</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>OdA:</td>
<td>Olmsted</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Valley------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>OmB:</td>
<td>Omulga</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>OmC:</td>
<td>Omulga</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.75</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>OrA:</td>
<td>Orrville</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Pg:</td>
<td>Pits</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>RaB:</td>
<td>Rainsboro</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
</tbody>
</table>

Table 22.—Building Site Development Part 2—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>RaC2: Rainsboro---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Low strength</td>
<td>0.75</td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.50</td>
<td>Shrink-swell</td>
<td>0.04</td>
</tr>
<tr>
<td>Slope</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RbC: Rainsboro---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.48</td>
<td>Shrink-swell</td>
<td>0.04</td>
</tr>
<tr>
<td>Slope</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReA: Ravenna---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReB: Ravenna---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhD: Richland--------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
<td>0.95</td>
</tr>
<tr>
<td>Frost action</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhE: Richland--------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
<td>0.95</td>
</tr>
<tr>
<td>Frost action</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReB: Rittman---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Low strength</td>
<td>0.28</td>
</tr>
<tr>
<td>Low strength</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RsC: Rittman---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Low strength</td>
<td>1.00</td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.96</td>
<td>Shrink-swell</td>
<td>0.50</td>
</tr>
<tr>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RsD2: Rittman---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Frost action</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low strength</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Local roads and streets</td>
<td>Shallow excavations</td>
<td>Lawns and landscaping</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>---------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>TeB:</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Teegarden----------------</td>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action 0.50</td>
<td>Low strength 0.05</td>
</tr>
<tr>
<td>TeC:</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.96</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Teegarden----------------</td>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action 0.50</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low strength 0.05</td>
<td>Low strength 0.05</td>
</tr>
<tr>
<td>ToA:</td>
<td>Very limited</td>
<td>Flooding 1.00</td>
<td>Cutbanks cave 1.00</td>
</tr>
<tr>
<td>Tioga-------------------</td>
<td></td>
<td>Frost action 0.50</td>
<td>Slope 0.91</td>
</tr>
<tr>
<td></td>
<td>Somewhat limited</td>
<td>Slope 0.91</td>
<td>Slope 0.91</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frost action 0.50</td>
<td>Slope 0.91</td>
</tr>
<tr>
<td>Ub:</td>
<td>Very limited</td>
<td>Slope action 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.91</td>
<td>Frost action 1.00</td>
<td>Slope 0.91</td>
</tr>
<tr>
<td>Uc:</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ukc2:</td>
<td>Very limited</td>
<td>Somewhat limited 0.91</td>
<td>Slope 0.91</td>
</tr>
<tr>
<td>Upshur--------------------</td>
<td></td>
<td>Slippage 0.50</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Too clayey 0.50</td>
<td>Low strength 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrinking-swell 1.00</td>
<td>Slope 0.26</td>
<td>Slippage 0.50</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Somewhat limited</td>
<td>Depth to soft 0.90</td>
<td>Bedrock 0.90</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td>Slope 0.26</td>
<td>Depth to bedrock 0.90</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Slope 0.26</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.25</td>
</tr>
<tr>
<td>Ukb2:</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Upshur--------------------</td>
<td></td>
<td>Slippage 0.50</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Too clayey 0.50</td>
<td>Low strength 1.00</td>
</tr>
<tr>
<td></td>
<td>Shrinking-swell 1.00</td>
<td>Slippage 0.50</td>
<td>Slippage 0.50</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Slope 0.26</td>
<td>Slope 0.26</td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>UkE2: Berks--------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td></td>
<td>Depth to hard 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock 0.97</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.27</td>
</tr>
<tr>
<td>UkE2: Upshur-------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slippage 1.00</td>
<td></td>
<td>Slippage 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td></td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkE2: Berks--------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td></td>
<td>Depth to hard 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock 0.97</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gravel content 0.25</td>
</tr>
<tr>
<td>Ur: Urban Land------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>UtB: Urban Land-----------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Very limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td></td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.19</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtC: Urban Land-----------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Very limited</td>
<td></td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td></td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.56</td>
<td></td>
<td>Slope 0.04</td>
</tr>
<tr>
<td></td>
<td>Slope 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uvb: Urban Land-----------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td>Somewhat limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td></td>
<td>Cutbanks cave 1.00</td>
</tr>
<tr>
<td>VaA: Valley---------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td></td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td></td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vba: Valley---------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding 1.00</td>
<td></td>
<td>Ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td></td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>VcA: Valley--------------</td>
<td>Very limited</td>
<td>Ponding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Lorain-------------------</td>
<td>Very limited</td>
<td>Ponding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>VnB: Vandergrift---------</td>
<td>Very limited</td>
<td>Frost action</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>VnC: Vandergrift---------</td>
<td>Very limited</td>
<td>Frost action</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>W: Water-----------------</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaA: Wadsworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>WaB: Wadsworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low strength</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shrink-swell</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>WkE: Westmoreland--------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.90</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.01</td>
<td></td>
</tr>
</tbody>
</table>
Table 22.—Building Site Development Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Local roads and streets</th>
<th>Shallow excavations</th>
<th>Lawns and landscaping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>WKF:</td>
<td>Westmoreland----</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td>Slippage 0.50</td>
<td>Slippage 0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td>Frost action 0.50</td>
<td>Frost action 0.50</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td>Depth to soft bedrock 0.97</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>WmC:</td>
<td>Westmoreland----</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Slope 0.50</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td>Frost action 0.50</td>
<td>Frost action 0.50</td>
<td>Frost action 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.05</td>
<td>Low strength 0.05</td>
<td>Low strength 0.05</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 0.75</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.75</td>
<td>Depth to saturated zone 0.75</td>
<td>Depth to saturated zone 0.75</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Slope 0.50</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
<td>Low strength 0.50</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>WmD:</td>
<td>Westmoreland----</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 0.75</td>
</tr>
<tr>
<td></td>
<td>Low strength 1.00</td>
<td>Low strength 1.00</td>
<td>Low strength 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 0.75</td>
<td>Depth to saturated zone 0.75</td>
<td>Depth to saturated zone 0.75</td>
</tr>
<tr>
<td></td>
<td>Slope 0.50</td>
<td>Slope 0.50</td>
<td>Slope 0.50</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
<tr>
<td>WoA:</td>
<td>Wick------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.80</td>
<td>Slope 0.80</td>
<td>Slope 0.80</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Frost action 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.90</td>
<td>Low strength 0.90</td>
<td>Low strength 0.90</td>
</tr>
<tr>
<td>ZsA:</td>
<td>Zepernick-------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.60</td>
<td>Slope 0.60</td>
<td>Slope 0.60</td>
</tr>
<tr>
<td></td>
<td>Frost action 1.00</td>
<td>Frost action 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Low strength 0.90</td>
<td>Low strength 0.90</td>
<td>Low strength 0.90</td>
</tr>
<tr>
<td></td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
<td>Shrink-swell 0.50</td>
</tr>
</tbody>
</table>
Table 23.—Sanitary Facilities Part 1

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Septic tank absorption fields</th>
<th>Sewage lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>AmF: Amanda--------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted 1.00</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td></td>
<td>permeability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td></td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to hard bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to hard bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to hard bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>BkE: Berks---------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to hard bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>BmB: Berks---------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to hard bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Large stones content 0.01</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to hard bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to hard bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
</tbody>
</table>
Table 23.—Sanitary Facilities Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Septic tank absorption fields</th>
<th>Sewage lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>BpF: Bethesda------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Slippage</td>
<td>1.00</td>
<td>Large stones content</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Large stones content</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>Bsc2: Bogart--------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.46</td>
<td>Slope</td>
</tr>
<tr>
<td>Slope</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>BtA: Bogart--------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>BtB: Bogart--------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.46</td>
<td>Slope</td>
</tr>
<tr>
<td>BtC: Bogart--------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.46</td>
<td>Slope</td>
</tr>
<tr>
<td>CaA: Calcutta------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td>CcB: Canfield------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td>Slope</td>
<td>0.04</td>
<td>Seepage</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>CoD:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>CoE:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td>Restricted</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>CoA:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Carlisle</td>
<td>Ponding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Subsidence</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
</tr>
<tr>
<td>CfdD2:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Chili</td>
<td>Filtering capacity</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>ChB:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Chili</td>
<td>Filtering capacity</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>ChC:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Chili</td>
<td>Filtering capacity</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>CmB:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Conotton</td>
<td>Filtering capacity</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>CoB:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>CoC:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td>Depth to bedrock</td>
<td>0.26</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>CoD: Coshocton-----------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Coshocton</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Coshocton</td>
<td>Restricted permeability 1.00</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>DAM: Dam-------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA: Doles----------</td>
<td>Very limited Restricted 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Doles</td>
<td>Depth to saturated zone 1.00</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>ErC: Ernest----------</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Ernest</td>
<td>Restricted permeability 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>ErD: Ernest----------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Ernest</td>
<td>Depth to saturated zone 1.00</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>FbB: Fairpoint----------</td>
<td>Very limited Restricted permeability 1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Fairpoint</td>
<td>Large stones content 0.01</td>
<td></td>
</tr>
<tr>
<td>FbD: Fairpoint----------</td>
<td>Very limited Restricted permeability 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint</td>
<td>Large stones content 0.02</td>
<td></td>
</tr>
<tr>
<td>FbF: Fairpoint----------</td>
<td>Very limited Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint</td>
<td>Large stones content 0.02</td>
<td></td>
</tr>
<tr>
<td>FcB: Fairpoint----------</td>
<td>Very limited Restricted permeability 1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Fairpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FcD: Fairpoint----------</td>
<td>Very limited Restricted permeability 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint</td>
<td>Slippage 0.50</td>
<td></td>
</tr>
<tr>
<td>FdA: Fitchville---------</td>
<td>Very limited Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fitchville</td>
<td>Restricted permeability 1.00</td>
<td></td>
</tr>
</tbody>
</table>
Table 23.—Sanitary Facilities Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Septic tank absorption fields</th>
<th>Sewage lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>FdB: Fitchville----------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td>FeA: Fluvaquents---------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.50</td>
</tr>
<tr>
<td>FnC2: Fredericks---------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtering</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td></td>
</tr>
<tr>
<td>FnD2: Fredericks---------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
</tr>
<tr>
<td>FoB: Fredericks---------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtering</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Capacity</td>
<td></td>
</tr>
<tr>
<td>FrA: Frenchtown----------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td></td>
</tr>
<tr>
<td>GaB: Gavers--------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>GeC: Germano-------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>GeD: Germano-------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
</tr>
<tr>
<td>GnB: Gilpin--------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
</tr>
</tbody>
</table>
Table 23.—Sanitary Facilities Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Septic tank absorption fields</th>
<th>Sewage lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>GnC:</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.46</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>GnD:</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Slope 1.00</td>
<td>Depth to soft bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.46</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>GoC:</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.46</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>GoD:</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.46</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>GoD:</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Coshocton-------------</td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 1.00</td>
<td>Depth to soft bedrock 0.05</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>GpC:</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 1.00</td>
<td>Depth to soft bedrock 0.05</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>Coshocton-------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 1.00</td>
<td>Depth to soft bedrock 0.05</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Seepage 0.53</td>
</tr>
<tr>
<td>Urban Land-------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>GrB: Glenford------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restricted permeability 1.00</td>
</tr>
<tr>
<td>GrC: Glenford------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restricted permeability 1.00</td>
</tr>
<tr>
<td>GuC: Guernsey------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restricted permeability 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
</tr>
<tr>
<td>GuC2: Guernsey------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restricted permeability 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
</tr>
<tr>
<td>GuD: Guernsey------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restricted permeability 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>HeB: Hazleton------------</td>
<td>Very limited</td>
<td>Filtering capacity 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.96</td>
</tr>
<tr>
<td>HeC: Hazleton------------</td>
<td>Very limited</td>
<td>Filtering capacity 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.94</td>
</tr>
<tr>
<td>HeD: Hazleton------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.36</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>HeE:</td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td></td>
<td>Filtering capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>HFF:</td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td></td>
<td>Filtering capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td>Not rated</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>HgF:</td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td></td>
<td>Filtering capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>HkA:</td>
<td>Very limited</td>
<td>Flooding</td>
</tr>
<tr>
<td>Holly--------------------</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>HlB:</td>
<td>Very limited</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>Homewood-----------------</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>HmA:</td>
<td>Very limited</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>HmB:</td>
<td>Very limited</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>HoA:</td>
<td>Very limited</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>HoB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeworth---------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td>Jwa:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimtown-----------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability</td>
<td></td>
</tr>
<tr>
<td>JwB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimtown-----------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability</td>
<td></td>
</tr>
<tr>
<td>KeB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keene--------------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability 0.06</td>
<td></td>
</tr>
<tr>
<td>KnB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability</td>
<td></td>
</tr>
<tr>
<td>KnC:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability 0.36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.26</td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>permeability 0.27</td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobdell----------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flooding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.46</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>LnA: Lorain-------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>MoB: Mechanicsburg------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>soft bedrock</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>0.42</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.32</td>
</tr>
<tr>
<td>McC: Mechanicsburg------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td>0.78</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>soft bedrock</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.42</td>
</tr>
<tr>
<td>MnB: Morristown---------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.28</td>
</tr>
<tr>
<td>MoD: Morristown---------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.28</td>
</tr>
<tr>
<td>OdA: Olmsted------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.03</td>
</tr>
<tr>
<td>Valley------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td>0.03</td>
</tr>
<tr>
<td>OmB: Omulga-------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Permeability</td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.32</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>OmC:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Seepage</td>
</tr>
<tr>
<td>OrA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Flooding</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Flooding</td>
</tr>
<tr>
<td>Pg:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RaB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Seepage</td>
</tr>
<tr>
<td>RaC2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Seepage</td>
</tr>
<tr>
<td>ReA:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Seepage</td>
</tr>
<tr>
<td>ReB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Slope</td>
</tr>
<tr>
<td>RhD:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Restricted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>permeability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
</tr>
</tbody>
</table>
Table 23.—Sanitary Facilities Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Septic tank absorption fields</th>
<th>Sewage lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>RhE:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Richland</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.46</td>
</tr>
<tr>
<td>RsB:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>RsD2:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>TeB:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>TeC:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.09</td>
</tr>
<tr>
<td>TeC2:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.09</td>
</tr>
<tr>
<td>ToA:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Tioga</td>
<td>Flooding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>1.00</td>
</tr>
<tr>
<td>Ua:</td>
<td>Somewhat limited</td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Slope</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
</tr>
<tr>
<td>Ub:</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.91</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents----------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Seepage</td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td>Pits--------------------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.96</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td>Ur:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>UtB:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>permeability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td>UtC: Urban Land---------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to slope</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>UvB: Urban Land---------------</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UvB: Urban Land---------------</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>Valley------------------------</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>Wan---------------------------</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>W: Water----------------------</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>WaA: Wadsworth----------------</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to seepage</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>WaB: Wadsworth----------------</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to seepage</td>
<td>0.50</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Septic tank absorption fields</td>
<td>Sewage lagoons</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>WkE: Westmoreland--------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td>Westmoreland--------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>WmC: Westmoreland--------</td>
<td>Somewhat limited</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>WmD: Westmoreland--------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Wick--------------------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>Depth to saturated zone</td>
</tr>
</tbody>
</table>

Table 23.—Sanitary Facilities Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Septic tank absorption fields</th>
<th>Sewage lagoons</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>ZeA: Zepernick-----------</td>
<td>Very limited flooding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Table 24.—Sanitary Facilities Part 2

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>BkE: Berks---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmB: Berks---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF: Bethesda-------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Slope 1.00</td>
<td>Sloppage 1.00</td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td>Too clayey 0.50</td>
<td>Slope 1.00</td>
<td>Gravel content 0.99</td>
<td></td>
</tr>
<tr>
<td>Large stones content 0.07</td>
<td>Slope 1.00</td>
<td>Too clayey 0.50</td>
<td></td>
</tr>
<tr>
<td>Large stones content 0.07</td>
<td>Slope 1.00</td>
<td>Gravel content 0.99</td>
<td></td>
</tr>
</tbody>
</table>

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the potential limitation. See text for further explanation of ratings in this table.)
Table 24.—Sanitary Facilities Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BtC2: Bogart-------------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>BtA: Bogart-------------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>BtB: Bogart-------------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>BtC: Bogart-------------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>CaA: Calcutta-----------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>CCB: Canfield----------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>CcC: Canfield----------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Slope</td>
</tr>
<tr>
<td>CcD: Canfield----------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>CcE: Canfield----------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>CaA: Carlisle-----------</td>
<td>Not rated</td>
<td>Value</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
<td>Seepage</td>
</tr>
<tr>
<td>CFD2: Chili-------------</td>
<td>Very limited</td>
<td>Value</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
</tbody>
</table>

Note: The table continues with similar entries for other map symbols and soil names, indicating various sanitary facility requirements and limiting features.
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>ChA:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>Seepage, bottom layer</td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td>ChB:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>Seepage, bottom layer</td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td>ChC:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>Seepage, bottom layer</td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Slope</td>
</tr>
<tr>
<td>CmB:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>Conotton---------------</td>
<td>Seepage</td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>CoB:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Coshocton----------</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>CoC:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Coshocton----------</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td>Slope</td>
</tr>
<tr>
<td>CoD:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton----------</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>DAM:</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Doles--------------------</td>
<td>Too clayey</td>
<td>0.50</td>
<td>Too clayey</td>
</tr>
<tr>
<td>ErC:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Ernest--------------------</td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>ErD:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Ernest--------------------</td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
</tbody>
</table>
Table 24.—Sanitary Facilities Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>FBB:</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Too clayey 0.50</td>
<td></td>
<td>Gravel content 0.99</td>
</tr>
<tr>
<td>FBD:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.50</td>
<td>Slippage 0.50</td>
<td>Gravel content 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td>FBF:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Slope 1.00</td>
<td>Slippage 1.00</td>
<td>Gravel content 0.99</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.50</td>
<td>Slope 1.00</td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td>FCB:</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Too clayey 0.50</td>
<td></td>
<td>Gravel content 0.80</td>
</tr>
<tr>
<td></td>
<td>Large stones content 0.01</td>
<td></td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td>FCD:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td></td>
<td>Gravel content 0.92</td>
</tr>
<tr>
<td>FDA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fitchville-------------</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.50</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>FDB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fitchville-------------</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.50</td>
<td></td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td>FAA:</td>
<td>Not rated</td>
<td>Very limited</td>
<td>Not rated</td>
</tr>
<tr>
<td>Fluvaquents-------------</td>
<td></td>
<td>Flooding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td>FNC2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td></td>
<td>Gravel content 0.25</td>
</tr>
<tr>
<td>FND2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td>Too clayey 0.50</td>
<td></td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td>FOB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Fredericktown-----------</td>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Too sandy 0.50</td>
</tr>
<tr>
<td></td>
<td>Too sandy 0.50</td>
<td></td>
<td>Gravel content 0.25</td>
</tr>
<tr>
<td>FRB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Frenchtown-------------</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trench sanitary landfill</td>
<td>Area sanitary landfill</td>
<td>Daily cover for landfill</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GaB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gavers</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GeC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GeD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GnB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GnC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GnD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>Germano:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td>GeC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gavers:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
</tbody>
</table>
Table 24.—Sanitary Facilities Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GpC:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not rated</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>GrB:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>GrC:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Guernsey</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Guernsey</td>
<td>Very limited</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>Guernsey</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Guernsey</td>
<td>Very limited</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>GuD:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Guernsey</td>
<td>Very limited</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Very limited</td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td>HeB:</td>
<td>Very limited</td>
<td>Depth to bedrock</td>
<td>0.88</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Very limited</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Very limited</td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td>HeE:</td>
<td>Very limited</td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Very limited</td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td>HeE:</td>
<td>Very limited</td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td>Hazleton</td>
<td>Very limited</td>
<td>Depth to bedrock</td>
<td>1.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trench sanitary landfill</td>
<td>Area sanitary landfill</td>
<td>Daily cover for landfill</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HFF:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage layer</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Rock Outcrop------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage layer</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>HKA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>HlB:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Dep ther bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>HmA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>HmB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>HoA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>HoB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>HoB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>JwA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Too sandy</td>
<td>0.50</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>JwB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Too sandy</td>
<td>0.50</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>JwA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Too sandy</td>
<td>0.50</td>
<td>Depth to bedrock</td>
</tr>
</tbody>
</table>

Table 24.—Sanitary Facilities Part 2—Continued
Table 24.—Sanitary Facilities Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>KeB:</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Keene-------------------</td>
<td>Too clayey 0.50</td>
<td>Depth to bedrock 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>KnB:</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>Somewhat limited</td>
<td>Depth to bedrock 1.00</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seepage, bottom layer 1.00</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.99</td>
<td>Depth to bedrock 0.01</td>
</tr>
<tr>
<td>KnC:</td>
<td>Very limited</td>
<td>Slope 0.26</td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>Somewhat limited</td>
<td>Depth to bedrock 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seepage, bottom layer 1.00</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.99</td>
<td>Depth to bedrock 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td>LhA:</td>
<td>Very limited</td>
<td>Flooding 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Lobdell-----------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seepage, bottom layer 1.00</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.99</td>
<td>Depth to bedrock 0.01</td>
</tr>
<tr>
<td>LnA:</td>
<td>Very limited</td>
<td>Ponding 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Lorain------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seepage, bottom layer 1.00</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 0.99</td>
<td>Depth to bedrock 0.01</td>
</tr>
<tr>
<td>McB:</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td>Mechanicsburg----------</td>
<td>Slightly limited</td>
<td>Seepage, bottom layer 1.00</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too clayey 0.50</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td>McC:</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td>Mechanicsburg----------</td>
<td>Slightly limited</td>
<td>Seepage, bottom layer 1.00</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too clayey 0.50</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td>MnB:</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Too clayey 0.50</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too clayey 0.50</td>
<td>Depth to bedrock 0.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td>MnB:</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Morristown-------------</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too clayey 0.50</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slippage 0.50</td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too clayey 0.50</td>
<td>Gravel content 0.03</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trench sanitary landfill</td>
<td>Area sanitary landfill</td>
<td>Daily cover for landfill</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>MoB:</td>
<td>Somewhat limited</td>
<td>Not limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Morristown--------------</td>
<td>Too clayey</td>
<td>Gravel content 0.92</td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td></td>
<td>Large stones content 0.05</td>
</tr>
<tr>
<td>MoD:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Morristown--------------</td>
<td>Slope</td>
<td>Slope 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>Gravel content 0.92</td>
<td>Too clayey 0.50</td>
</tr>
<tr>
<td></td>
<td>Large stones content</td>
<td></td>
<td>Large stones content 0.05</td>
</tr>
<tr>
<td>OdA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Olmsted----------------</td>
<td>Seepage, bottom layer</td>
<td></td>
<td>Seepage 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMB:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Omulga-----------------</td>
<td>Too clayey</td>
<td>Depth to saturated zone</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OMC:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Omulga-----------------</td>
<td>Slope</td>
<td>Slope 0.26</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td>OrA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Orrville----------------</td>
<td>Flooding</td>
<td>Flooding 1.00</td>
<td>Flooding 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pg:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>RaB:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Rainsboro--------------</td>
<td>Seepage, bottom layer</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope 0.04</td>
<td>Slope 0.04</td>
</tr>
<tr>
<td>RaC2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>Rainsboro--------------</td>
<td>Seepage, bottom layer</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope 0.04</td>
<td>Slope 0.04</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trench sanitary landfill</td>
<td>Area sanitary landfill</td>
<td>Daily cover for landfill</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>RbC: Rittman-------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to seepage, bottom layer</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>ReA: Ravenna------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReB: Ravenna------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhD: Richland-----------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>RhE: Richland-----------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slippage</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>RsB: Rittman------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to too clayey</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>RsC: Rittman------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to too clayey</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>RsD2: Rittman-----------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to too clayey</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>TeB: Teegarden----------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>TeC: Teegarden----------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>TeC2: Teegarden---------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trench sanitary landfill</td>
<td>Area sanitary landfill</td>
<td>Daily cover for landfill</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>ToA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Not limited</td>
</tr>
<tr>
<td>Tioga--------------------</td>
<td>Flooding 1.00</td>
<td>Flooding 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td>Seepage, bottom layer 1.00</td>
<td>Seepage 1.00</td>
<td>Seepage 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td>Ua:</td>
<td>Not rated</td>
<td>Seepage 1.00</td>
<td>Slope 0.91</td>
</tr>
<tr>
<td>Udorthents--------------</td>
<td>Very limited</td>
<td>Too clayey 1.00</td>
<td>Hard to compact 1.00</td>
</tr>
<tr>
<td>Slope 0.26</td>
<td>Slope 0.26</td>
<td>Depth to bedrock 0.88</td>
<td>Slope 0.26</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Slope 0.26</td>
<td>Slope 0.26</td>
<td>Depth to bedrock 1.00</td>
<td>Gravel content 0.98</td>
</tr>
<tr>
<td>Ukd2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Upshur------------------</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Too clayey 1.00</td>
<td>Slippage 0.50</td>
<td>Too clayey 1.00</td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
<td>Gravel content 0.97</td>
</tr>
<tr>
<td>Uke2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Upshur------------------</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Too clayey 1.00</td>
<td>Slippage 1.00</td>
<td>Too clayey 1.00</td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td>Us:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Ua:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Ub:</td>
<td>Not rated</td>
<td>Slope 0.88</td>
<td>Slope 0.88</td>
</tr>
<tr>
<td>Canfield---------------</td>
<td>Very limited</td>
<td>Depth to bedrock 1.00</td>
<td>Gravel content 1.00</td>
</tr>
<tr>
<td>Depth to saturated zone 0.99</td>
<td>Depth to bedrock 1.00</td>
<td>Depth to bedrock 1.00</td>
<td>Gravel content 1.00</td>
</tr>
<tr>
<td>UtB:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Uc:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
</tbody>
</table>
Table 24.—Sanitary Facilities Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>Utc:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Somewhat limited Depth to saturated zone 0.96</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Slope</td>
</tr>
<tr>
<td>UvB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td>Very limited</td>
<td>Seepage, bottom layer 1.00</td>
<td>Very limited Seepage 1.00</td>
</tr>
<tr>
<td>Vaa:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited P ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>P ponding</td>
<td>1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td>Vba:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited P ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>P ponding</td>
<td>1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td>Vca:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited P ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>P ponding</td>
<td>1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td>Lorain:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited P ponding 1.00</td>
</tr>
<tr>
<td></td>
<td>P ponding</td>
<td>1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td>Vnb:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vandergrift--------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Too clayey</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Gravel content</td>
<td>0.01</td>
<td>Gravel content</td>
</tr>
<tr>
<td>W:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water---------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Trench sanitary landfill</td>
<td>Area sanitary landfill</td>
<td>Daily cover for landfill</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>WaA:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td>Depth to saturated zone</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>WaB:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Wadsworth---------------</td>
<td>Depth to saturated zone</td>
<td>0.50</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td>WkE:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>WkF:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td>Slippage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Seepage, bottom layer</td>
<td>1.00</td>
<td>Seepage, bottom layer</td>
</tr>
<tr>
<td>WmC:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>WmD:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>1.00</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>WmD:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>WoA:</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Wick---------------------</td>
<td>Flooding</td>
<td>1.00</td>
<td>Flooding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Too clayey</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>
Table 24.—Sanitary Facilities Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Trench sanitary landfill</th>
<th>Area sanitary landfill</th>
<th>Daily cover for landfill</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>ZeA:</td>
<td>Zepernick-----------</td>
<td>Very limited</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>1.00</td>
<td>Flooding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
</tbody>
</table>
Table 25.—Agricultural Waste Management

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Too steep for surface application</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 0.41</td>
<td>Too acid 0.31</td>
<td>Too steep for sprinkler application</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.08</td>
<td>Slow water movement 0.31</td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td>BkB: Berks</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Low adsorption 1.00</td>
<td>Droughty 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.43</td>
<td>Droughty 1.00</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.06</td>
<td>Too acid 0.99</td>
<td>Too steep for surface application</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.06</td>
<td>Depth to bedrock 0.06</td>
<td>Depth to bedrock 0.06</td>
</tr>
<tr>
<td>BkC: Berks</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.95</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.43</td>
<td>Too acid 0.99</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Depth to bedrock 0.95</td>
<td>Depth to bedrock 0.95</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Too steep for sprinkler application</td>
<td>0.50</td>
</tr>
<tr>
<td>BkD: Berks</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.90</td>
<td>Slope 1.00</td>
<td>Too steep for sprinkler application</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.43</td>
<td>Too acid 0.99</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.90</td>
<td>Depth to bedrock 0.90</td>
<td>Depth to bedrock 0.90</td>
</tr>
<tr>
<td>BkE: BkE</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmB: Berks</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.97</td>
<td>Low adsorption 1.00</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.43</td>
<td>Too acid 0.99</td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.97</td>
<td>Too steep for surface application</td>
<td>0.08</td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
</tbody>
</table>
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BmC: Berks--------------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BpF: Bethesda------------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dense layer</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>BtA: Bogart--------------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>BsC2: Bogart--------------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.27</td>
<td></td>
</tr>
</tbody>
</table>
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>BtB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Filtering 1.00</td>
<td>Filtering 1.00</td>
<td>Filtering 1.00</td>
</tr>
<tr>
<td></td>
<td>capacity</td>
<td>capacity</td>
<td>capacity</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.01</td>
<td>Too acid 0.03</td>
<td>Too steep for surface application 0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Filtering 1.00</td>
<td>Filtering 1.00</td>
<td>Filtering 1.00</td>
</tr>
<tr>
<td></td>
<td>capacity</td>
<td>capacity</td>
<td>capacity</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.43</td>
<td>Too acid 0.99</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.04</td>
<td>Slope 0.04</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too steep for sprinkler application 0.22</td>
</tr>
<tr>
<td>CaA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcutta</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>CcB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Dense layer 1.00</td>
<td>Droughty 0.65</td>
<td>Droughty 0.65</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.65</td>
<td>Too acid 0.31</td>
<td>Too steep for surface application 0.31</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.08</td>
<td>Slope 0.04</td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too steep for sprinkler application 0.22</td>
</tr>
<tr>
<td>CcC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.35</td>
<td>Droughty 0.35</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.08</td>
<td>Too acid 0.31</td>
<td>Droughty 0.35</td>
</tr>
<tr>
<td></td>
<td>Slope 0.04</td>
<td>Slope 0.04</td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too steep for sprinkler application 0.22</td>
</tr>
<tr>
<td>CcD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Dense layer 1.00</td>
<td>Droughty 0.81</td>
<td>Too steep for sprinkler application 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.81</td>
<td>Too acid 0.31</td>
<td>Droughty 0.81</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.08</td>
<td></td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>CcE: Canfield------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.33</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.08</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Very limited</td>
</tr>
<tr>
<td>Cea: Carlisle-----------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>CfD2: Chili--------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.08</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Very limited</td>
</tr>
<tr>
<td>ChA: Chili---------------</td>
<td>Very limited</td>
<td>Filtering 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.08</td>
<td>Very limited</td>
</tr>
<tr>
<td>ChB: Chili---------------</td>
<td>Very limited</td>
<td>Filtering 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.08</td>
<td>Very limited</td>
</tr>
<tr>
<td>ChC: Chili---------------</td>
<td>Somewhat limited</td>
<td>Too acid 0.08</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.04</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Very limited</td>
</tr>
<tr>
<td>CmB: Conotton------------</td>
<td>Very limited</td>
<td>Filtering 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.09</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.09</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leaching 0.45</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.11</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.09</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 1.00</td>
<td>Very limited</td>
</tr>
</tbody>
</table>

Table 25.—Agricultural Waste Management—Continued
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>CmC:</td>
<td>Conotton-------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Filtering</td>
<td>1.00</td>
<td>Filtering</td>
</tr>
<tr>
<td></td>
<td>capacity</td>
<td></td>
<td>capacity</td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td>0.45</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.12</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.11</td>
<td>Low adsorption</td>
</tr>
<tr>
<td>CoB:</td>
<td>Coshocton--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.22</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.12</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.11</td>
<td>Low adsorption</td>
</tr>
<tr>
<td>CoC:</td>
<td>Coshocton--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.22</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.12</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.11</td>
<td>Low adsorption</td>
</tr>
<tr>
<td>CoD:</td>
<td>Coshocton--------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.22</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.12</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.11</td>
<td>Low adsorption</td>
</tr>
<tr>
<td>DAM:</td>
<td>Dam-------------------------------</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA:</td>
<td>Dolas-----------------------------</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.01</td>
<td>Droughty</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>ErC:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Droughty</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>ErD:</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Droughty</td>
<td>0.78</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>Slope</td>
<td>0.17</td>
</tr>
<tr>
<td>PbB:</td>
<td>Very limited</td>
<td>Dense layer</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>Slow water movement</td>
<td>0.46</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Too acid</td>
</tr>
<tr>
<td>PbD:</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Dense layer</td>
<td>Droughty</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>Slow water movement</td>
<td>0.50</td>
</tr>
<tr>
<td>PbF:</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Dense layer</td>
<td>Droughty</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>Slow water movement</td>
<td>0.50</td>
</tr>
<tr>
<td>PcB:</td>
<td>Very limited</td>
<td>Dense layer</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>太酸</td>
<td>0.27</td>
</tr>
</tbody>
</table>

Table 25.—Agricultural Waste Management—Continued
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FcD: Fairpoint------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Dense layer</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Droughty</td>
</tr>
<tr>
<td>Fda: Fitchville----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slow water movement</td>
</tr>
<tr>
<td>Fdb: Fitchville----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.41</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slow water movement</td>
</tr>
<tr>
<td>FeA: Fluvaquents---------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>FnC2: Fredericktown-------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>FnD2: Fredericktown-------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>FoB: Fredericktown-------</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FrA: Frenchtown------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ponding</td>
<td>1.00</td>
<td></td>
<td>Ponding</td>
</tr>
<tr>
<td>Depth to water saturated zone</td>
<td>1.00</td>
<td></td>
<td>Depth to water saturated zone</td>
</tr>
<tr>
<td>Droughty</td>
<td>0.67</td>
<td>Too acid</td>
<td>0.77</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.22</td>
<td>Droughty</td>
<td>0.67</td>
</tr>
<tr>
<td>GaB: Gavers----------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to water saturated zone</td>
<td>1.00</td>
<td></td>
<td>Depth to water saturated zone</td>
</tr>
<tr>
<td>Droughty</td>
<td>0.74</td>
<td>Slow water movement</td>
<td>0.60</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.08</td>
<td>Too acid</td>
<td>0.31</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Depth to bedrock</td>
<td>0.20</td>
</tr>
<tr>
<td>GeC: Germano--------</td>
<td>Somewhat limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>0.74</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td>Droughty</td>
<td>0.74</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.20</td>
<td>Too acid</td>
<td>0.31</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.08</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Depth to bedrock</td>
<td>0.20</td>
</tr>
<tr>
<td>GeD: Germano--------</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Droughty</td>
<td>0.75</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.08</td>
<td>Droughty</td>
<td>0.75</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.06</td>
<td>Too acid</td>
<td>0.31</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Depth to bedrock</td>
<td>0.06</td>
</tr>
<tr>
<td>GnB: Gilpin---------</td>
<td>Somewhat limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>0.99</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.97</td>
<td>Too acid</td>
<td>1.00</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.73</td>
<td>Droughty</td>
<td>0.99</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.06</td>
<td>Too acid</td>
<td>0.31</td>
</tr>
<tr>
<td>GnC: Gilpin---------</td>
<td>Somewhat limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>0.92</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.84</td>
<td>Too acid</td>
<td>1.00</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.73</td>
<td>Droughty</td>
<td>0.92</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td>Depth to bedrock</td>
<td>0.08</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td>Too steep for sprinkler application</td>
<td>0.50</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>GND:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.73</td>
<td>Slope 1.00</td>
<td>Too steep for sprinkler application 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.59</td>
<td>Too acid 1.00</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.46</td>
<td>Depth to bedrock 0.46</td>
<td>Depth to bedrock 0.46</td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.88</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.73</td>
<td>Too acid 1.00</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.65</td>
<td>Droughty 0.88</td>
<td>Droughty 0.88</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Depth to bedrock 0.65</td>
<td>Depth to bedrock 0.65</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td>Too steep for sprinkler application 0.50</td>
</tr>
<tr>
<td>Coshocton-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 0.41</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Too acid 0.77</td>
<td>Too acid 0.77</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.22</td>
<td>Slow water movement 0.31</td>
<td>Too steep for sprinkler application 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td>Slow water movement 0.31</td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.76</td>
<td>Slope 1.00</td>
<td>Too steep for sprinkler application 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.73</td>
<td>Too acid 1.00</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.65</td>
<td>Droughty 0.76</td>
<td>Droughty 0.76</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.65</td>
<td>Depth to bedrock 0.65</td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 0.41</td>
<td>Slope 1.00</td>
<td>Too steep for sprinkler application 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.22</td>
<td>Too acid 0.77</td>
<td>Too acid 0.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement 0.31</td>
<td>Slow water movement 0.31</td>
</tr>
</tbody>
</table>
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste by irrigation</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>Somewhat limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.73</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.62</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.46</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Depth to bedrock</td>
</tr>
<tr>
<td>Coshocton</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.41</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.22</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.41</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.41</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>0.76</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GuC2: Guernsey------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement 0.75</td>
<td>Low adsorption 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td>Slow water movement 0.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.08</td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td>GuD: Guernsey------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement 0.75</td>
<td>Low adsorption 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 1.00</td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.08</td>
<td>Slow water movement 0.61</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td>HeB: Hazleton------------</td>
<td>Somewhat limited</td>
<td>Too acid 0.73</td>
<td>Low adsorption 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.46</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Droughty 0.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
</tr>
<tr>
<td>HeC: Hazleton------------</td>
<td>Somewhat limited</td>
<td>Too acid 0.73</td>
<td>Low adsorption 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.40</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope 0.26</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Filtering capacity 0.01</td>
</tr>
<tr>
<td>HeD: Hazleton------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid 0.73</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 0.01</td>
<td>Too acid 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Droughty 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
</tr>
</tbody>
</table>

Table 25.—Agricultural Waste Management—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste by irrigation</th>
<th>Application of sewage sludge by irrigation</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>HeE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.73</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.24</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>HFF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.73</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.53</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>HgF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.73</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>HKA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holly--------------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td>1.00</td>
<td>Leaching</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.70</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.02</td>
<td>Too acid</td>
</tr>
<tr>
<td>HLB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homewood-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to</td>
<td>1.00</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>Dense layer</td>
<td>1.00</td>
<td>Dense layer</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.34</td>
<td>Droughty</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.02</td>
<td>Too acid</td>
</tr>
</tbody>
</table>
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HmA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.02</td>
</tr>
<tr>
<td>HmB: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Strongly contrasting textural stratification</td>
<td>0.01</td>
<td>Strongly contrasting textural stratification</td>
</tr>
<tr>
<td>HoA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.02</td>
</tr>
<tr>
<td>HoB: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Strongly contrasting textural stratification</td>
<td>0.01</td>
<td>Strongly contrasting textural stratification</td>
</tr>
<tr>
<td>JwA: Jimtown-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>JwB: Jimtown-------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Filtering capacity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>KeB:</td>
<td>Keene-------------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.08</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
</tr>
<tr>
<td>KnB:</td>
<td>Kensington------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
</tr>
<tr>
<td>KnC:</td>
<td>Kensington------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>KnD:</td>
<td>Kensington------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Low adsorption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Filtering capacity</td>
</tr>
<tr>
<td>LbA:</td>
<td>Lobdell--------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td>LnA:</td>
<td>Lorain----------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-----------------------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>McB: Mechanicsburg------</td>
<td>Somewhat limited</td>
<td>Very limited 0.08 Low adsorption 1.00</td>
<td>Somewhat limited Slow water movement 0.31</td>
</tr>
<tr>
<td></td>
<td>Too acid capacity 0.01</td>
<td>Too acid 0.31</td>
<td>Too steep for surface application 0.08</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Filtering capacity 0.01</td>
<td>Filtering capacity 0.01</td>
</tr>
<tr>
<td>McC: Mechanicsburg------</td>
<td>Somewhat limited</td>
<td>Very limited 0.26 Low adsorption 1.00</td>
<td>Very limited Slow water movement 0.36</td>
</tr>
<tr>
<td></td>
<td>Slope 0.26</td>
<td>Too acid 0.31</td>
<td>Too steep for surface application 0.08</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Slope 0.26</td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Filtering capacity 0.01</td>
<td>Filtering capacity 0.01</td>
</tr>
<tr>
<td>MnB: Morristown---------</td>
<td>Very limited 1.00</td>
<td>Somewhat limited 0.31 Slow water movement 0.31</td>
<td>Somewhat limited Slow water movement 0.31</td>
</tr>
<tr>
<td></td>
<td>Dense layer 1.00</td>
<td>Droughty 0.23</td>
<td>Droughty 0.23</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 0.41</td>
<td>Slow water movement 0.31</td>
<td>Slow water movement 0.31</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.23</td>
<td>Droughty 0.36</td>
<td>Too steep for surface application 0.08</td>
</tr>
<tr>
<td>Mnd: Morristown---------</td>
<td>Very limited 1.00</td>
<td>Very limited 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Too steep for surface application 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dense layer 1.00</td>
<td>Droughty 0.36</td>
<td>Too steep for sprinkler application 1.00</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 0.41</td>
<td>Slow water movement 0.31</td>
<td>Too steep for surface application 0.08</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.36</td>
<td>Droughty 0.55</td>
<td>Slow water movement 0.31</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 0.41</td>
<td>Slow water movement 0.31</td>
<td>Droughty 0.57</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow water movement 0.31</td>
<td>Droughty 0.57</td>
</tr>
<tr>
<td>MoB: Morristown---------</td>
<td>Very limited 1.00</td>
<td>Very limited 1.00</td>
<td>Very limited Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Too steep for surface application 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dense layer 1.00</td>
<td>Droughty 0.57</td>
<td>Too steep for sprinkler application 1.00</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 0.41</td>
<td>Slow water movement 0.31</td>
<td>Droughty 0.57</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.57</td>
<td>Droughty 0.57</td>
<td>Slow water movement 0.31</td>
</tr>
</tbody>
</table>

Table 25.—Agricultural Waste Management—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>OdA:</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmsted-----------------</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td></td>
<td>0.70</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td></td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity</td>
<td></td>
<td>0.01</td>
</tr>
<tr>
<td>OdA:</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td></td>
<td>0.03</td>
</tr>
<tr>
<td>OmB:</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omulga-----------------</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OmC:</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omulga-----------------</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dense layer</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
<td>0.26</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td></td>
<td>0.08</td>
</tr>
<tr>
<td>OrA:</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orrville----------------</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td>Pg:</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RaB:</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro---------------</td>
<td></td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td></td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>RaC2: Rainsboro----------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.37</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.10</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.07</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.02</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>0.01</td>
<td>Too acid</td>
</tr>
</tbody>
</table>

Table 25.—Agricultural Waste Management—Continued
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>RsB:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rittman-----------------------------</td>
<td>Droughty</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.22</td>
</tr>
<tr>
<td>RsC:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rittman-----------------------------</td>
<td>Droughty</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.22</td>
</tr>
<tr>
<td>RsD2:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rittman-----------------------------</td>
<td>Droughty</td>
<td>0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.22</td>
</tr>
<tr>
<td>TeB:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Teegarden---------------------------</td>
<td>Droughty</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.08</td>
</tr>
<tr>
<td>TeC:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Teegarden---------------------------</td>
<td>Droughty</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.08</td>
</tr>
<tr>
<td>TeC2:</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Teegarden---------------------------</td>
<td>Droughty</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Too acid</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>0.26</td>
</tr>
</tbody>
</table>
Table 25.—Agricultural Waste Management—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Application of manure and food-processing waste</th>
<th>Application of sewage sludge by irrigation</th>
<th>Disposal of wastewater by irrigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioga---------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Flooding</td>
<td>1.00</td>
<td>Flooding</td>
<td>1.00</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.02</td>
<td>Too acid</td>
<td>0.07</td>
</tr>
<tr>
<td>Ua:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Udorthents---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Ub:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Uc:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Udorthents---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slow water movement</td>
<td>1.00</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Runoff</td>
<td>0.40</td>
<td>Slow water movement</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td>Too acid</td>
<td>0.77</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.22</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>Droughty</td>
<td>0.07</td>
<td>Droughty</td>
<td>0.07</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Droughty</td>
<td>1.00</td>
<td>Droughty</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.90</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.43</td>
<td>Too acid</td>
<td>0.99</td>
</tr>
<tr>
<td>Slope</td>
<td>0.26</td>
<td>Depth to bedrock</td>
<td>0.90</td>
</tr>
<tr>
<td>Filtering capacity</td>
<td>0.01</td>
<td>Slope</td>
<td>0.26</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Slow water movement</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Runoff</td>
<td>0.40</td>
<td>Slow water movement</td>
<td>1.00</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.22</td>
<td>Too acid</td>
<td>0.77</td>
</tr>
<tr>
<td>Ub:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Droughty</td>
<td>1.00</td>
</tr>
<tr>
<td>Droughty</td>
<td>1.00</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.97</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td>Too acid</td>
<td>0.43</td>
<td>Too acid</td>
<td>0.99</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.97</td>
<td>Depth to bedrock</td>
<td>0.97</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>UKE2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td></td>
<td>Low adsorption 1.00</td>
</tr>
<tr>
<td></td>
<td>Slow water movement 1.00</td>
<td></td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Runoff 0.40</td>
<td></td>
<td>Too acid 0.22</td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td></td>
<td>Droughty 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td></td>
<td>Low adsorption 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.97</td>
<td></td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.43</td>
<td></td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.97</td>
<td></td>
<td>Droughty 0.99</td>
</tr>
<tr>
<td>Ur:</td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Urban Land</td>
</tr>
<tr>
<td></td>
<td>Canfield</td>
<td>Very limited</td>
<td>Canfield</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.99</td>
<td></td>
<td>Depth to bedrock 0.99</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.19</td>
<td></td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.08</td>
<td></td>
<td>Droughty 0.19</td>
</tr>
<tr>
<td></td>
<td>Too steep for 1.00</td>
<td></td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td>UtC:</td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Urban Land</td>
</tr>
<tr>
<td></td>
<td>Canfield</td>
<td>Very limited</td>
<td>Canfield</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 1.00</td>
<td></td>
<td>Depth to bedrock 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 0.57</td>
<td></td>
<td>Droughty 0.57</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.08</td>
<td></td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td></td>
<td>Slope 0.08</td>
<td></td>
<td>Slope 0.94</td>
</tr>
<tr>
<td></td>
<td>Too steep for 1.00</td>
<td></td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td>UvB:</td>
<td>Urban Land</td>
<td>Not rated</td>
<td>Urban Land</td>
</tr>
<tr>
<td></td>
<td>Canfield</td>
<td>Very limited</td>
<td>Canfield</td>
</tr>
<tr>
<td></td>
<td>Filtering capacity 1.00</td>
<td></td>
<td>Filtering capacity 1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid 0.08</td>
<td></td>
<td>Too acid 0.31</td>
</tr>
<tr>
<td></td>
<td>Too steep for 1.00</td>
<td></td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>VaA:</td>
<td>Valley--------------------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td>0.50</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>VbA:</td>
<td>Valley--------------------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td>0.50</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>VoA:</td>
<td>Valley--------------------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td>0.50</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>VoB:</td>
<td>Lorain-------------------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Ponding</td>
<td>1.00</td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Leaching</td>
<td>0.50</td>
<td>Too acid</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>VnB:</td>
<td>Vandergrift--------------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnC:</td>
<td>Vandergrift--------------------------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>1.00</td>
<td>Slow water movement</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>----------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
<td>Rating class and limiting features Value</td>
</tr>
<tr>
<td>W:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Water--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>WaA:</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Wadsworth----------------</td>
<td>Too acid 0.62</td>
<td>Too acid 0.77</td>
<td>Too acid 0.77</td>
</tr>
<tr>
<td>WaB:</td>
<td>Droughty 0.22</td>
<td>Droughty 0.62</td>
<td>Droughty 0.62</td>
</tr>
<tr>
<td>Wks:</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Too acid 0.35</td>
<td>Too acid 0.35</td>
<td>Too acid 0.35</td>
</tr>
<tr>
<td>WaB:</td>
<td>Droughty 0.22</td>
<td>Droughty 0.62</td>
<td>Droughty 0.62</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Slope 1.00</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td>W:</td>
<td>Slope 1.00</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td>WaA:</td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td>WaB:</td>
<td>Depth to bedrock 0.90</td>
<td>Depth to bedrock 0.90</td>
<td>Depth to bedrock 0.90</td>
</tr>
<tr>
<td>Wks:</td>
<td>Too acid 0.43</td>
<td>Too acid 0.99</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Filtering capacity 0.01</td>
<td>Depth to bedrock 0.90</td>
<td>Depth to bedrock 0.90</td>
</tr>
<tr>
<td>WkF:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>W:</td>
<td>Slope 1.00</td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
</tr>
<tr>
<td>WaA:</td>
<td>Droughty 1.00</td>
<td>Droughty 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td>WaB:</td>
<td>Depth to bedrock 0.97</td>
<td>Depth to bedrock 0.97</td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td>Wks:</td>
<td>Too acid 0.43</td>
<td>Too acid 0.99</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Filtering capacity 0.01</td>
<td>Depth to bedrock 0.90</td>
<td>Depth to bedrock 0.90</td>
</tr>
<tr>
<td>WmC:</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Slope 0.50</td>
<td>Low adsorption 1.00</td>
<td>Too steep for surface application 1.00</td>
</tr>
<tr>
<td>W:</td>
<td>Too acid 0.32</td>
<td>Too acid 0.91</td>
<td>Too acid 0.91</td>
</tr>
<tr>
<td>WaA:</td>
<td>Slope 0.50</td>
<td>Slope 0.50</td>
<td>Too steep for sprinkler application 0.70</td>
</tr>
<tr>
<td>WaB:</td>
<td>Depth to bedrock 0.97</td>
<td>Depth to bedrock 0.97</td>
<td>Depth to bedrock 0.97</td>
</tr>
<tr>
<td>Wks:</td>
<td>Too acid 0.43</td>
<td>Too acid 0.99</td>
<td>Too acid 0.99</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>Filtering capacity 0.01</td>
<td>Depth to bedrock 0.90</td>
<td>Depth to bedrock 0.90</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Application of manure and food-processing waste</td>
<td>Application of sewage sludge</td>
<td>Disposal of wastewater by irrigation</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>WmC: Coshocton-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Low adsorption</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slow water movement</td>
<td>Too acid</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Slow water movement</td>
<td>0.22</td>
</tr>
<tr>
<td>WmD: Westmoreland--------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Slope</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Too acid</td>
<td>0.27</td>
</tr>
<tr>
<td>Cmod: Coshocton-----------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Low adsorption</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Too acid</td>
<td>0.27</td>
</tr>
<tr>
<td>WoA: Wick----------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>Flooding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Too acid</td>
<td>0.27</td>
</tr>
<tr>
<td>ZeA: Zepernick-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Flooding</td>
<td>Flooding</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Too acid</td>
<td>Too acid</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Table 26.—Water Management Part 1

(The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Pond reservoir areas</th>
<th>Embankments, dikes, and levees</th>
<th>Aquifer-fed excavated ponds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>AmF:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>Piping</td>
<td>0.50</td>
</tr>
<tr>
<td>Slippage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkB:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>Thin layer</td>
<td>0.80</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkC:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>Thin layer</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkD:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>Thin layer</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkE:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>Thin layer</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>Thin layer</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmC:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>Thin layer</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>Thin layer</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slippage</td>
<td>1.00</td>
<td>Large stones</td>
<td>0.06</td>
</tr>
<tr>
<td>content</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BsC2:</td>
<td>Very limited</td>
<td>Depth to</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Seepage</td>
<td>1.00</td>
<td>saturated zone</td>
<td>0.50</td>
</tr>
</tbody>
</table>

The information in this table indicates the dominant soil condition but does not eliminate the need for onsite investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Pond reservoir areas</th>
<th>Embankments, dikes, and levees</th>
<th>Aquifer-fed excavated ponds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BTA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping</td>
</tr>
<tr>
<td>BtB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping</td>
</tr>
<tr>
<td>BtC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping</td>
</tr>
<tr>
<td>CaA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calcutta----------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Somewhat limited</td>
<td>0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping</td>
</tr>
<tr>
<td>CcC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Somewhat limited</td>
<td>0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping</td>
</tr>
<tr>
<td>CcD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Somewhat limited</td>
<td>0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Somewhat limited</td>
<td>0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carlisle---------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Not rated</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cfd2:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Piping</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>Cha:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chb:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chc:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili-------------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Piping</td>
</tr>
<tr>
<td>Cmb:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton----------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td>Cmc:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conotton----------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td></td>
<td>Seepage</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Pond reservoir areas</td>
<td>Embankments, dikes, and levees</td>
<td>Aquifer-fed excavated ponds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>CoB: Coshocton----------</td>
<td>Somewhat limited</td>
<td>Seepage 0.25</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>CoC: Coshocton----------</td>
<td>Somewhat limited</td>
<td>Depth to bedrock 0.06</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.01</td>
<td>Piping 0.50</td>
<td>Thin layer 0.26</td>
</tr>
<tr>
<td>CoD: Coshocton----------</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAM: Dam----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA: Doles--------------</td>
<td>Not limited</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping 0.50</td>
</tr>
<tr>
<td>ErC: Ernest--------------</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.01</td>
<td>Piping 0.50</td>
<td></td>
</tr>
<tr>
<td>ErD: Ernest--------------</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.12</td>
<td>Piping 0.50</td>
<td></td>
</tr>
<tr>
<td>PbB: Fairpoint----------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>PbD: Fairpoint----------</td>
<td>Somewhat limited</td>
<td>Slippage 0.50</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PbF: Fairpoint----------</td>
<td>Very limited</td>
<td>Slippage 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FcB: Fairpoint----------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>FcD: Fairpoint----------</td>
<td>Somewhat limited</td>
<td>Slippage 0.50</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td>Slope 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FdA: Fitchville----------</td>
<td>Somewhat limited</td>
<td>Seepage 0.25</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping 0.50</td>
</tr>
<tr>
<td>FdB: Fitchville----------</td>
<td>Somewhat limited</td>
<td>Seepage 0.25</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping 0.50</td>
</tr>
<tr>
<td>FeA: Fluvaquents----------</td>
<td>Somewhat limited</td>
<td>Seepage 0.47</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Pond reservoir areas</td>
<td>Embankments, dikes, and levees</td>
<td>Aquifer-fed excavated ponds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>FnC2: Fredericktown-----</td>
<td>Very limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>FnD2: Fredericktown-----</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Piping</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoB: Fredericktown------</td>
<td>Very limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>FrA: Frenchtown----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FrC: Germano-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.06</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>GeD: Germano-------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>1.00</td>
<td>0.89</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>GnB: Gilpin--------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>GnC: Gilpin--------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.26</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>GnD: Gilpin--------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>GoC: Gilpin--------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.17</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.01</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoD: Gilpin--------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage</td>
<td>0.50</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock</td>
<td>0.17</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.12</td>
<td></td>
</tr>
</tbody>
</table>

Table 26.—Water Management Part 1—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Pond reservoir areas</th>
<th>Embankments, dikes, and levees</th>
<th>Aquifer-fed excavated ponds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.12</td>
<td>Depth to saturated zone</td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td>Piping</td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td>Thin layer</td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td>Hard to compact</td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td>Hard to compact</td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seepage</td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Slope</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth to bedrock</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Pond reservoir areas</td>
<td>Embankments, dikes, and levees</td>
<td>Aquifer-fed excavated ponds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HfF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Thin layer 0.53</td>
<td>Depth to water 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Seepage 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Outcrop-------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>HgF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton-----------------</td>
<td>Very limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td></td>
<td>Depth to water 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Piping 0.50</td>
<td>Depth to water 1.00</td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td>Thin layer 0.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Depth to bedrock 0.06</td>
<td></td>
</tr>
<tr>
<td>HkA:</td>
<td>Holly-----------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Cutbanks cave 0.10</td>
</tr>
<tr>
<td>HlB:</td>
<td>Homewood-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.62</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Piping 0.50</td>
</tr>
<tr>
<td>HmA:</td>
<td>Homeworth------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard to compact 1.00</td>
<td></td>
</tr>
<tr>
<td>HmB:</td>
<td>Homeworth------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard to compact 0.99</td>
<td></td>
</tr>
<tr>
<td>HoA:</td>
<td>Homeworth------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard to compact 1.00</td>
<td></td>
</tr>
<tr>
<td>HoB:</td>
<td>Homeworth------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hard to compact 1.00</td>
<td></td>
</tr>
<tr>
<td>JwA:</td>
<td>Jimtwn--------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Cutbanks cave 1.00</td>
</tr>
<tr>
<td>JwB:</td>
<td>Jimtwn--------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Cutbanks cave 0.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piping 0.50</td>
<td></td>
</tr>
<tr>
<td>KeB:</td>
<td>Kensington----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.25</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to water 1.00</td>
</tr>
<tr>
<td>KnB:</td>
<td>Kensington----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Somewhat limited</td>
<td>Depth to saturated zone 0.85</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to bedrock 0.01</td>
<td>Thin layer 0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Piping 0.50</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Pond reservoir areas</td>
<td>Embankments, dikes, and levees</td>
<td>Aquifer-fed excavated ponds</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td></td>
<td>Value</td>
</tr>
<tr>
<td></td>
<td>______</td>
<td>__________</td>
<td>__________</td>
</tr>
<tr>
<td>KnC:</td>
<td>Kensington----------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Piping 0.50</td>
<td>Depth to water 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.01</td>
<td>Depth to saturated zone 0.47</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.01</td>
<td>Thin layer 0.07</td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td>Kensington----------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Piping 0.50</td>
<td>Depth to water 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 0.12</td>
<td>Depth to saturated zone 0.47</td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td>Lobdell-------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Somewhat limited</td>
<td></td>
</tr>
<tr>
<td>LnA:</td>
<td>Lorain-------------</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Somewhat limited</td>
<td></td>
</tr>
<tr>
<td>McB:</td>
<td>Mechanicsburg------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Somewhat limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.01</td>
<td>Thin layer 0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to water 1.00</td>
<td></td>
</tr>
<tr>
<td>McC:</td>
<td>Mechanicsburg------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Somewhat limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.01</td>
<td>Thin layer 0.33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnB:</td>
<td>Morristown----------</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Not limited</td>
<td>Depth to water 1.00</td>
<td></td>
</tr>
<tr>
<td>MnD:</td>
<td>Morristown----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td>Not limited</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MoB:</td>
<td>Morristown----------</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Somewhat limited</td>
<td>Depth to water 1.00</td>
<td></td>
</tr>
<tr>
<td>MoD:</td>
<td>Morristown----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slippage 0.50</td>
<td>Large stones content 0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OdA:</td>
<td>Olmsted------------</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 1.00</td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutbanks cave 0.50</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td></td>
</tr>
<tr>
<td>Valley--------------------</td>
<td>Not limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slow refill 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cutbanks cave 0.10</td>
<td></td>
</tr>
<tr>
<td>OmB:</td>
<td>Omulga-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Depth to saturated zone 0.81</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to water 1.00</td>
<td></td>
</tr>
<tr>
<td>OmC:</td>
<td>Omulga-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.50</td>
<td>Depth to saturated zone 0.85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 0.01</td>
<td>Piping 0.50</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Pond reservoir areas</td>
<td>Embankments, dikes, and levees</td>
<td>Aquifer-fed excavated ponds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
</tr>
<tr>
<td>OrA: Orrville-----------</td>
<td>Very limited Seepage</td>
<td>1.00</td>
<td>Very limited Seepage</td>
</tr>
<tr>
<td>Pg: Pits---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>RaB: Rainsboro---------</td>
<td>Very limited Seepage</td>
<td>1.00</td>
<td>Somewhat limited Seepage</td>
</tr>
<tr>
<td>RaC2: Rainsboro---------</td>
<td>Very limited Seepage</td>
<td>1.00</td>
<td>Somewhat limited Seepage</td>
</tr>
<tr>
<td>ReA: Ravenna------------</td>
<td>Somewhat limited Seepage</td>
<td>0.50</td>
<td>Very limited Seepage</td>
</tr>
<tr>
<td>ReB: Ravenna------------</td>
<td>Somewhat limited Seepage</td>
<td>0.50</td>
<td>Very limited Seepage</td>
</tr>
<tr>
<td>RhD: Richland-----------</td>
<td>Somewhat limited Seepage</td>
<td>0.50</td>
<td>Somewhat limited Seepage</td>
</tr>
<tr>
<td>RhE: Richland-----------</td>
<td>Somewhat limited Slope</td>
<td>0.62</td>
<td>Somewhat limited Slippage</td>
</tr>
<tr>
<td>RsB: Rittman------------</td>
<td>Somewhat limited Seepage</td>
<td>0.50</td>
<td>Somewhat limited Seepage</td>
</tr>
<tr>
<td>RsC: Rittman------------</td>
<td>Somewhat limited Seepage</td>
<td>0.50</td>
<td>Somewhat limited Seepage</td>
</tr>
<tr>
<td>RsD2: Rittman-----------</td>
<td>Somewhat limited Seepage</td>
<td>0.50</td>
<td>Very limited Seepage</td>
</tr>
<tr>
<td>TeB: Teegarden----------</td>
<td>Somewhat limited Seepage</td>
<td>0.50</td>
<td>Very limited Seepage</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Pond reservoir areas</td>
<td>Embankments, dikes, and levees</td>
<td>Aquifer-fed excavated ponds</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>TeC:</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Depth to saturated zone 0.97</td>
</tr>
<tr>
<td>TeC2:</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Depth to saturated zone 0.97</td>
</tr>
<tr>
<td>ToA:</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td>Ua:</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Ub:</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Thin layer 1.00</td>
</tr>
<tr>
<td>Uc:</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td>Pits:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>UkC2:</td>
<td>Somewhat limited</td>
<td>Slippage 0.50</td>
<td>Hard to compact 1.00</td>
</tr>
<tr>
<td>Berks:</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>UkD2:</td>
<td>Somewhat limited</td>
<td>Slippage 0.50</td>
<td>Hard to compact 1.00</td>
</tr>
<tr>
<td>Berks:</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Uke2:</td>
<td>Very limited</td>
<td>Slippage 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Ur:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
</tbody>
</table>
Columbiana County, Ohio

Table 26.—Water Management Part 1—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Pond reservoir areas</th>
<th>Embankments, dikes, and levees</th>
<th>Aquifer-fed excavated ponds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>Utd:</td>
<td>Urban Land------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Utc:</td>
<td>Urban Land------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>UvB:</td>
<td>Urban Land------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td>VaA:</td>
<td>Valley-----------------</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>VaC:</td>
<td>Valley-----------------</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>VcA:</td>
<td>Valley-----------------</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Lorain-------------------</td>
<td>Not limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>VnB:</td>
<td>Vandergrift-----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>VnC:</td>
<td>Vandergrift-----------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>W:</td>
<td>Water-----------------</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>WaA:</td>
<td>Wadsworth-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>WaB:</td>
<td>Wadsworth-------------</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Pond reservoir areas</td>
<td>Embankments, dikes, and levees</td>
<td>Aquifer-fed excavated ponds</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------------</td>
<td>-------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>WkE:</td>
<td>Somewhat limited</td>
<td>Slope 0.62</td>
<td>Piping 0.50</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Seepage 0.50</td>
<td>Depth to bedrock 0.01</td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>Seepage 1.00</td>
<td>Thin layer 0.33</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.98</td>
<td>Slope 0.62</td>
<td></td>
</tr>
<tr>
<td>WkF:</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Slippage 0.50</td>
<td>Seepage 0.50</td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Thin layer 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to bedrock 0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmC:</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Piping 0.50</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Slope 0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Somewhat limited</td>
<td>Seepage 0.50</td>
<td>Depth to saturated zone 0.85</td>
</tr>
<tr>
<td></td>
<td>Slope 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmD:</td>
<td>Somewhat limited</td>
<td>Slope 0.12</td>
<td>Not limited</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Seepage 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Somewhat limited</td>
<td>Slope 0.12</td>
<td>Depth to saturated zone 0.85</td>
</tr>
<tr>
<td></td>
<td>Seepage 0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WoA:</td>
<td>Somewhat limited</td>
<td>Slope 0.12</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td>Wick--------------------</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hard to compact 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZeA:</td>
<td>Somewhat limited</td>
<td>Seepage 0.25</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Zepernick---------------</td>
<td>Slope 0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seepage 0.25</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 27.—Water Management Part 2

(The information in this table indicates the dominant soil condition but does not eliminate the need for on-site investigation. The numbers in the value columns range from 0.01 to 1.00. The larger the value, the greater the limitation. See text for further explanation of ratings in this table.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>AmF: Amanda</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Water erosion 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted</td>
<td>Restricted 0.22</td>
<td>Restricted 0.22</td>
</tr>
<tr>
<td></td>
<td>permeability</td>
<td></td>
<td>permeability</td>
</tr>
<tr>
<td>BkB: Berks</td>
<td>Very limited</td>
<td>Depth to hard bedrock 1.00</td>
<td>Content of large stones 0.77</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 1.00</td>
<td>Depth to hard bedrock 0.95</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones 0.77</td>
<td></td>
<td>Content of large stones 0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkC: Berks</td>
<td>Very limited</td>
<td>Depth to hard bedrock 1.00</td>
<td>Content of large stones 0.66</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkD: Berks</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Depth to hard bedrock 0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td>Content of large stones 0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 1.00</td>
<td>Content of large stones 0.74</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkE: Berks</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td>Content of large stones 0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 1.00</td>
<td>Content of large stones 0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BmB: Berks</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Depth to bedrock 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td>Depth to hard bedrock 0.97</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Droughty 1.00</td>
<td>Content of large stones 0.78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
</tbody>
</table>

Table 27.—Water Management Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>BmC: Berks-----------------</td>
<td>Very limited</td>
<td>1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>1.00</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Urban Land------------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>BmD: Berks-----------------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock</td>
<td></td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>1.00</td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>Urban Land------------------</td>
<td>Not rated</td>
<td></td>
<td>Not rated</td>
</tr>
<tr>
<td>BpF: Bethesda--------------</td>
<td>Very limited</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.22</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>BsC2: Bogart----------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>BtA: Bogart----------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>BtB: Bogart----------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td>BtC: Bogart----------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td>CaA: Calcutta---------------</td>
<td>Very limited</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.22</td>
<td>Restricted permeability</td>
</tr>
</tbody>
</table>
Table 27.—Water Management Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>Ccb: Canfield------------</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td>Ccc: Canfield------------</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Rooting depth 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td>Ccd: Canfield------------</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Rooting depth 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td>Cce: Canfield------------</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Rooting depth 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Slope 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td>CeA: Carlisle------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td>Cfd2: Chili---------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Cha: Chili---------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Chb: Chili---------------</td>
<td>Not limited</td>
<td>Not limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>Chc: Chili---------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>Cmb: Conotton------------</td>
<td>Very limited</td>
<td>Droughty 1.00</td>
<td>Not limited</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone 1.00</td>
</tr>
</tbody>
</table>
Table 27.—Water Management Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>CmC: Conotton--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Droughty</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Content of large stones</td>
<td>0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoB: Coshocton--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>1.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
</tr>
<tr>
<td>CoC: Coshocton--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>1.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Depth to hard bedrock</td>
<td>0.26</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoD: Coshocton--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>1.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.22</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>DAM: Dam-------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>DgA: Doles------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>1.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Restricted permeability</td>
<td>0.22</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>ErC: Ernest-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Rooting depth</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Droughty</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErD: Ernest-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Slope</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Water erosion</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Rooting depth</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth to saturated zone</td>
<td>0.98</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grassed waterways</td>
<td>Terraces and diversions</td>
<td>Drainage</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Content of large stones 1.00</td>
<td>Content of large stones 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Restricted permeability 0.22</td>
<td>Content of large stones 0.99</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.22</td>
<td></td>
<td>Restricted permeability 0.22</td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Content of large stones 1.00</td>
<td>Content of large stones 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Restricted permeability 0.22</td>
<td>Content of large stones 0.99</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.22</td>
<td></td>
<td>Restricted permeability 0.22</td>
</tr>
<tr>
<td>FbF:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Content of large stones 1.00</td>
<td>Content of large stones 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Restricted permeability 0.22</td>
<td>Restricted permeability 0.22</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.22</td>
<td></td>
<td>Slope 0.04</td>
</tr>
<tr>
<td>FdD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fairpoint---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Content of large stones 1.00</td>
<td>Content of large stones 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Restricted permeability 0.22</td>
<td>Restricted permeability 0.22</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.22</td>
<td></td>
<td>Slope 0.04</td>
</tr>
<tr>
<td>FdA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Restricted permeability 0.22</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.22</td>
<td></td>
<td>Restricted permeability 0.22</td>
</tr>
<tr>
<td>FdB:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fitchville--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Restricted permeability 0.22</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.22</td>
<td></td>
<td>Restricted permeability 0.22</td>
</tr>
</tbody>
</table>

Table 27.—Water Management Part 2—Continued
<table>
<thead>
<tr>
<th>FeA:</th>
<th>Not rated</th>
<th>Not rated</th>
<th>Not rated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluvaquents</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnC2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fredericktown</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnD2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fredericktown</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoB:</td>
<td>Not limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Fredericktown</td>
<td>To sandy 1.00</td>
<td>Cutbanks cave 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FrA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Frenchtown</td>
<td>Water erosion 1.00</td>
<td>Ponding 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gavers</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeC:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Germano</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.05</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeD:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Germano</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnB:</td>
<td>Very limited</td>
<td>Somewhat limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin</td>
<td>Depth to hard bedrock 1.00</td>
<td>Depth to hard bedrock 0.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnC:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td>Gilpin</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to bedrock 0.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 27.—Water Management Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>GND:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>Content of large stones</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to soft bedrock</td>
<td>Depth to soft bedrock</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to soft bedrock</td>
<td>Restricted permeability</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>Depth to bedrock</td>
<td></td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>Content of large stones</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td>Coshocton-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Restricted permeability</td>
<td></td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>Content of large stones</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td>Coshocton-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Restricted permeability</td>
<td></td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>Content of large stones</td>
<td>Depth to soft bedrock</td>
</tr>
<tr>
<td>Coshocton-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>Urban Land----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grasped waterways</td>
<td>Terraces and diversions</td>
<td>Drainage</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>GrB:</td>
<td>Glenford---------</td>
<td>Very limited</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>GrC:</td>
<td>Glenford---------</td>
<td>Very limited</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>GuC:</td>
<td>Guernsey---------</td>
<td>Very limited</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>GuC2:</td>
<td>Guernsey---------</td>
<td>Very limited</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>GuD:</td>
<td>Guernsey---------</td>
<td>Very limited</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>HeB:</td>
<td>Hazleton---------</td>
<td>Somewhat limited</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>HeC:</td>
<td>Hazleton---------</td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
<tr>
<td>HeD:</td>
<td>Hazleton---------</td>
<td>Very limited</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Depth to hard bedrock</td>
</tr>
</tbody>
</table>

Table 27.—Water Management Part 2—Continued
Table 27.—Water Management Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Value</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td>HgF: Hazleton------------</td>
<td>Very limited</td>
<td>Slope 0.99</td>
<td>Content of large stones 0.99</td>
</tr>
<tr>
<td>HnB: Hazleton------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Content of large stones 1.00</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Very limited</td>
<td>Slope 1.00</td>
<td>Depth to hard bedrock 0.26</td>
</tr>
<tr>
<td>HeE: Holly---------------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>HlB: Homewood------------</td>
<td>Very limited</td>
<td>Water erosion 1.00</td>
<td>Rooting depth 1.00</td>
</tr>
<tr>
<td>HmA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>HmA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>HoA: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
<tr>
<td>HoB: Homeworth-----------</td>
<td>Very limited</td>
<td>Depth to saturated zone 1.00</td>
<td>Very limited</td>
</tr>
</tbody>
</table>

Note: Further details on water erosion, root depth, and slope permeability are listed for various locations and conditions.
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>JWA: Jimtown-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>JWB: Jimtown-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>KeB: Keene---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Slope 0.04</td>
</tr>
<tr>
<td>KnB: Kensington----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Somewhat limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Slope 0.04</td>
</tr>
<tr>
<td>KnC: Kensington----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>KnD: Kensington----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>LhA: Lobdell-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td>LnA: Lorain-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
</tr>
<tr>
<td>McB: Mechanicsburg-------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td>McC: Mechanicsburg-------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Depth to saturated zone 1.00</td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grassed waterways</td>
<td>Terraces and diversions</td>
<td>Drainage</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>----------</td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>MnB:</td>
<td>Morristown--------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>1.00</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.22</td>
<td>Slope</td>
</tr>
<tr>
<td>MnD:</td>
<td>Morristown--------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>1.00</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.22</td>
<td>Slope</td>
</tr>
<tr>
<td>MoB:</td>
<td>Morristown--------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>1.00</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>1.00</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.22</td>
<td>Slope</td>
</tr>
<tr>
<td>OdA:</td>
<td>Olmsted-----------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ponding</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Frost action</td>
</tr>
<tr>
<td>Valley------------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>0.94</td>
<td>Restricted permeability</td>
</tr>
<tr>
<td>OmB:</td>
<td>Omulga------------</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Water erosion</td>
</tr>
<tr>
<td></td>
<td>Rooting depth</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Rooting depth</td>
</tr>
</tbody>
</table>

Table 27.—Water Management Part 2—Continued
Table 27.—Water Management Part 2—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Grassed waterways</th>
<th>Terraces and diversions</th>
<th>Drainage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rating class and</td>
<td>Rating class and</td>
<td>Rating class and</td>
</tr>
<tr>
<td></td>
<td>limiting features</td>
<td>limiting features</td>
<td>limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>OmC: Omulga---------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Rooting depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>OrA: Orrville-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Rooting depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Pg: Pits-----------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
</tr>
<tr>
<td>RaB: Rainsboro------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Rooting depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>RaC2: Rainsboro-----------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Rooting depth</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.99</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.00</td>
</tr>
<tr>
<td>ReA: Ravenna--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>0.96</td>
</tr>
<tr>
<td>ReB: Ravenna--------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Rooting depth</td>
<td>Depth to saturated zone</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>0.04</td>
</tr>
<tr>
<td>RhD: Richland-------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Water erosion</td>
<td>Slope</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Slope</td>
<td>Depth to</td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>saturated zone</td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>0.18</td>
<td>Content of large stones</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>0.11</td>
<td></td>
</tr>
</tbody>
</table>

Map symbol and soil name, Grassed waterways, Terraces and diversions, Drainage.
<table>
<thead>
<tr>
<th>Rating class and limiting features</th>
<th>Value</th>
<th>Rating class and limiting features</th>
<th>Value</th>
<th>Rating class and limiting features</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RhE:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Richland</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
<td>Slope</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Content of large stones</td>
<td>0.32</td>
<td>Slope</td>
<td>0.04</td>
</tr>
<tr>
<td>RsB:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooting depth</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Rooting depth</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>RsC:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooting depth</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Rooting depth</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>RsD2:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooting depth</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Rooting depth</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>TeB:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Somewhat limited</td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooting depth</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Rooting depth</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>TeC:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooting depth</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Rooting depth</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>TeC2:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rooting depth</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Depth to saturated zone</td>
<td>1.00</td>
<td>Rooting depth</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slope</td>
<td></td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td>Very limited</td>
<td></td>
<td>Very limited</td>
<td></td>
</tr>
<tr>
<td>Tioga</td>
<td></td>
<td>Slope</td>
<td>1.00</td>
<td>Water erosion</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flooding</td>
<td>1.00</td>
<td>Depth to saturated zone</td>
<td>1.00</td>
</tr>
<tr>
<td>Map symbol</td>
<td>Grassed waterways</td>
<td>Terraces and diversions</td>
<td>Drainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>and soil name</td>
<td>Rating class and limiting features</td>
<td></td>
<td>Rating class and limiting features</td>
<td></td>
<td>Rating class and limiting features</td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td></td>
<td>Value</td>
<td></td>
<td>Value</td>
</tr>
<tr>
<td>Us:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ub:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.91</td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Depth to soft bedrock 0.90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to soft bedrock 0.90</td>
<td>Content of large stones 0.36</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones 0.36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.91</td>
<td>Restricted permeability 0.91</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td>Depth to hard bedrock 0.97</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td>Content of large stones 0.81</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones 0.81</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grassed waterways</td>
<td>Terraces and diversions</td>
<td>Drainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and</td>
<td>Rating class and</td>
<td>Rating class and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>limiting features</td>
<td>limiting features</td>
<td>limiting features</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vke2:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur------------------</td>
<td>Slope 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.91</td>
<td>Depth to saturated zone</td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to bedrock</td>
<td>Rooting depth 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Content of large stones</td>
<td>Depth to bedrock 0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large</td>
<td>stones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stones 0.09</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ur:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtB:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Slope 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone</td>
<td>Restricted permeability 0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty 1.00</td>
<td>Rooting depth 1.00</td>
<td>Rooting depth 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtC:</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Slope 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone</td>
<td>Restricted permeability 0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.94</td>
<td>Rooting depth 1.00</td>
<td>Restricted permeability 0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vba:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>Slope 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rooting depth 1.00</td>
<td>Depth to saturated zone</td>
<td>Restricted permeability 0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted 0.94</td>
<td>Rooting depth 1.00</td>
<td>Restricted permeability 0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grasped waterways</td>
<td>Terraces and diversions</td>
<td>Drainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VoA: Valley------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>ponding 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.94</td>
<td>Restricted permeability 0.94</td>
<td>Restricted permeability 0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.99</td>
<td>Restricted permeability 0.99</td>
<td>Restricted permeability 0.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnB: Vandergrift------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.91</td>
<td>Restricted permeability 0.91</td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnC: Vandergrift------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability 0.91</td>
<td>Restricted permeability 0.91</td>
<td>Restricted permeability 0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W: Water---------------</td>
<td>Not rated</td>
<td>Not rated</td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaA: Wadsworth--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaB: Wadsworth--------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Frost action 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td>Slope 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE: Westmoreland-----</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion 1.00</td>
<td>Water erosion 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones 0.12</td>
<td>Content of large stones 0.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks-----------------</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td>Slope 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to hard bedrock 1.00</td>
<td>Content of large stones 1.00</td>
<td>Depth to saturated zone 1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drought 1.00</td>
<td>Drought 1.00</td>
<td>Depth to hard bedrock 0.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones 1.00</td>
<td>Content of large stones 1.00</td>
<td>Depth to bedrock 0.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Grassed waterways</td>
<td>Terraces and diversions</td>
<td>Drainage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td>Rating class and limiting features</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
<td>Value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkF:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland -----------</td>
<td>Slope</td>
<td>Slope</td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td>Content of large stones</td>
<td>Depth to bedrock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.14</td>
<td>0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>Slope</td>
<td>Slope</td>
<td>Depth to bedrock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.97</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Droughty</td>
<td>Depth to soft bedrock</td>
<td>Depth to bedrock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>0.94</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to soft bedrock</td>
<td>Content of large stones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.97</td>
<td>0.39</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content of large stones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.94</td>
<td>0.39</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmC:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland -----------</td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>1.00</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Restricted permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmD:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland -----------</td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>Slope</td>
<td>Slope</td>
<td>Slope</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99</td>
<td>1.00</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Restricted permeability</td>
<td>Restricted permeability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.22</td>
<td>0.22</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WoA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wick--------------------</td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZeA:</td>
<td>Very limited</td>
<td>Very limited</td>
<td>Very limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zepernick---------------</td>
<td>Water erosion</td>
<td>Water erosion</td>
<td>Frost action</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Depth to saturated zone</td>
<td>Depth to saturated zone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties
(Absence of an entry indicates that the data were not estimated.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>AmF: Amanda</td>
<td>0-5</td>
<td>Loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>5-32</td>
<td>Silt loam,</td>
<td>CL, CL-ML</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>32-70</td>
<td>gravelly silt loam, gravelly silty clay loam, clay loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>gravelly loam, loam, silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td>BkB: Berks</td>
<td>0-10</td>
<td>Channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>36-38</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkC: Berks</td>
<td>0-7</td>
<td>Channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number--</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>BkD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>0-7</td>
<td>Channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>24-26</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>0-1</td>
<td>Slightly decomposed plant material</td>
<td>PT</td>
<td>A-8</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1-8</td>
<td>Channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>0-6</td>
<td>Channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban Land----</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number--</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO >10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>BmC: Berks--------------</td>
<td>0-6</td>
<td>Channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-4</td>
<td>0 0-15</td>
<td>55-80</td>
<td>55-75</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmD: Berks--------------</td>
<td>0-6</td>
<td>Channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-4</td>
<td>0 0-15</td>
<td>55-80</td>
<td>55-75</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
</tr>
<tr>
<td>BtA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart-----------------</td>
<td>0-11</td>
<td>Silt loam,</td>
<td>A-4</td>
<td>0</td>
<td>0-5</td>
<td>70-100</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>11-33</td>
<td>Loam, silt</td>
<td>A-4</td>
<td>0</td>
<td>0-5</td>
<td>80-100</td>
<td>35-100</td>
</tr>
<tr>
<td></td>
<td>33-49</td>
<td>Gravelly sandy</td>
<td>A-2, A-1, A-4</td>
<td>0</td>
<td>0-5</td>
<td>60-100</td>
<td>25-100</td>
</tr>
<tr>
<td></td>
<td>49-80</td>
<td>Very gravelly</td>
<td>A-1, A-2, A-4</td>
<td>0</td>
<td>0-5</td>
<td>60-100</td>
<td>25-100</td>
</tr>
<tr>
<td>BtC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart-----------------</td>
<td>0-8</td>
<td>Loam, silt,</td>
<td>A-4</td>
<td>0</td>
<td>0-5</td>
<td>70-100</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>8-34</td>
<td>sandy gravelly</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>80-100</td>
<td>35-100</td>
</tr>
<tr>
<td></td>
<td>34-44</td>
<td>Loam, silt,</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>80-100</td>
<td>35-100</td>
</tr>
<tr>
<td></td>
<td>44-52</td>
<td>gravelly loam,</td>
<td>A-2, A-4, A-1</td>
<td>0</td>
<td>0-5</td>
<td>60-100</td>
<td>35-100</td>
</tr>
<tr>
<td></td>
<td>52-80</td>
<td>gravelly sandy</td>
<td>A-2, A-4, A-1</td>
<td>0</td>
<td>0-5</td>
<td>60-100</td>
<td>25-100</td>
</tr>
</tbody>
</table>

Table 28.—Engineering Index Properties—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
</tr>
<tr>
<td>BtB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart---</td>
<td>0-7</td>
<td>Silt loam,</td>
<td>SM, ML</td>
<td>A-4</td>
<td>0 0-5</td>
<td>70-100 65-100 55-100 40-90</td>
<td>20-35 NP-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loam, gravelly loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-28</td>
<td>Silt loam,</td>
<td>CL, CL-ML,</td>
<td>A-6, A-4</td>
<td>0 0-5</td>
<td>80-100 35-100 20-100 10-80</td>
<td>20-35 3-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gravelly clay loam, sandy loam, loam</td>
<td>GM, ML</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-42</td>
<td>Very gravelly sandy loam, sandy loam, sandy clay loam, gravelly loam</td>
<td>ML, SC, GM, SM</td>
<td>A-2, A-1, A-4</td>
<td>0 0-5</td>
<td>60-100 35-100 20-95 10-75</td>
<td>20-40 3-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-60</td>
<td>Extremely gravelly sand, gravelly sandy loam, very gravelly loam, stratified sandy loam to loamy sand to gravelly sand</td>
<td>SC, SC-SM, SM, GM, CL-ML</td>
<td>A-4, A-1, A-2</td>
<td>0 0-5</td>
<td>60-100 25-100 15-95 5-75</td>
<td>15-30 NP-8</td>
</tr>
<tr>
<td>BtC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bogart---</td>
<td>0-9</td>
<td>Silt loam,</td>
<td>ML, SM</td>
<td>A-4</td>
<td>0 0-5</td>
<td>70-100 65-100 55-100 40-90</td>
<td>20-35 NP-10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loam, gravelly loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-43</td>
<td>Loam, silt loam, sandy loam, gravelly loam</td>
<td>CL, CL-ML, GM, ML</td>
<td>A-6, A-4</td>
<td>0 0-5</td>
<td>80-100 35-100 20-100 10-80</td>
<td>20-35 3-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43-51</td>
<td>Gravelly sandy loam, loam, sandy clay loam, very gravelly sandy loam</td>
<td>SM, GM, SC, ML</td>
<td>A-1, A-4, A-2</td>
<td>0 0-5</td>
<td>60-100 35-100 20-95 10-75</td>
<td>15-30 3-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>51-80</td>
<td>Gravelly sandy loam, very gravelly loam, stratified sandy loam to loamy sand to gravelly sand</td>
<td>CL-ML, SM, SC, GM</td>
<td>A-2, A-4, A-1</td>
<td>0 0-5</td>
<td>60-100 25-100 15-95 5-75</td>
<td>15-30 NP-8</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>CaA: Calcutta------------</td>
<td>0-1</td>
<td>Slightly decomposed plant material</td>
<td>PT</td>
<td>A-8</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>9-27</td>
<td>Silty clay loam, silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-6, A-7-6</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>27-46</td>
<td>Loam, silty clay loam, silt loam, clay loam, gravelly sandy loam</td>
<td>SC-SM, CL, CL-ML</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>46-80</td>
<td>Gravelly sandy loam, loam, sandy loam, very gravelly sandy loam, silt loam, clay loam, silty clay loam</td>
<td>CL, SC-SM, CL-ML</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td>CcB: Canfield-----------</td>
<td>0-11</td>
<td>Silt loam</td>
<td>CL, CL-ML, ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-3</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>11-22</td>
<td>Silt loam, silty clay loam, loam</td>
<td>CL, ML, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>22-45</td>
<td>Loam, gravelly loam, silt loam, gravelly silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>80-95</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>Loam, gravelly silt loam, sandy loam</td>
<td>CL, CL-ML, ML, SC-SM</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>80-95</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>CoC: Canfield-----------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, ML, CL-ML</td>
<td>A-4, A-6</td>
<td>0-3</td>
<td>90-100, 85-95, 75-95, 60-85, 16-35</td>
<td>2-15</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>Silt loam, loam, silty clay loam</td>
<td>CL, CL-ML, ML</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>85-100, 85-95, 70-95, 50-90</td>
<td>20-40, 3-16</td>
</tr>
<tr>
<td></td>
<td>25-40</td>
<td>Silt loam, gravelly silt loam, loam, gravelly loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>80-95, 70-95, 60-95, 40-85</td>
<td>20-35, 3-14</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>Loam, gravelly loam, silt loam, sandy loam</td>
<td>ML, SC-SM, CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>80-95, 55-95, 30-95, 15-85</td>
<td>20-35, 2-12</td>
</tr>
<tr>
<td>CoD: Canfield-----------</td>
<td>0-8</td>
<td>Silt loam</td>
<td>ML, CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-3</td>
<td>90-100, 85-95, 75-95, 60-85, 16-35</td>
<td>2-15</td>
</tr>
<tr>
<td></td>
<td>8-21</td>
<td>Silt loam, silty clay loam, loam</td>
<td>ML, CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>85-100, 85-95, 70-95, 50-90</td>
<td>20-40, 3-16</td>
</tr>
<tr>
<td></td>
<td>21-40</td>
<td>Gravelly loam, loam, silt loam, gravelly silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>80-95, 70-95, 60-95, 40-85</td>
<td>20-35, 3-14</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>Gravelly loam, silt loam, sandy loam</td>
<td>SC-SM, ML, CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>80-95, 55-95, 30-95, 15-85</td>
<td>20-35, 2-12</td>
</tr>
<tr>
<td>CoE: Canfield-----------</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL-ML, CL, ML</td>
<td>A-4, A-6</td>
<td>0-3</td>
<td>90-100, 85-95, 75-95, 60-85, 16-35</td>
<td>2-15</td>
</tr>
<tr>
<td></td>
<td>7-26</td>
<td>Silt loam, silty clay loam, loam</td>
<td>CL, CL-ML, ML</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>85-100, 85-95, 70-95, 50-90</td>
<td>20-40, 3-16</td>
</tr>
<tr>
<td></td>
<td>26-50</td>
<td>Silt loam, gravelly silt loam, loam, gravelly loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>80-95, 70-95, 60-95, 40-85</td>
<td>20-35, 3-14</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>Gravelly silt loam, silt loam, loam, sandy loam</td>
<td>ML, CL, SC-SM, CL-ML</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>80-95, 55-95, 30-95, 15-85</td>
<td>20-35, 2-12</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number--</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>CeA: Carlisle------------</td>
<td>0-80</td>
<td>Muck</td>
<td>PT</td>
<td>A-8</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>0-4</td>
<td>Loam</td>
<td>CL-ML, ML</td>
<td>A-4</td>
<td>0</td>
<td>0-2</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>4-62</td>
<td>Gravelly loam, loam, silt loam, very gravelly sandy loam, clay loam, sandy clay loam</td>
<td>GC, CL</td>
<td>A-2, A-1-b, A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>62-80</td>
<td>Gravelly loamy sand, very gravelly sand, stratified gravelly loamy sand to very gravelly sand</td>
<td>GM, GW, SP, GP-GM, SM</td>
<td>A-1</td>
<td>0</td>
<td>2-15</td>
<td>30-70</td>
</tr>
<tr>
<td>ChA: Chili---------------</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL-ML, ML</td>
<td>A-4</td>
<td>0</td>
<td>0-2</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>8-16</td>
<td>Silt loam, gravelly clay loam, gravelly loam, sandy clay loam</td>
<td>CL, GC</td>
<td>A-1-b, A-2, A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>16-55</td>
<td>Gravelly loam, gravelly clay loam, very gravelly loam, very gravelly sandy loam, silt loam, sandy clay loam</td>
<td>GC-GM, GM, SM, SC-SM</td>
<td>A-1-b, A-2, A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>45-80</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>Gravelly loamy sand, very gravelly sand, stratified gravelly loamy sand to very gravelly sand</td>
<td>GP-GM, SP, SM, GW, GM</td>
<td>A-1</td>
<td>0</td>
<td>2-15</td>
<td>30-70</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>ChB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chil--------------------</td>
<td>0-13</td>
<td>Silt loam</td>
<td>CL-ML, ML</td>
<td>A-4</td>
<td>0 0-2</td>
<td>85-100</td>
<td>75-100</td>
</tr>
<tr>
<td></td>
<td>13-18</td>
<td>Silt loam, gravelly loam, clay loam, sandy clay loam</td>
<td>CL, GC</td>
<td>A-6, A-1-b, A-2, A-4</td>
<td>0 0-5</td>
<td>65-100</td>
<td>55-95</td>
</tr>
<tr>
<td></td>
<td>18-50</td>
<td>Gravelly loam, very gravelly sandy clay loam, gravelly sandy loam, very gravelly sandy loam, silt loam, clay loam</td>
<td>GC-GM, GM, SC-SM, SM</td>
<td>A-1-b, A-2, A-4, A-6</td>
<td>0 0-5</td>
<td>45-80</td>
<td>30-75</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>Very gravelly loamy sand, gravelly loamy sand, very gravelly sand, stratified gravelly loamy sand to very gravelly sand</td>
<td>GP-GM, GM, SP, SM, GW</td>
<td>A-1</td>
<td>0 2-15</td>
<td>30-70</td>
<td>30-65</td>
</tr>
<tr>
<td>ChC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chil--------------------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>ML, CL-ML</td>
<td>A-4</td>
<td>0 0-2</td>
<td>85-100</td>
<td>75-100</td>
</tr>
<tr>
<td></td>
<td>10-45</td>
<td>Gravelly loam, gravelly clay loam, silt loam, very gravelly sandy loam, sandy clay loam</td>
<td>CL, GC</td>
<td>A-1-b, A-2, A-4, A-6</td>
<td>0 0-5</td>
<td>65-100</td>
<td>55-95</td>
</tr>
<tr>
<td></td>
<td>45-70</td>
<td>Very gravelly sandy loam, very gravelly loam, silt loam, clay loam, gravelly sandy clay loam</td>
<td>GM, GC-GM, SM, SC-SM</td>
<td>A-1-b, A-2, A-4, A-6</td>
<td>0 0-5</td>
<td>45-80</td>
<td>30-75</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number--</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>-----------------------------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>ChC: Chili---------------</td>
<td>70-80</td>
<td>Very gravelly loamy sand, gravelly sand, stratified gravelly loamy sand to very gravelly sand</td>
<td>SM, GM, GM, GP-GM, SP</td>
<td>A-1</td>
<td>0</td>
<td>2-15</td>
<td>30-70</td>
</tr>
<tr>
<td>CmB: Conotton------------</td>
<td>0-10</td>
<td>Gravelly loam</td>
<td>SM, ML, GM, CL-ML</td>
<td>A-4, A-2</td>
<td>0</td>
<td>0-5</td>
<td>65-90</td>
</tr>
<tr>
<td>CmC: Conotton------------</td>
<td>0-10</td>
<td>Gravelly loam</td>
<td>GM, ML, SM, CL-ML</td>
<td>A-4, A-2</td>
<td>0</td>
<td>0-5</td>
<td>65-90</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>Very gravelly loamy sand, extremely gravelly loamy sand, very gravelly sand</td>
<td>GM, GP-GM, SM, SW-SM</td>
<td>A-1</td>
<td>0</td>
<td>0-10</td>
<td>25-65</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>CoB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-11</td>
<td></td>
<td></td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>85-100, 75-95</td>
</tr>
<tr>
<td>11-23</td>
<td></td>
<td></td>
<td>Silty clay loam, silt loam, clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>85-100, 75-95</td>
</tr>
<tr>
<td>23-45</td>
<td></td>
<td></td>
<td>Silty clay loam, channery loam, channery silt loam, silty clay</td>
<td>CL, CH</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>70-100, 50-85</td>
</tr>
<tr>
<td>45-70</td>
<td></td>
<td></td>
<td>Channery silty clay loam, very channery silty clay loam, silty clay loam, silt loam, clay loam, silty clay</td>
<td>GC, CL, CH</td>
<td>A-7-6, A-2, A-6</td>
<td>0</td>
<td>40-100, 35-85</td>
</tr>
<tr>
<td>70-72</td>
<td></td>
<td></td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-11</td>
<td></td>
<td></td>
<td>Silt loam</td>
<td>CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>85-100, 75-95</td>
</tr>
<tr>
<td>11-32</td>
<td></td>
<td></td>
<td>Silty clay loam, silt loam, clay loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>85-100, 75-95</td>
</tr>
<tr>
<td>32-42</td>
<td></td>
<td></td>
<td>Channery silty clay loam, silty clay loam, channery loam, silt loam, clay loam, silty clay</td>
<td>CH, CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>70-100, 50-85</td>
</tr>
<tr>
<td>42-52</td>
<td></td>
<td></td>
<td>Channery silty clay loam, very channery loam, channery clay loam, silty clay</td>
<td>CH, CL, GC</td>
<td>A-7-6, A-6, A-2</td>
<td>0</td>
<td>40-100, 35-85</td>
</tr>
<tr>
<td>52-56</td>
<td></td>
<td></td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unif.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoD:</td>
<td>0-4</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>4-24</td>
<td>Silt loam,</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>24-48</td>
<td>Silty clay</td>
<td>CH, CL</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0-10</td>
<td>70-100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>loam, channery silty clay loam, silt loam, channery loam, silty clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48-75</td>
<td>Channery silty clay loam, very channery loam, channery clay loam, silty clay</td>
<td>CH, CL, GC</td>
<td>A-6, A-2, A-7-6</td>
<td>0</td>
<td>0-20</td>
<td>40-100</td>
</tr>
<tr>
<td></td>
<td>75-77</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DAM:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Dga:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Doles-------------------</td>
<td>0-15</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>Silty clay</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>Silt loam,</td>
<td>CL</td>
<td>A-6, A-4, A-7-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>silty clay loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>Silt loam,</td>
<td>CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>silty clay loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>ErC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-8</td>
<td>Silt loam, channery silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-10</td>
<td>85-100</td>
<td>65-100</td>
</tr>
<tr>
<td>8-24</td>
<td>Silt loam, silty clay loam, channery silt loam</td>
<td>CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-15</td>
<td>75-100</td>
<td>55-100</td>
</tr>
<tr>
<td>24-44</td>
<td>Silt loam, channery loam, very channery clay loam, silty clay loam</td>
<td>GC, CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0</td>
<td>0-20</td>
<td>70-95</td>
<td>45-95</td>
</tr>
<tr>
<td>44-60</td>
<td>Silt loam, silty clay loam, channery loam, loam, very channery clay loam</td>
<td>GC, CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-20</td>
<td>55-95</td>
<td>35-95</td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-14</td>
<td>Silt loam, channery silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-10</td>
<td>85-100</td>
<td>65-100</td>
</tr>
<tr>
<td>14-33</td>
<td>Silt loam, silty clay loam, channery silt loam</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0-15</td>
<td>75-100</td>
<td>55-100</td>
</tr>
<tr>
<td>33-50</td>
<td>Loam, channery silt loam, very channery clay loam, silty clay loam</td>
<td>GC, CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0-20</td>
<td>70-95</td>
<td>45-95</td>
</tr>
<tr>
<td>50-80</td>
<td>Silt loam, silty clay loam, channery loam, loam, very channery clay loam</td>
<td>CL, GC</td>
<td>A-6, A-4, A-7-6</td>
<td>0</td>
<td>0-20</td>
<td>55-95</td>
<td>35-95</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number—</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
</tr>
<tr>
<td>FbB: Fairpoint-------</td>
<td>0-5</td>
<td>Very channery silt loam, very channery silty clay loam</td>
<td>GC, GC-GM</td>
<td>A-2, A-4, A-6</td>
<td>0</td>
<td>8-15</td>
<td>65-90</td>
</tr>
<tr>
<td>FbD: Fairpoint-------</td>
<td>0-4</td>
<td>Very channery silt loam, very channery silty clay loam</td>
<td>GC-GM, GC</td>
<td>A-4, A-6, A-2</td>
<td>0</td>
<td>8-15</td>
<td>65-90</td>
</tr>
<tr>
<td>FbF: Fairpoint-------</td>
<td>0-4</td>
<td>Very channery silt loam, very channery silty clay loam</td>
<td>GC-GM, GC</td>
<td>A-4, A-2, A-6</td>
<td>0</td>
<td>8-15</td>
<td>65-90</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>FcB:</td>
<td>0-8</td>
<td>Silty clay loam, silt loam</td>
<td>CL, CH</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
</tr>
<tr>
<td>FcD:</td>
<td>0-8</td>
<td>Silty clay loam, silt loam</td>
<td>CH, CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
</tr>
<tr>
<td>FdA:</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>10-68</td>
<td>Silty clay loam, silt loam, stratified silt loam to loam, stratified silt loam to clay loam</td>
<td>CL</td>
<td>A-4, A-7-6, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>68-80</td>
<td>Silt loam, silty clay loam, stratified silt loam to loam to fine sandy loam, stratified silty clay loam to clay loam</td>
<td>CL-ML, CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches</td>
<td>3-10 inches</td>
</tr>
<tr>
<td>FdS:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pct.)</td>
<td>(Pct.)</td>
</tr>
<tr>
<td>Pitchville----</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-50</td>
<td>Silty clay loam, silt loam, stratified silty clay loam to clay loam</td>
<td>CL</td>
<td>A-7-6, A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>Silty clay loam, silt loam, stratified silt loam to loam to fine sandy loam, stratified silty clay loam to clay loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-7-6, A-6</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
</tr>
<tr>
<td>FeA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluvaquents-----</td>
<td>0-80</td>
<td>Stratified variable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown---</td>
<td>0-10</td>
<td>Gravelly loam</td>
<td>SM, ML, CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-3</td>
<td>65-90</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>Loam, gravelly silt loam, clay loam</td>
<td>CL-ML, CL</td>
<td>A-1-b, A-4, A-6, A-2</td>
<td>0</td>
<td>0-15</td>
<td>65-100</td>
</tr>
<tr>
<td>FnD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fredericktown---</td>
<td>0-9</td>
<td>Gravelly loam</td>
<td>SM, CL-ML, ML</td>
<td>A-4</td>
<td>0</td>
<td>0-3</td>
<td>65-90</td>
</tr>
<tr>
<td></td>
<td>9-60</td>
<td>Gravelly clay loam, loam, gravelly silt loam</td>
<td>CL-ML, CL</td>
<td>A-1-b, A-6, A-4, A-2</td>
<td>0</td>
<td>0-15</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>Gravelly sandy loam, very gravelly loam, loamy sand, silt loam</td>
<td>SC-SM, SM, GM, CL-ML, ML</td>
<td>A-2, A-1, A-4</td>
<td>0</td>
<td>0-15</td>
<td>85-95</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number—</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>PoB: Fredericktown-------</td>
<td>0-12</td>
<td>Silt loam</td>
<td>CL-ML, ML</td>
<td>A-4</td>
<td>0 0-3 85-100 55-100 50-100 35-90 25-35</td>
<td>4-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-80</td>
<td>Gravelly loamy coarse sand, gravelly sandy loam, gravelly coarse sandy loam, very gravelly loamy coarse sand, very gravelly coarse sandy loam, loamy sand, loam, silt loam</td>
<td>ML, SM, GM, SC-SM, CL-ML</td>
<td>A-4, A-1, A-2</td>
<td>0 0-15 85-95 35-95 15-95 5-75</td>
<td>0-30</td>
<td>NP-8</td>
</tr>
<tr>
<td>FrA: Frenchtown-----------</td>
<td>0-4</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0 0 95-100 95-100 85-100 65-90</td>
<td>22-35</td>
<td>3-12</td>
</tr>
<tr>
<td></td>
<td>4-24</td>
<td>Silt loam, silty clay loam, clay loam, gravelly clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0 85-100 80-100 70-100 50-95</td>
<td>25-40</td>
<td>4-15</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>Silty clay loam, silt loam, loam, gravelly clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0 70-100 70-95 60-95 40-90</td>
<td>20-35</td>
<td>4-12</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>Silt loam, silty clay loam, loam, gravelly clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0-5 65-95 55-95 45-95 35-90</td>
<td>20-35</td>
<td>4-14</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>GaB:</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0 0 95-100 95-100 85-100 65-90</td>
<td>20-35 4-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>Silty clay</td>
<td>CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0 0 95-100 95-100 85-100 65-90</td>
<td>20-45 6-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-78</td>
<td>Silt loam, parachannery silt loam, silty clay loam, channery silty clay loam, channery loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0-5 95-100 70-95 60-95 40-90</td>
<td>30-40 6-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>78-80</td>
<td>Silty clay, channery silty clay loam, silt loam</td>
<td>CH, CL, MH</td>
<td>A-7, A-6</td>
<td>0 2-20 65-100 50-95 45-95 35-90</td>
<td>30-60 10-25</td>
<td></td>
</tr>
<tr>
<td>GeC:</td>
<td>0-10</td>
<td>Fine sandy loam, channery sandy loam, loam</td>
<td>ML, SM, SC, CL-ML</td>
<td>A-4</td>
<td>0 0-10 85-100 70-95 50-80 30-50</td>
<td>15-20 NP-5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33-43</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number—</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified inches (Pct.)</td>
<td>AASHTO inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>GeD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10</td>
<td>3-10</td>
<td></td>
</tr>
<tr>
<td>Germano----------------</td>
<td>0-4</td>
<td>Fine sandy loam, channery sandy loam, loam</td>
<td>CL-ML, SM, SC-SC, ML</td>
<td>A-4</td>
<td>0</td>
<td>0-10</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>36-46</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>0-9</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>85-95</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>Channery silt loam, silt loam, loam, silty clay loam</td>
<td>CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0</td>
<td>0-30</td>
<td>50-95</td>
</tr>
<tr>
<td></td>
<td>22-26</td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-----------------</td>
<td>0-3</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-95</td>
</tr>
<tr>
<td></td>
<td>3-25</td>
<td>Channery silt loam, channery loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-30</td>
<td>50-95</td>
</tr>
<tr>
<td></td>
<td>25-35</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>0-10</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5 85-95 85-95 75-95 60-85</td>
<td>20-40 4-15</td>
<td></td>
</tr>
<tr>
<td>10-15</td>
<td>Channery silt loam, loam, silty clay loam</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0-30 50-95 50-95 40-95 30-90</td>
<td>20-45 4-18</td>
<td></td>
</tr>
<tr>
<td>15-30</td>
<td>Extremely channery silt loam, very channery loam, very channery silty clay loam</td>
<td>GC</td>
<td>A-6, A-1-a, A-2, A-4</td>
<td>0</td>
<td>0-30 50-95 10-45 10-45 5-45</td>
<td>20-40 4-15</td>
<td></td>
</tr>
<tr>
<td>30-32</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0-7</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5 85-95 85-95 75-95 60-85</td>
<td>20-40 4-15</td>
<td></td>
</tr>
<tr>
<td>7-20</td>
<td>Channery silt loam, clay loam</td>
<td>CL</td>
<td>A-7-6, A-4, A-6</td>
<td>0</td>
<td>0-30 50-95 50-95 40-95 30-90</td>
<td>20-45 4-18</td>
<td></td>
</tr>
<tr>
<td>28-38</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0-7</td>
<td>Silty clay loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5 85-100 75-95 70-95 55-85</td>
<td>25-40 4-15</td>
<td></td>
</tr>
<tr>
<td>7-40</td>
<td>Silty clay loam, silt loam, clay loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5 85-100 75-95 70-95 55-90</td>
<td>25-40 6-18</td>
<td></td>
</tr>
<tr>
<td>40-46</td>
<td>Channery silt clay loam, channery loam, silt loam, silty clay loam</td>
<td>CL, CH</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0-10 70-100 50-85 40-85 30-80</td>
<td>35-55 20-35</td>
<td></td>
</tr>
<tr>
<td>46-56</td>
<td>Channery silt clay loam, very channery loam, silty clay, channery clay loam</td>
<td>GC, CL, CH</td>
<td>A-2, A-7-6, A-6</td>
<td>0</td>
<td>0-20 40-100 35-85 30-85 20-80</td>
<td>30-55 16-35</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number---</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshcotton--</td>
<td>56-66</td>
<td></td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin-------</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0 0-5 85-95 85-95 75-95 60-85</td>
<td>20-40</td>
<td>4-15</td>
</tr>
<tr>
<td></td>
<td>7-28</td>
<td>Clay loam, clay loam, silt loam, loam</td>
<td>CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0 0-30 50-95 50-95 40-95 30-90</td>
<td>20-45</td>
<td>4-18</td>
</tr>
<tr>
<td></td>
<td>28-38</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0 0-5 85-100 75-95 70-95 55-85 25-40</td>
<td>4-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-40</td>
<td>Silty clay loam, clay loam, silt loam, clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0-5 85-100 75-95 70-95 55-90 25-40</td>
<td>6-18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-50</td>
<td>Channery silty clay loam, clay loam, silt loam, silty clay</td>
<td>CL, CH</td>
<td>A-7-6, A-6</td>
<td>0 0-10 70-100 50-85 40-85 30-80 35-55</td>
<td>20-35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-56</td>
<td>Channery very channery silt loam, clay loam, silt loam, very channery clay loam</td>
<td>GC, CL, CH</td>
<td>A-7-6, A-6, A-2</td>
<td>0 0-20 40-100 35-85 30-85 20-80 30-55</td>
<td>16-35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>56-66</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin--------</td>
<td>0-6</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0 0-5 85-95 85-95 75-95 60-85</td>
<td>20-40</td>
<td>4-15</td>
</tr>
<tr>
<td></td>
<td>6-30</td>
<td>Channery silty clay loam, clay loam, loam</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0 0-30 50-95 50-95 40-95 30-90</td>
<td>20-45</td>
<td>4-18</td>
</tr>
<tr>
<td></td>
<td>30-40</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>GpC: Coshocton-----------</td>
<td>0-6</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>6-28</td>
<td>Silty clay loam, silt loam, clay loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>28-42</td>
<td>Channery silty clay loam, channery loam, silty loam, silty clay</td>
<td>CH, CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0-10</td>
<td>70-100</td>
</tr>
<tr>
<td></td>
<td>42-64</td>
<td>Channery silty clay loam, very channery loam, silty clay, channery clay loam</td>
<td>CL, CH, GC</td>
<td>A-6, A-2, A-7-6</td>
<td>0</td>
<td>0-20</td>
<td>40-100</td>
</tr>
<tr>
<td></td>
<td>64-66</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban Land---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GzB: Glenford------------</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>8-30</td>
<td>Silty clay loam, silty clay loam</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>Stratified silt loam to loam, silty clay loam, silt loam, loam</td>
<td>CL</td>
<td>A-7-6, A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>Stratified silt loam to loam, silt loam, stratified silt loam to silty clay loam, stratified silt loam to loam to fine sandy loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
</tr>
<tr>
<td>Soil Survey</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing</td>
<td>Liquid limit</td>
<td>Plasticity index</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td>-----------</td>
<td>--------------------</td>
<td>--------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>USDA texture</td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford----</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>0-7</td>
<td>Silt loam,</td>
<td>CL</td>
<td>A-6, A-7-6, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td>7-26</td>
<td>silty clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26-60</td>
<td>Silty clay</td>
<td>CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>loam, silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loam, loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-80</td>
<td>Fine sandy</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>loam, silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loam, stratified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>silt loam to</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>silty clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loam,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stratified</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>fine sandy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loam to loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to silt loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey-----</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
<td>75-95</td>
</tr>
<tr>
<td>0-8</td>
<td>Silty clay</td>
<td>CH, CL, MH</td>
<td>A-7, A-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
<td>70-95</td>
</tr>
<tr>
<td>8-16</td>
<td>loam, channery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>silt clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-52</td>
<td>Silty clay,</td>
<td>CL, MH, CH</td>
<td>A-7</td>
<td>0</td>
<td>0-10</td>
<td>75-100</td>
<td>70-95</td>
</tr>
<tr>
<td></td>
<td>channery silty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clay, silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clay loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52-65</td>
<td>Silty clay</td>
<td>CL, CH, MH</td>
<td>A-7</td>
<td>0</td>
<td>0-20</td>
<td>70-100</td>
<td>50-95</td>
</tr>
<tr>
<td></td>
<td>loam, cobbled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>silt clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>loam, silty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65-75</td>
<td>Weathered</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey-----</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
<td>75-95</td>
</tr>
<tr>
<td>0-8</td>
<td>Silty clay</td>
<td>MH, CL, CH</td>
<td>A-6, A-7</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
<td>70-95</td>
</tr>
<tr>
<td>8-16</td>
<td>loam, channery</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>silt clay</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-52</td>
<td>Silty clay,</td>
<td>MH, CL, CH</td>
<td>A-7</td>
<td>0</td>
<td>0-10</td>
<td>75-100</td>
<td>70-95</td>
</tr>
<tr>
<td></td>
<td>channery silty</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clay, silt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>clay loam</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>GuC2:</td>
<td>52-65</td>
<td>Silty clay loam, cobbly silty clay</td>
<td>CH, MH, CL</td>
<td>A-7</td>
<td>0-20</td>
<td>70-100</td>
<td>50-95</td>
</tr>
<tr>
<td></td>
<td>65-75</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GuD:</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0-5</td>
<td>90-100</td>
<td>75-95</td>
</tr>
<tr>
<td></td>
<td>8-13</td>
<td>Silty clay loam, channery clay loam, silty clay</td>
<td>CH, MH, CL</td>
<td>A-6, A-7</td>
<td>0-5</td>
<td>90-100</td>
<td>70-95</td>
</tr>
<tr>
<td></td>
<td>13-50</td>
<td>Silty clay, silty clay</td>
<td>MH, CL, CH</td>
<td>A-7</td>
<td>0-10</td>
<td>75-100</td>
<td>70-95</td>
</tr>
<tr>
<td></td>
<td>50-68</td>
<td>Channery silty clay clay loam, silty clay clay loam, silty clay clay</td>
<td>MH, CH, CL</td>
<td>A-7</td>
<td>0-20</td>
<td>70-100</td>
<td>50-95</td>
</tr>
<tr>
<td></td>
<td>68-78</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeB:</td>
<td>0-8</td>
<td>Channery loam</td>
<td>ML, CL-ML</td>
<td>A-4</td>
<td>0-15</td>
<td>65-85</td>
<td>65-85</td>
</tr>
<tr>
<td></td>
<td>8-36</td>
<td>Very channery loam, channery sandy loam, extremely channery loamy sand</td>
<td>GM, SM, CL-ML</td>
<td>A-1, A-2, A-4</td>
<td>0-50</td>
<td>60-95</td>
<td>20-75</td>
</tr>
<tr>
<td></td>
<td>36-44</td>
<td>Very channery sandy loam, very channery loam, extremely channery loamy sand</td>
<td>GM, SM</td>
<td>A-1, A-2, A-4</td>
<td>0-2</td>
<td>0-60</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>44-46</td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number—</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified 10 inches (Pct.) 3-10 inches (Pct.) 4 10 40 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeC:</td>
<td>0-7</td>
<td>Channery loam</td>
<td>CL-ML, ML</td>
<td>A-4</td>
<td>0 0-15 65-85 65-85 55-80 40-65</td>
<td>0-35</td>
<td>NP-10</td>
</tr>
<tr>
<td>Hasleton————</td>
<td>7-40</td>
<td>Very channery sandy loam, channery loam, extremely channery loamy sand</td>
<td>SM, CL-ML, GM</td>
<td>A-4, A-2, A-1</td>
<td>0 0-50 60-95 20-75 10-70 5-55</td>
<td>0-30</td>
<td>NP-8</td>
</tr>
<tr>
<td></td>
<td>40-45</td>
<td>Extremely channery sandy loam, very channery loam, extremely channery loamy sand</td>
<td>GM</td>
<td>A-4, A-1, A-2</td>
<td>0-2 0-60 55-80 10-50 5-50 5-40</td>
<td>0-30</td>
<td>NP-8</td>
</tr>
<tr>
<td></td>
<td>45-47</td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td>--- --- --- --- --- --- --- --- ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeD:</td>
<td>0-3</td>
<td>Channery loam</td>
<td>ML, CL-ML</td>
<td>A-4</td>
<td>0 0-15 65-85 65-85 55-80 40-65</td>
<td>0-35</td>
<td>NP-10</td>
</tr>
<tr>
<td>Hasleton————</td>
<td>3-45</td>
<td>Very channery sandy loam, channery loam, extremely channery loamy sand</td>
<td>CL-ML, GM, SM, GP-GM</td>
<td>A-1, A-2, A-4</td>
<td>0 0-50 60-95 20-75 10-70 5-55</td>
<td>0-30</td>
<td>NP-8</td>
</tr>
<tr>
<td></td>
<td>45-58</td>
<td>Extremely channery loamy sand, very channery sandy loam, very channery loam</td>
<td>SP-SC, GM</td>
<td>A-4, A-1, A-2</td>
<td>0-2 0-60 55-80 10-50 5-50 5-40</td>
<td>0-30</td>
<td>NP-8</td>
</tr>
<tr>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number--</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>HeE: Hasleton--</td>
<td>0-7</td>
<td>Channery loam</td>
<td>A-4</td>
<td>0-15 65-85 65-85 55-80 40-65</td>
<td>0-35</td>
<td>NP-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-24</td>
<td>Very channery sandy loam, channery loam, extremely channery loamy sand</td>
<td>A-4, A-1, A-2</td>
<td>0-50 60-95 20-75 10-70 5-55</td>
<td>0-30</td>
<td>NP-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-48</td>
<td>Extremely channery sandy loam, very channery loam, extremely channery loamy sand</td>
<td>GM A-4, A-1, A-2</td>
<td>0-2 0-60 55-80 10-50 5-50 5-40</td>
<td>0-30</td>
<td>NP-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>48-50</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hff: Hasleton--</td>
<td>0-3</td>
<td>Channery loam</td>
<td>CL-ML, ML</td>
<td>A-4</td>
<td>0-15 65-85 65-85 55-80 40-65</td>
<td>0-35</td>
<td>NP-10</td>
</tr>
<tr>
<td></td>
<td>36-44</td>
<td>Extremely channery sandy loam, very channery loam, extremely channery loamy sand</td>
<td>GM A-2, A-4, A-1</td>
<td>0-2 0-60 55-80 10-50 5-50 5-40</td>
<td>0-30</td>
<td>NP-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-47</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rock Outcrop--</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number— (Pct.)</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>HgF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hasleton------</td>
<td>0-2</td>
<td>Slightly decomposed plant material</td>
<td></td>
<td></td>
<td>PT A-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-5</td>
<td>Channery loam</td>
<td>CL-ML, ML A-4</td>
<td>0-15</td>
<td>65-85 65-85 55-80 40-65 0-35 NP-10</td>
<td></td>
<td>NP-8</td>
</tr>
<tr>
<td></td>
<td>5-50</td>
<td>Extremely channery sandy loam, channery loam, very sandy loam, extremely channery loamy sand, channery loam</td>
<td>GM, SM, CL-ML A-2, A-1, A-4</td>
<td>0-50</td>
<td>60-95 20-75 10-70 5-55 0-30 NP-8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-67</td>
<td>Extremely channery loamy sand, very channery loam, very channery sandy loam</td>
<td>GP-GM, SP-SC, GM A-2, A-1, A-4</td>
<td>0-2</td>
<td>0-60 55-80 10-50 5-50 5-40 0-30 NP-8</td>
<td></td>
<td>NP-8</td>
</tr>
<tr>
<td></td>
<td>67-69</td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td>--- --- --- --- --- ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland----</td>
<td>0-4</td>
<td>Channery loam</td>
<td>CL-ML, CL A-4</td>
<td>0-15</td>
<td>65-85 65-85 55-80 40-65 0-35 NP-10</td>
<td></td>
<td>NP-10</td>
</tr>
<tr>
<td></td>
<td>4-44</td>
<td>Channery silt loam, loam, channery silt clay loam, clay loam</td>
<td>A-4, A-7-6, A-6</td>
<td>0-15</td>
<td>65-100 65-95 55-95 40-90 22-45 2-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-52</td>
<td>Very channery silt clay loam, extremely channery silt loam, channery clay loam, channery loam</td>
<td>CL, GC, SC A-1, A-4, A-2, A-6, A-7-6</td>
<td>0-20</td>
<td>25-95 5-85 5-85 5-85 20-45 2-20</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52-54</td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td>--- --- --- --- --- ---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments (Pct.)</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>10></td>
<td>3-10</td>
<td>4</td>
</tr>
<tr>
<td>HkA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holly</td>
<td>0-4</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>4-20</td>
<td>Silt loam, loam, gravelly sandy loam, silty clay loam</td>
<td>CL, SC</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>20-75</td>
<td>Gravelly loam, loam, silt loam, sandy loam</td>
<td>CL-ML, CL, SC-SM, SC</td>
<td>A-4, A-6, A-2</td>
<td>0</td>
<td>0-5</td>
</tr>
<tr>
<td></td>
<td>75-77</td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1B:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homewood</td>
<td>0-12</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>12-22</td>
<td>Silt loam, silty clay loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td>22-42</td>
<td>Loam, gravelly silt loam, clay loam</td>
<td>CL, SC-SM, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Homeworth</td>
<td>0-9</td>
<td>Loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Loam, gravelly silt loam</td>
<td>CL-ML, CL, SC</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
</tbody>
</table>

HmbB: Homeworth---------
0-13 Loam CL-ML, CL A-4, A-6 0 0-3 95-100 85-100 70-95 50-75 25-40 5-20
13-38 Loam, sandy soil, gravelly silt loam SC, CL, CL-ML, SC-SM A-4, A-2, A-6 0 0-3 85-100 70-100 40-100 20-90 20-40 7-20
38-80 Silty clay, silty clay loam CL, CH A-6, A-7-6 0 0 100 90-100 85-100 75-95 35-65 15-40

HoA: Homeworth---------
0-12 Silt loam CL-ML, CL A-4, A-6 0 0-3 95-100 85-100 75-100 60-90 25-40 5-20
12-40 Loam, sandy soil, gravelly silt loam SC, CL, CL-ML, SC-SM A-2, A-4, A-6 0 0-3 85-100 70-100 40-100 20-90 20-40 7-20
40-80 Silty clay, silty clay loam CL, CH A-7-6, A-6 0 0 100 90-100 85-100 75-95 35-65 15-40

HoB: Homeworth---------
0-13 Silt loam CL, CL-ML A-6, A-4 0 0-3 95-100 85-100 75-100 60-90 25-40 5-20
13-38 Loam, sandy soil, gravelly silt loam SC-SM, SC, CL-ML, CL A-4, A-2, A-6 0 0-3 85-100 70-100 40-100 20-90 20-40 7-20
38-80 Silty clay, silty clay loam CL, CH A-7-6, A-6 0 0 100 90-100 85-100 75-95 35-65 15-40

JwaA: Jimtown----------
0-8 Silt loam CL, CL-ML A-4 0 0-3 85-100 80-100 70-100 55-90 20-30 NP-10
8-16 Silt loam, clay loam, very gravelly sandy loam, clay loam, gravelly sandy clay loam CL-ML, SC, CL A-6, A-4 0 0-3 75-100 55-100 35-100 15-95 20-40 4-15
16-32 Gravelly sandy loam, gravelly coarse sandy loam, clay loam, loam, silt loam, clay loam, sandy clay loam SC, GC, CL-ML A-4, A-6 0 0-3 75-100 30-95 20-95 10-90 25-40 4-15
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Unified AASHTO</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Jaintown-----------------</td>
<td>39-80</td>
<td>Stratified loamy sand to extremely gravelly loamy sand, coarse sand, very gravelly coarse sandy loam, gravelly sandy loam, loam</td>
<td>SP-SM, ML, SM, GM</td>
<td>A-1, A-2, A-4</td>
<td>0 0-5</td>
<td>45-100 5-100 5-95 1-75</td>
<td>0-30</td>
<td>NP-7</td>
</tr>
<tr>
<td>Jwb:</td>
<td>0-11</td>
<td>Silt loam, Loam, silty clay loam, gravelly silt loam, very gravelly sandy loam, clay loam, sandy clay loam</td>
<td>CL-ML, CL, SC, CL, ML</td>
<td>A-4, A-6, A-4</td>
<td>0 0-3</td>
<td>85-100 80-100 70-100 55-90 55-90</td>
<td>20-30</td>
<td>NP-10</td>
</tr>
<tr>
<td>Jaintown-----------------</td>
<td>11-42</td>
<td></td>
<td></td>
<td></td>
<td>0 0-3</td>
<td>75-100 55-100 35-100 15-95</td>
<td>20-40</td>
<td>4-15</td>
</tr>
<tr>
<td></td>
<td>42-50</td>
<td>Gravelly loamy sand, very gravelly sandy loam, extremely gravelly coarse sandy loam, loam</td>
<td>GC, GM, SC, SM, CL-ML</td>
<td>A-2, A-1, A-6, A-4</td>
<td>0 0-5</td>
<td>50-100 15-100 10-95 2-75</td>
<td>0-30</td>
<td>NP-15</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>Stratified loamy sand to gravelly loamy sand, very gravelly coarse sandy loam, gravelly sandy loam, loam</td>
<td>GM, ML, SM, SP-SM</td>
<td>A-1, A-4, A-2</td>
<td>0 0-5</td>
<td>45-100 5-100 5-95 1-75</td>
<td>0-30</td>
<td>NP-7</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments Unified</td>
<td>AASHTO</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>KeB:</td>
<td></td>
<td></td>
<td>0-11 Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>95-100 90-100 80-100 65-90</td>
<td>25-36</td>
<td>4-12</td>
</tr>
<tr>
<td>Keene--------------------</td>
<td>0-11</td>
<td>Silt loam</td>
<td>11-25 Silty clay loam, silt loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>95-100 90-100 80-100 65-95</td>
<td>25-40</td>
<td>6-18</td>
</tr>
<tr>
<td>KnB:</td>
<td>0-10</td>
<td>Silt loam</td>
<td>10-16 Silty clay loam, gravelly silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>90-100 85-100 75-100 60-90</td>
<td>20-35</td>
<td>2-15</td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>10-16</td>
<td>Silty clay loam, channery loam, clay loam</td>
<td>CL-ML, CL</td>
<td>A-7-6, A-6, A-4</td>
<td>75-100 55-90 50-90 40-85</td>
<td>25-45</td>
<td>4-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-33</td>
<td>Silt loam, channery loam, clay loam</td>
<td>CL-ML, CL</td>
<td>A-2, A-7-6</td>
<td>55-100 55-90 45-90 35-80</td>
<td>20-45</td>
<td>4-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-50</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KnC:</td>
<td>0-11</td>
<td>Silt loam</td>
<td>11-17 Silty clay loam, gravelly silty clay loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-7-6, A-4</td>
<td>90-100 85-100 75-100 60-90</td>
<td>20-35</td>
<td>2-15</td>
</tr>
<tr>
<td>Kensington--------------</td>
<td>11-17</td>
<td>Silty clay loam, gravelly silty clay loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-7-6, A-4</td>
<td>75-100 55-90 50-90 40-85</td>
<td>25-45</td>
<td>4-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17-33</td>
<td>Channery loam, silt loam, clay loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6, A-7-6, A-2</td>
<td>55-100 55-90 45-90 35-80</td>
<td>20-45</td>
<td>4-20</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------------------------------</td>
<td>--------------------</td>
<td>------------------</td>
<td></td>
</tr>
<tr>
<td>KnD: Kensington- --------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-3 90-100 85-100 75-100 60-90</td>
<td>20-35</td>
<td>2-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-16</td>
<td>Silt loam, gravelly silty clay loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0-5 75-100 55-90 50-90 40-85</td>
<td>25-45</td>
<td>4-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-46</td>
<td>Channery loam, channery silt loam, clay loam</td>
<td>CL-ML, CL</td>
<td>A-7-6, A-6, A-4, A-2</td>
<td>0-5 55-100 55-90 45-90 35-80</td>
<td>20-45</td>
<td>4-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46-60</td>
<td>Channery sandy loam, extremely channery loam, flaggy silt loam, very channery fine sandy loam</td>
<td>CL-ML, CL, SC-SM, GM</td>
<td>A-4, A-6, A-1, A-2</td>
<td>0 8-75 35-85 10-85 6-85 3-65</td>
<td>0-30</td>
<td>NP-20</td>
<td></td>
</tr>
<tr>
<td>KnC: Kensington- --------</td>
<td>33-52</td>
<td>Channery loam, silt loam, silty clay loam, very channery sandy loam, channery fine sandy loam</td>
<td>CL-ML, CL, SC-SM, GM</td>
<td>A-2, A-4, A-6, A-7-6</td>
<td>0 0-20 50-100 45-90 30-90 15-85</td>
<td>20-45</td>
<td>2-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>52-58</td>
<td>Extremely channery loam, flaggy silt loam, channery sandy loam, very channery fine sandy loam</td>
<td>GM, CL-ML, SC-SM</td>
<td>A-4, A-6, A-2, A-1</td>
<td>0 8-75 35-70 10-70 6-70 3-65</td>
<td>0-30</td>
<td>NP-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58-71</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>71-73</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
</tr>
<tr>
<td>LhA: Lobdell------------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>10-42</td>
<td>Silt loam, sandy loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>42-76</td>
<td>Sandy loam, silt loam, loam</td>
<td>CL-ML, SC-SM, SC, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>90-100</td>
</tr>
<tr>
<td>LnA: Lorain------------</td>
<td>0-7</td>
<td>Silt loam, silty clay loam</td>
<td>CL</td>
<td>A-7, A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-54</td>
<td>Silty clay, clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>54-62</td>
<td>Clay, silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>McB: Mechanicsburg-----</td>
<td>0-9</td>
<td>Silt loam, gravelly loam, silt loam, silty clay loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-3</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>Gravelly loam, silt loam, silty clay loam</td>
<td>CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>75-100</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>Extremely channery silt loam, extremely channery loam, extremely channery sandy loam</td>
<td>GC, GP-GM, GM</td>
<td>A-1, A-2</td>
<td>0</td>
<td>45-75</td>
<td>35-60</td>
</tr>
<tr>
<td></td>
<td>50-67</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>67-69</td>
<td>Unweathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number—</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches</td>
<td>3-10 inches</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>McC: Mechanicsburg—</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-3</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>8-30</td>
<td>Silty clay loam, silt loam, gravelly loam</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>75-100</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>Channery loam, channery silt loam, channery sandy loam</td>
<td>CL-ML, GC, CL, SC-SM</td>
<td>A-2, A-1, A-6, A-4</td>
<td>0</td>
<td>3-25</td>
<td>50-100</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>Extremely channery loam, extremely channery silt loam, extremely channery sandy loam</td>
<td>GP-GC, GM, GC, GP-GM</td>
<td>A-2, A-1</td>
<td>0</td>
<td>45-75</td>
<td>35-60</td>
</tr>
<tr>
<td>MnB: Morristown--------</td>
<td>0-8</td>
<td>Silty clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
</tr>
<tr>
<td>MnD: Morristown--------</td>
<td>0-5</td>
<td>Silty clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0-5</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>5-80</td>
<td>Very channery silty clay loam, channery silty clay loam, extremely channery clay loam, very channery silty clay loam</td>
<td>CL, GC</td>
<td>A-2, A-4, A-6, A-7-6</td>
<td>0</td>
<td>8-15</td>
<td>35-75</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Morristown-1--</td>
<td>0-4</td>
<td>Channery silty clay loam</td>
<td>CL, GC</td>
<td>A-6, A-7-6</td>
<td>0 8-25 70-95 50-75 50-75 45-70 35-50 12-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown-1--</td>
<td>4-80</td>
<td>Very channery silty clay loam, extremely channery clay loam, channery silt loam</td>
<td>CL, GC</td>
<td>A-2, A-4, A-6, A-7-6</td>
<td>0 8-35 35-75 20-55 20-55 15-50 25-50 4-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown-1--</td>
<td>0-3</td>
<td>Channery silty clay loam</td>
<td>CL, GC</td>
<td>A-6, A-7-6</td>
<td>0 8-25 70-95 50-75 50-75 45-70 35-50 12-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Morristown-1--</td>
<td>3-80</td>
<td>Very channery silty clay loam, extremely channery clay loam, channery silt loam</td>
<td>GC, CL</td>
<td>A-2, A-4, A-6, A-7-6</td>
<td>0 8-35 35-75 20-55 20-55 15-50 25-50 4-24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmsted-1--</td>
<td>0-8</td>
<td>Silt loam, loam, sandy loam, coarse sandy loam</td>
<td>CL-ML, SC-ML, CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0 0 85-100 85-100 70-100 50-90 20-35 2-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmsted-1--</td>
<td>8-21</td>
<td>Coarse sandy loam, sandy clay loam, gravelly loam, clay loam, sandy loam, silt loam</td>
<td>CL, SC, CL-ML, SC-SM</td>
<td>A-6, A-4, A-2</td>
<td>0 0-5 80-100 65-100 40-100 20-80 20-40 NP-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olmsted-1--</td>
<td>21-34</td>
<td>Sandy clay loam, gravelly coarse sandy loam, very gravelly sandy loam, silt loam, loamy sand, sand</td>
<td>SC-SM, CL-ML, SP-ML, SC-CL</td>
<td>A-6, A-4, A-2, A-1</td>
<td>0 0-5 65-100 35-100 20-100 5-90 20-35 NP-15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number--</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>OdA: Valley-------------</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0 0 100 95-100 85-100 65-95</td>
<td>30-50</td>
<td>11-25</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>Silty clay, silty clay loam, silt loam</td>
<td>CL, CH</td>
<td>A-7, A-6</td>
<td>0 0 100 95-100 85-100 65-95</td>
<td>30-65</td>
<td>11-35</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>Silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-7, A-6</td>
<td>0 0 100 95-100 90-100 80-95</td>
<td>35-65</td>
<td>20-35</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>Silty clay loam, clay loam, silt loam, gravelly loam</td>
<td>CL, CH</td>
<td>A-7-6, A-6, A-4</td>
<td>0 0-5 95-100 55-95 45-95</td>
<td>35-90</td>
<td>25-55</td>
</tr>
<tr>
<td>OmB: Omulga------------</td>
<td>0-9</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0 0 95-100 90-100 80-100 65-90</td>
<td>25-35</td>
<td>5-15</td>
</tr>
<tr>
<td></td>
<td>9-34</td>
<td>Silty clay loam, silt loam</td>
<td>CL</td>
<td>A-7-6, A-6, A-6</td>
<td>0 0 95-100 90-100 80-100 65-95</td>
<td>25-45</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>34-51</td>
<td>Silty clay loam, silt loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0 0 85-100 85-100 75-100 60-95</td>
<td>20-40</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>51-80</td>
<td>Sandy loam, loam, silt loam, silty clay loam, silty clay</td>
<td>CH, SC, CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0 0 80-100 80-100 50-100 25-95</td>
<td>30-55</td>
<td>4-30</td>
</tr>
<tr>
<td>OmC: Omulga------------</td>
<td>0-9</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0 0 95-100 90-100 80-100 65-90</td>
<td>25-35</td>
<td>5-15</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>Silt loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0 0 95-100 90-100 80-100 65-95</td>
<td>25-45</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>22-38</td>
<td>Silt loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0 85-100 85-100 75-100 60-95</td>
<td>20-40</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>Silt loam, loam, sandy loam, silty clay loam, silty clay</td>
<td>CH, SC, CL</td>
<td>A-4, A-7-6, A-6</td>
<td>0 0 80-100 80-100 50-100 25-95</td>
<td>30-55</td>
<td>4-30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number--</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>OdA: Valley-------------</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0 0 100 95-100 85-100 65-95</td>
<td>30-50</td>
<td>11-25</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>Silty clay, silty clay loam, silt loam</td>
<td>CL, CH</td>
<td>A-7, A-6</td>
<td>0 0 100 95-100 85-100 65-95</td>
<td>30-65</td>
<td>11-35</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>Silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-7, A-6</td>
<td>0 0 100 95-100 90-100 80-95</td>
<td>35-65</td>
<td>20-35</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>Silty clay loam, clay loam, silt loam, gravelly loam</td>
<td>CL, CH</td>
<td>A-7-6, A-6, A-4</td>
<td>0 0-5 95-100 55-95 45-95</td>
<td>35-90</td>
<td>25-55</td>
</tr>
<tr>
<td>OmB: Omulga------------</td>
<td>0-9</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0 0 95-100 90-100 80-100 65-90</td>
<td>25-35</td>
<td>5-15</td>
</tr>
<tr>
<td></td>
<td>9-34</td>
<td>Silty clay loam, silt loam</td>
<td>CL</td>
<td>A-7-6, A-6, A-6</td>
<td>0 0 95-100 90-100 80-100 65-95</td>
<td>25-45</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>34-51</td>
<td>Silty clay loam, silt loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0 0 85-100 85-100 75-100 60-95</td>
<td>20-40</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>51-80</td>
<td>Sandy loam, loam, silt loam, silty clay loam, silty clay</td>
<td>CH, SC, CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0 0 80-100 80-100 50-100 25-95</td>
<td>30-55</td>
<td>4-30</td>
</tr>
<tr>
<td>OmC: Omulga------------</td>
<td>0-9</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0 0 95-100 90-100 80-100 65-90</td>
<td>25-35</td>
<td>5-15</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>Silt loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0 0 95-100 90-100 80-100 65-95</td>
<td>25-45</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>22-38</td>
<td>Silt loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0 85-100 85-100 75-100 60-95</td>
<td>20-40</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>Silt loam, loam, sandy loam, silty clay loam, silty clay</td>
<td>CH, SC, CL</td>
<td>A-4, A-7-6, A-6</td>
<td>0 0 80-100 80-100 50-100 25-95</td>
<td>30-55</td>
<td>4-30</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>--------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>OrA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orrville</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, CL, CL</td>
<td>A-4, A-6</td>
<td>100 90-100 80-100 65-90</td>
<td>22-35</td>
<td>4-16</td>
</tr>
<tr>
<td></td>
<td>10-32</td>
<td>Loam, silt</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0-2 95-100 80-100 65-95</td>
<td>20-40</td>
<td>2-16</td>
</tr>
<tr>
<td>Pg:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits</td>
<td>---</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RaB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-0 95-100 95-100 85-100 65-90</td>
<td>25-40</td>
<td>5-15</td>
</tr>
<tr>
<td></td>
<td>8-26</td>
<td>Silt loam,</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0-0 95-100 95-100 85-100 65-95</td>
<td>25-45</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>26-41</td>
<td>Clay loam,</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0-15 85-100 50-95 45-95 30-85</td>
<td>20-45</td>
<td>5-20</td>
</tr>
<tr>
<td>RaC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0-0 95-100 95-100 85-100 65-90</td>
<td>25-40</td>
<td>5-15</td>
</tr>
<tr>
<td></td>
<td>7-25</td>
<td>Silt loam,</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0-0 95-100 95-100 85-100 65-95</td>
<td>25-45</td>
<td>5-20</td>
</tr>
<tr>
<td></td>
<td>25-48</td>
<td>Clay loam,</td>
<td>CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0-15 85-100 50-95 45-95 30-85</td>
<td>20-45</td>
<td>5-20</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fractural Index</th>
<th>Percentage passing sieve number—</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified >10 inches >3-10 inches</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>RbC: Rainsboro----------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0 0-15 95-100 95-100 85-100 65-90</td>
<td>25-40 5-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-21</td>
<td>Silt loam</td>
<td>CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0 0 95-100 95-100 85-100 65-95</td>
<td>25-45 5-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-47</td>
<td>Silt loam, clay loam</td>
<td>CL</td>
<td>A-4, A-6, A-7-6, A-4</td>
<td>0 0-15 85-100 50-95 45-95 30-85</td>
<td>20-45 5-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>47-80</td>
<td>Loam, gravelly loam, clay loam, gravelly silty clay loam</td>
<td>CL-ML, SC-SM, SC, CL</td>
<td>A-2, A-6, A-4</td>
<td>0 0-15 85-100 50-95 30-95 15-75</td>
<td>20-40 5-20</td>
<td></td>
</tr>
<tr>
<td>ReA: Ravenna------------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0 0-2 90-100 85-95 75-95 60-85</td>
<td>25-35 4-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-24</td>
<td>Silt loam, clay loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0 0-2 85-100 80-95 65-95 45-90</td>
<td>25-40 6-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>24-40</td>
<td>Loam, gravelly silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0 0-3 85-95 70-90 60-90 40-80</td>
<td>20-35 3-15</td>
<td></td>
</tr>
<tr>
<td>ReB: Ravenna------------</td>
<td>0-13</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0 0-2 90-100 85-95 75-95 60-85</td>
<td>25-35 4-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-25</td>
<td>Silt loam, clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0 0-2 85-100 80-95 65-95 45-90</td>
<td>25-40 6-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-42</td>
<td>Loam, silt loam, gravelly silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0 0-3 85-95 70-90 60-90 40-80</td>
<td>20-35 3-15</td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>RhD: Richland------------</td>
<td>0-8</td>
<td>Silt loam, loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0-3 0-10</td>
<td>80-95 70-90 60-90 40-80 20-85</td>
<td>16.35 40-80 7-20</td>
</tr>
<tr>
<td></td>
<td>8-55</td>
<td>Channery clay loam, loam, channery loam, silt loam, silty clay loam, sandy clay loam</td>
<td>SC, CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0-5 3-25</td>
<td>80-95 50-90 40-90 20-85 10-45</td>
<td>30-45 7-20</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>Very channery clay loam, channery loam, very channery silty clay loam, channery silt loam</td>
<td>CL, GC</td>
<td>A-7-6, A-6, A-2, A-4</td>
<td>0-5 8-25</td>
<td>80-95 30-70 25-70 15-70 30-45</td>
<td>9.18 30-45 9-18</td>
</tr>
<tr>
<td>RhE: Richland------------</td>
<td>0-9</td>
<td>Silt loam, loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-3 0-10</td>
<td>80-95 70-90 60-90 40-80 20-85</td>
<td>16.35 40-80 7-20</td>
</tr>
<tr>
<td></td>
<td>9-36</td>
<td>Channery silty clay loam, channery silt loam, channery loam, loam, channery clay loam, sandy clay loam</td>
<td>SC, CL</td>
<td>A-7-6, A-6, A-4</td>
<td>0-5 3-25</td>
<td>50-90 50-90 40-90 20-85 30-45</td>
<td>3-20 30-45 7-20</td>
</tr>
<tr>
<td></td>
<td>36-80</td>
<td>Very channery silt loam, channery clay loam, channery loam, very channery silty clay loam</td>
<td>GC, CL</td>
<td>A-7-6, A-4, A-2, A-6</td>
<td>0-5 8-25</td>
<td>80-95 30-70 25-70 15-70 30-45</td>
<td>9.18 30-45 9-18</td>
</tr>
<tr>
<td>RaB: Rittman------------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0 0-2</td>
<td>95-100 85-100 75-100 60-90 25-40</td>
<td>4-14 30-45 11-20</td>
</tr>
<tr>
<td></td>
<td>10-21</td>
<td>Silty clay loam, clay loam, silt loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0 0-2</td>
<td>90-100 85-95 75-95 60-90 30-45</td>
<td>11-20 30-45 11-20</td>
</tr>
<tr>
<td></td>
<td>21-44</td>
<td>Silty clay loam, clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0 0-2</td>
<td>85-100 75-95 65-95 50-90 25-45</td>
<td>11-20 30-45 11-20</td>
</tr>
<tr>
<td></td>
<td>44-80</td>
<td>Silty clay loam, clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0 0-2</td>
<td>85-100 75-95 65-95 50-90 25-45</td>
<td>11-18 30-45 11-18</td>
</tr>
</tbody>
</table>
Table 28: Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>RsC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0-2</td>
<td>95-100</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>Silty clay loam, silt loam, clay loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0-2</td>
<td>90-100</td>
<td>85-95</td>
</tr>
<tr>
<td></td>
<td>24-38</td>
<td>Silty clay loam, clay loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0-2</td>
<td>85-100</td>
<td>75-95</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>Silty clay loam, clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0-2</td>
<td>85-100</td>
<td>75-95</td>
</tr>
<tr>
<td>RsD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>0-4</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0-2</td>
<td>95-100</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>4-20</td>
<td>Silty clay loam, silt loam, clay loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0-2</td>
<td>90-100</td>
<td>85-95</td>
</tr>
<tr>
<td></td>
<td>20-45</td>
<td>Silty clay loam, clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0-2</td>
<td>85-100</td>
<td>75-95</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>Silty clay loam, clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0-2</td>
<td>85-100</td>
<td>75-95</td>
</tr>
<tr>
<td>TeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>0-11</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0-2</td>
<td>90-100</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>11-22</td>
<td>Silt loam, silty clay loam, loam, clay loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0-5</td>
<td>75-100</td>
<td>75-100</td>
</tr>
<tr>
<td></td>
<td>22-32</td>
<td>Silty clay loam, silt loam, loam, gravelly clay loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0-10</td>
<td>80-95</td>
<td>70-90</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>--------------------------------</td>
<td>----------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
</tr>
<tr>
<td>TeB:</td>
<td>65-80</td>
<td>Silty clay loam, very channery loam, channery silt loam, silty clay, clay loam</td>
<td>GC, GC-GM, CH, CL</td>
<td>A-2, A-7, A-6, A-4</td>
<td>0 2-20</td>
<td>40-100 30-100 25-100 15-95</td>
<td>30-55</td>
</tr>
<tr>
<td>TeC:</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0 0-2</td>
<td>90-100 90-100 80-100 60-90</td>
<td>20-30</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>Silt loam, loam, gravelly clay loam, silty clay loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0 0-5</td>
<td>75-100 75-100 65-95 45-90</td>
<td>25-40</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>Clay loam, gravelly clay loam, silt loam, loam, silty clay loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0 0-10</td>
<td>80-95 70-90 60-90 40-85</td>
<td>25-40</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>Very channery silty clay loam, very channery loam, channery silt loam, silty clay, clay loam</td>
<td>GC-GM, GC, CH</td>
<td>A-7, A-6, A-4, A-2</td>
<td>0 2-20</td>
<td>40-100 30-100 25-100 15-95</td>
<td>30-55</td>
</tr>
<tr>
<td></td>
<td>65-80</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches</td>
<td>3-10 inches</td>
<td>4</td>
</tr>
<tr>
<td>TeC2:</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-2</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>Silt loam, loam, silty clay loam, clay loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>75-100</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>Clay loam, gravelly clay loam, silt loam, loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-10</td>
<td>80-95</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>Very channery silty clay loam, very channery loam, channery silt loam, silty clay loam</td>
<td>GC, CL, GC-GM, CH</td>
<td>A-4, A-6, A-7</td>
<td>0</td>
<td>2-20</td>
<td>40-100</td>
</tr>
<tr>
<td>ToA:</td>
<td>65-80</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tioga:</td>
<td>0-9</td>
<td>Loam</td>
<td>CL-ML, ML</td>
<td>A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>9-40</td>
<td>Loam, silt loam, gravelly fine sandy loam, sandy loam</td>
<td>SM, ML, SC-SM, CL-ML</td>
<td>A-1, A-2, A-4</td>
<td>0</td>
<td>0-10</td>
<td>55-100</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>Stratified sandy loam to loamy sand, gravelly loamy sand, channery sandy loam, very channery fine sandy loam, loam, silt loam</td>
<td>SM, ML, GW-GM, GM, CL-ML, SC-SM</td>
<td>A-4, A-2, A-1, A-3</td>
<td>0</td>
<td>0-10</td>
<td>35-100</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unified AASHTO</td>
<td></td>
<td>>10 inches</td>
<td>3-10 inches</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Pct.)</td>
<td>(Pct.)</td>
<td>inches</td>
<td>inches</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ua:</td>
<td>0-4</td>
<td>Loam, silty clay loam, sandy loam</td>
<td>SM, CL-ML, CL, SC-SM, ML</td>
<td>A-4, A-6, A-7-6, A-2</td>
<td>0</td>
<td>0-5</td>
<td>80-100</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>Very channery loam, gravelly sandy loam, silty clay loam</td>
<td>SM, CL, GM, SC-SM, ML</td>
<td>A-6, A-4, A-2, A-7-6</td>
<td>0</td>
<td>0-10</td>
<td>35-100</td>
</tr>
<tr>
<td>Ub:</td>
<td>0-24</td>
<td>Channery loam, silt loam Variable</td>
<td>SM, SC, CL, ML</td>
<td>A-6, A-4, A-2</td>
<td>0</td>
<td>0-5</td>
<td>60-100</td>
</tr>
<tr>
<td></td>
<td>24-80</td>
<td></td>
<td>0</td>
<td>0-10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Uc:</td>
<td>0-4</td>
<td>Channery sandy loam, loam, silty clay loam</td>
<td>SM, SC, ML, CL</td>
<td>A-4, A-7-6, A-6, A-2</td>
<td>0</td>
<td>0-5</td>
<td>80-100</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>Very channery loam, gravelly sandy loam, silty clay loam</td>
<td>CL, GM, ML, SC</td>
<td>A-7-6, A-2, A-4, A-6</td>
<td>0</td>
<td>0-10</td>
<td>35-100</td>
</tr>
<tr>
<td>Pits:</td>
<td>---</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UKC2:</td>
<td>0-4</td>
<td>Silty clay loam CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
<td>75-100</td>
</tr>
<tr>
<td></td>
<td>4-44</td>
<td>Silty clay, channery clay Weathered bedrock</td>
<td>CL, CH</td>
<td>A-7</td>
<td>0</td>
<td>0</td>
<td>95-100</td>
</tr>
<tr>
<td>Berks:</td>
<td>0-7</td>
<td>Channery silt loam</td>
<td>CL, ML, CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>24-34</td>
<td>Weathered bedrock</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO >10 inches (Pct.) 3-10 inches (Pct.) 4 10 40 200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur - UKE2:</td>
<td>0-3</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0</td>
<td>95-100 75-100 70-100 65-95</td>
<td>35-50</td>
</tr>
<tr>
<td></td>
<td>3-46</td>
<td>CH, CL</td>
<td>A-7</td>
<td>0</td>
<td>0</td>
<td>95-100 65-100 60-100 50-95</td>
<td>45-70</td>
</tr>
<tr>
<td></td>
<td>46-50</td>
<td>CH, CL, GC</td>
<td>A-6, A-1, A-7</td>
<td>0</td>
<td>0</td>
<td>80-100 25-100 20-100 20-95</td>
<td>35-65</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>Weathered bedrock</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks - UKE2:</td>
<td>0-5</td>
<td>CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80 55-75 55-70 40-55</td>
<td>25-36</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>Weathered bedrock</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Upshur - UKE2:</td>
<td>0-8</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0</td>
<td>95-100 75-100 70-100 65-95</td>
<td>35-50</td>
</tr>
<tr>
<td></td>
<td>8-42</td>
<td>CH, CL</td>
<td>A-7</td>
<td>0</td>
<td>0</td>
<td>95-100 65-100 60-100 50-95</td>
<td>45-70</td>
</tr>
<tr>
<td></td>
<td>42-72</td>
<td>GC, CH</td>
<td>A-6, A-7, A-1, A-2</td>
<td>0</td>
<td>0</td>
<td>80-100 25-100 20-100 20-95</td>
<td>35-65</td>
</tr>
<tr>
<td></td>
<td>72-80</td>
<td>Weathered bedrock</td>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Table 28.—Engineering Index Properties—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches</td>
<td>3-10 inches</td>
</tr>
<tr>
<td>Uke2: Berks--------------</td>
<td>0-4</td>
<td>Channery silt loam</td>
<td>CL-ML, CL, CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td>Ur: Urban Land-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UtB: Urban Land---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>0-6</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-3</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>6-28</td>
<td>Silt loam, silty clay loam</td>
<td>CL-ML, ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>28-48</td>
<td>Loam, gravelly silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>80-95</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>Loam, gravelly silt loam, sandy loam</td>
<td>CL, CL-ML, ML, SM</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>80-95</td>
</tr>
<tr>
<td>UtC: Urban Land---------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>0-6</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-3</td>
<td>90-100</td>
</tr>
<tr>
<td></td>
<td>6-24</td>
<td>Silt loam, silty clay loam</td>
<td>CL, CL-ML, ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>Silt loam, gravelly silt loam, loam, gravelly loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>80-95</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>Loam, gravelly silt loam, sandy loam</td>
<td>CL, CL-ML, ML, SM</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>80-95</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>>10 inches (Pct.)</td>
<td>3-10 inches (Pct.)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>UvB: Urban Land--------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td>0-8</td>
<td>Silt loam</td>
<td>ML, CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-2</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>8-20</td>
<td>Silt loam</td>
<td>CL, GC</td>
<td>A-6, A-4, A-2, A-1-b</td>
<td>0</td>
<td>0-5</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>Gravelly loamy sand, very gravelly sand, stratified gravelly loamy sand to very gravelly sand</td>
<td>SM, GW, SP, GM</td>
<td>A-1</td>
<td>0</td>
<td>2-15</td>
<td>30-70</td>
</tr>
<tr>
<td>VaA: Valley-------------</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>Silty clay, silty clay loam, silt loam</td>
<td>CL, CH</td>
<td>A-7-6, A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>Silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>Silty clay loam, loam, clay loam, gravelly silt loam</td>
<td>CL, CH</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-5</td>
<td>95-100</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number--</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VbA: Valley--------------</td>
<td>0-11</td>
<td>Silty clay loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0 0 100 95-100 85-100 65-95 30-55 11-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11-41</td>
<td>Silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-4, A-7-6, A-6</td>
<td>0 0 100 95-100 85-100 65-95 30-65 8-35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>Silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-6, A-7-6</td>
<td>0 0 100 95-100 90-100 80-95 35-65 20-35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>Silty clay loam, loam, clay loam, gravelly silt loam</td>
<td>CL, CH</td>
<td>A-7-6, A-6, A-4</td>
<td>0 0-5 95-100 55-95 45-95 35-90 25-55 6-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VcA: Valley--------------</td>
<td>0-7</td>
<td>Silt loam</td>
<td>CL</td>
<td>A-6, A-4</td>
<td>0 0 100 95-100 85-100 65-95 30-50 8-25</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>Silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-6, A-4, A-7-6</td>
<td>0 0 100 95-100 85-100 65-95 30-65 8-35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>Silty clay, silty clay loam</td>
<td>CH, CL</td>
<td>A-7-6, A-6</td>
<td>0 0 100 95-100 90-100 80-95 35-65 20-35</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>Silty clay loam, loam, clay loam, gravelly silt loam</td>
<td>CL, CH</td>
<td>A-4, A-6, A-7-6</td>
<td>0 0-5 95-100 55-95 45-95 35-90 25-55 6-18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain--------------------</td>
<td>0-7</td>
<td>Silt loam, silty clay loam</td>
<td>CL</td>
<td>A-6, A-7-6, A-4</td>
<td>0 0 100 95-100 90-100 80-95 30-50 6-30</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-54</td>
<td>Silty clay, clay, silty clay loam</td>
<td>CL, CH</td>
<td>A-6, A-7-6</td>
<td>0 0 100 95-100 90-100 80-95 35-65 15-45</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>54-62</td>
<td>Clay, silty clay, silty clay loam</td>
<td>CL, CH</td>
<td>A-6, A-7-6</td>
<td>0 0 100 90-100 85-100 80-95 35-75 20-45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>VnB: Vandergrift--------</td>
<td>0-10</td>
<td>Silt loam, silty clay, clay</td>
<td>A-6, A-4</td>
<td>0</td>
<td>95-100 85-100 75-100 60-90</td>
<td>25-40</td>
<td>4-14</td>
</tr>
<tr>
<td></td>
<td>10-46</td>
<td>CH, CL</td>
<td>A-6, A-7</td>
<td>0</td>
<td>90-100 65-100 60-100 50-95</td>
<td>25-55</td>
<td>11-30</td>
</tr>
<tr>
<td></td>
<td>56-58</td>
<td>Unweathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnC: Vandergrift--------</td>
<td>0-8</td>
<td>Silt loam, silty clay, clay</td>
<td>A-6, A-4</td>
<td>0</td>
<td>95-100 85-100 75-100 60-90</td>
<td>25-40</td>
<td>4-14</td>
</tr>
<tr>
<td></td>
<td>8-52</td>
<td>CL-ML, CL</td>
<td>A-6, A-7</td>
<td>0</td>
<td>90-100 65-100 60-100 50-95</td>
<td>25-55</td>
<td>11-30</td>
</tr>
<tr>
<td></td>
<td>52-76</td>
<td>GC, CH, CL</td>
<td>A-4, A-2, A-1, A-6, A-7</td>
<td>0</td>
<td>35-100 15-100 15-100 10-95</td>
<td>25-55</td>
<td>6-30</td>
</tr>
<tr>
<td></td>
<td>76-80</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number--</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>-------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO 10</td>
<td>3-10</td>
<td>4</td>
</tr>
<tr>
<td>WaA: Wadsworth---------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-2</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>10-24</td>
<td>Silty clay, silt loam, clay loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0-2</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>Silty clay loam, clay loam, silt loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0-3</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>Silty clay loam, clay loam, channery loam</td>
<td>CL, ML</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-3</td>
<td>85-100</td>
</tr>
<tr>
<td>WaB: Wadsworth---------</td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL, ML, CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-2</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>8-27</td>
<td>Silty clay, silt loam, clay loam</td>
<td>CL</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0-2</td>
<td>95-100</td>
</tr>
<tr>
<td></td>
<td>27-46</td>
<td>Clay loam, silty clay loam, silt loam</td>
<td>CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0-3</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>46-80</td>
<td>Clay loam, silty clay loam, gravelly clay loam, silt loam, clay loam</td>
<td>CL, ML</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-3</td>
<td>85-100</td>
</tr>
<tr>
<td>WkE: Westmoreland------</td>
<td>0-3</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>70-100</td>
</tr>
<tr>
<td></td>
<td>3-36</td>
<td>Channery silt loam, silty clay loam, clay loam, clay loam, channery loam</td>
<td>CL, ML, SC</td>
<td>A-6, A-4, A-7-6</td>
<td>0</td>
<td>0-15</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>36-50</td>
<td>Very channery silt loam, channery silty clay loam, extremely channery clay loam, channery loam</td>
<td>SC, CL, GC</td>
<td>A-1, A-2, A-4, A-7-6, A-6</td>
<td>0</td>
<td>0-20</td>
<td>25-95</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth (Inches)</td>
<td>USDA texture</td>
<td>Classification</td>
<td>Fragments</td>
<td>Percentage passing sieve number --</td>
<td>Liquid limit (Pct.)</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>-----------------------------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>WkE: Westmoreland--</td>
<td>50-60</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE: Berks--------------</td>
<td>0-4</td>
<td>Channery silt loam</td>
<td>ML, CL-ML</td>
<td>A-4</td>
<td>0 0-15 55-80 55-75 55-70 40-55</td>
<td>25-36 5-10</td>
<td></td>
</tr>
<tr>
<td>WkF: Westmoreland--</td>
<td>0-1</td>
<td>Slightly decomposed plant material</td>
<td>PT</td>
<td>A-8</td>
<td>--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1-4</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4</td>
<td>0 0-15 70-100 70-95 60-95 40-85</td>
<td>0-35 NP-10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-38</td>
<td>Channery silty clay loam, channery silt loam, clay loam, loam</td>
<td>SC, ML, CL</td>
<td>A-4, A-6, A-7-6</td>
<td>0 0-15 65-100 55-95 45-95 30-90</td>
<td>22-45 2-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>Very channery silty clay loam, extremely channery silty clay loam, very parachannery silty clay loam, extremely parachannery silty clay loam, channery loam</td>
<td>GC, CL, SC</td>
<td>A-7-6, A-6, A-4, A-2, A-1</td>
<td>0 0-20 25-95 5-75 5-75 5-70</td>
<td>20-45 2-20</td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches</td>
<td>3-10 inches</td>
</tr>
<tr>
<td>WkF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pct.)</td>
<td>(Pct.)</td>
</tr>
<tr>
<td>Berks--------------------</td>
<td>0-3</td>
<td>Channery silt loam</td>
<td>ML, CL, CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>55-80</td>
</tr>
<tr>
<td></td>
<td>22-32</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WnC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pct.)</td>
<td>(Pct.)</td>
</tr>
<tr>
<td>Westmoreland-------------</td>
<td>0-6</td>
<td>Silt loam</td>
<td>CL, CL-ML, ML, CL, SC</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td>70-100</td>
</tr>
<tr>
<td></td>
<td>6-32</td>
<td>Silty clay loam, channery silt loam, loam, clay loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-7-6, A-4</td>
<td>0</td>
<td>0-15</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>32-60</td>
<td>Channery silt loam, very channery silt loam, clay loam, extremely channery clay loam, channery loam</td>
<td>GC, CL, SC</td>
<td>A-1, A-2, A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-20</td>
<td>25-95</td>
</tr>
<tr>
<td></td>
<td>60-70</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pct.)</td>
<td>(Pct.)</td>
</tr>
<tr>
<td></td>
<td>0-8</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>8-31</td>
<td>Silt loam, silty clay loam, clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>31-45</td>
<td>Channery silt loam, loam, silty clay loam, silty clay</td>
<td>CH, CL</td>
<td>A-7-6, A-6</td>
<td>0</td>
<td>0-10</td>
<td>70-100</td>
</tr>
<tr>
<td></td>
<td>45-66</td>
<td>Channery silty clay loam, loam, very channery clay loam, silty clay</td>
<td>CH, CL, GC</td>
<td>A-7-6, A-6, A-2</td>
<td>0</td>
<td>0-20</td>
<td>40-100</td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number (Pct.)</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unified</td>
<td>AASHTO</td>
<td>>10 inches</td>
<td>3-10 inches</td>
</tr>
<tr>
<td>Westmoreland____________</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(Pct.)</td>
<td>(Pct.)</td>
</tr>
<tr>
<td>WmD:</td>
<td>0-5</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4</td>
<td>0</td>
<td>0-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-37</td>
<td>Silty clay</td>
<td>CL, ML, SC</td>
<td>A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-15</td>
<td>65-100</td>
</tr>
<tr>
<td></td>
<td>37-65</td>
<td>Very channery</td>
<td>GC, CL, SC</td>
<td>A-2, A-1, A-4, A-6, A-7-6</td>
<td>0</td>
<td>0-20</td>
<td>25-95</td>
</tr>
<tr>
<td></td>
<td>65-75</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>0-3</td>
<td>Silt loam</td>
<td>CL-ML, CL</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>3-14</td>
<td>Silt loam, clay loam, silty clay loam</td>
<td>CL</td>
<td>A-4, A-6</td>
<td>0</td>
<td>0-5</td>
<td>85-100</td>
</tr>
<tr>
<td></td>
<td>14-38</td>
<td>Channery silty clay loam, loam, silty clay</td>
<td>CH, CL</td>
<td>A-6, A-7-6</td>
<td>0</td>
<td>0-10</td>
<td>70-100</td>
</tr>
<tr>
<td></td>
<td>38-72</td>
<td>Channery silty clay loam, very channery clay loam, clay loam, silty clay</td>
<td>GC, CL, CH</td>
<td>A-7-6, A-6, A-2</td>
<td>0</td>
<td>0-20</td>
<td>40-100</td>
</tr>
<tr>
<td></td>
<td>72-80</td>
<td>Weathered bedrock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WoA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wick--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WoA:</td>
<td>0-5</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-6, A-4</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>5-34</td>
<td>Silty clay</td>
<td>CL</td>
<td>A-7-6, A-4, A-6</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>34-80</td>
<td>Silty clay, silty clay loam, silt loam, loam</td>
<td>CL, CH</td>
<td>A-6, A-4, A-7-6</td>
<td>0</td>
<td>0</td>
<td>90-100</td>
</tr>
</tbody>
</table>
Table 28.—Engineering Index Properties—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth (Inches)</th>
<th>USDA texture</th>
<th>Classification</th>
<th>Fragments</th>
<th>Percentage passing sieve number</th>
<th>Liquid limit (Pct.)</th>
<th>Plasticity index</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZeA: Zepernick-----------</td>
<td>0-10</td>
<td>Silt loam</td>
<td>CL, CL-ML</td>
<td>A-4, A-6</td>
<td>0 0 100 95-100 85-100 65-90</td>
<td>15-32 4-15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-50</td>
<td>Silt loam,</td>
<td>CL</td>
<td>A-7-6, A-4, A-6</td>
<td>0 0 100 95-100 85-100 70-95</td>
<td>22-45 3-20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>Silt loam,</td>
<td>SC-SM, GM, CL-ML, CL</td>
<td>A-4, A-6, A-7-6, A-2</td>
<td>0 0 70-100 40-100 20-100 5-95</td>
<td>22-45 3-20</td>
<td></td>
</tr>
</tbody>
</table>
Table 29.—Physical Properties of the Soils

(Entries under "Erosion factors--T" apply to the entire profile. Entries under "Wind erodibility group" apply only to the surface layer. Absence of an entry indicates that data were not estimated.)

<table>
<thead>
<tr>
<th>Map symbol name</th>
<th>Depth</th>
<th>Clay Bulk Density</th>
<th>Moisture Bulk Density</th>
<th>Permeability (In/hr)</th>
<th>Available water capacity (In/in)</th>
<th>Shrink-swell potential</th>
<th>Erosion factors</th>
<th>Wind erodibility group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amanda----------</td>
<td>0-5</td>
<td>12-22</td>
<td>1.25-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>5-32</td>
<td>23-34</td>
<td>1.45-1.65</td>
<td>0.60-2.00</td>
<td>0.15-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>32-70</td>
<td>20-35</td>
<td>1.45-1.70</td>
<td>0.20-0.60</td>
<td>0.13-0.19</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>15-25</td>
<td>1.45-1.70</td>
<td>0.20-0.60</td>
<td>0.13-0.19</td>
<td>Low</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td>Berks-----------</td>
<td>0-10</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>10-36</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>36-38</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkC:</td>
<td>0-7</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>7-23</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkD:</td>
<td>0-7</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>7-24</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>24-26</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkE:</td>
<td>0-1</td>
<td>---</td>
<td>0.13-0.23</td>
<td>2.00-6.00</td>
<td>0.35-0.45</td>
<td>Low</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1-8</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>8-22</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BmB:</td>
<td>0-6</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>6-22</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BmC:</td>
<td>0-6</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>6-22</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BmD:</td>
<td>0-6</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>6-23</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BpF:</td>
<td>0-2</td>
<td>18-27</td>
<td>1.40-1.55</td>
<td>0.60-2.00</td>
<td>0.10-0.16</td>
<td>Low</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>2-80</td>
<td>18-35</td>
<td>1.60-1.90</td>
<td>0.20-0.60</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>BscC2:</td>
<td>0-8</td>
<td>7-24</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.16-0.21</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>8-34</td>
<td>15-27</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>34-44</td>
<td>8-30</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>44-52</td>
<td>8-30</td>
<td>1.20-1.60</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>52-80</td>
<td>4-16</td>
<td>1.20-1.50</td>
<td>6.00-20.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.10</td>
<td>.24</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Clay</td>
<td>Moist bulk density</td>
<td>Permeability</td>
<td>Available water capacity</td>
<td>Shrink-swell potential</td>
<td>Erosion factors</td>
<td>Wind erodibility</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>BtA: Bogart-------------</td>
<td>0-11</td>
<td>7-24</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.16-0.21</td>
<td>Low</td>
<td>.32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>11-33</td>
<td>15-27</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.16</td>
<td>Low</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33-49</td>
<td>8-30</td>
<td>1.20-1.60</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49-80</td>
<td>4-16</td>
<td>1.20-1.50</td>
<td>6.00-20.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>BtB: Bogart-------------</td>
<td>0-7</td>
<td>7-24</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.16-0.21</td>
<td>Low</td>
<td>.32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7-28</td>
<td>15-35</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.16</td>
<td>Low</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-42</td>
<td>8-30</td>
<td>1.20-1.60</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-60</td>
<td>4-16</td>
<td>1.20-1.50</td>
<td>6.00-20.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>BtC: Bogart-------------</td>
<td>0-9</td>
<td>7-24</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.16-0.21</td>
<td>Low</td>
<td>.32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>9-43</td>
<td>15-27</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.16</td>
<td>Low</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43-51</td>
<td>8-30</td>
<td>1.20-1.60</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>51-80</td>
<td>4-16</td>
<td>1.20-1.50</td>
<td>6.00-20.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>CaA: Calcutta-----------</td>
<td>0-1</td>
<td>---</td>
<td>0.13-0.23</td>
<td>2.00-6.00</td>
<td>0.35-0.45</td>
<td>Low</td>
<td>---</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
<td>12-25</td>
<td>1.10-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Low</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-27</td>
<td>20-35</td>
<td>1.40-1.60</td>
<td>0.20-0.60</td>
<td>0.16-0.20</td>
<td>Moderate</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27-46</td>
<td>12-35</td>
<td>1.60-1.80</td>
<td>0.06-0.20</td>
<td>0.06-0.08</td>
<td>Moderate</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>46-80</td>
<td>12-35</td>
<td>1.60-1.60</td>
<td>0.60-6.00</td>
<td>0.15-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td>CoB: Canfield-----------</td>
<td>0-11</td>
<td>12-22</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>11-22</td>
<td>18-32</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.19</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22-45</td>
<td>15-27</td>
<td>1.60-1.90</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>12-27</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>CoC: Canfield-----------</td>
<td>0-10</td>
<td>12-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>18-32</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.19</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25-40</td>
<td>15-27</td>
<td>1.60-1.90</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>12-27</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>CoD: Canfield-----------</td>
<td>0-8</td>
<td>12-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8-21</td>
<td>18-32</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.19</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21-40</td>
<td>15-27</td>
<td>1.60-1.90</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>12-27</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>CoE: Canfield-----------</td>
<td>0-7</td>
<td>12-22</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>7-26</td>
<td>18-32</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.19</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26-50</td>
<td>15-27</td>
<td>1.60-1.90</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>12-27</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>CaA: Carlisle-----------</td>
<td>0-80</td>
<td>---</td>
<td>0.13-0.23</td>
<td>0.20-6.00</td>
<td>0.35-0.45</td>
<td>Low</td>
<td>---</td>
<td>3</td>
</tr>
<tr>
<td>Cfd2: Chili-------------</td>
<td>0-4</td>
<td>7-18</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>4-62</td>
<td>18-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>62-80</td>
<td>1-10</td>
<td>1.25-1.50</td>
<td>6.00-20.00</td>
<td>0.02-0.08</td>
<td>Low</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>ChA: Chili-------------</td>
<td>0-8</td>
<td>12-20</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.32</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8-16</td>
<td>18-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16-55</td>
<td>7-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.06-0.16</td>
<td>Low</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>1-10</td>
<td>1.25-1.50</td>
<td>6.00-20.00</td>
<td>0.02-0.08</td>
<td>Low</td>
<td>.10</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Clay</td>
<td>Moist bulk density</td>
<td>Permeability</td>
<td>Available water capacity</td>
<td>Shrink-swell potential</td>
<td>Erosion factors</td>
<td>Wind erodibility</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td>In</td>
<td>Pct</td>
<td>g/cc</td>
<td>In/hr</td>
<td>In/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChB:</td>
<td>0-13</td>
<td>12-20</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>13-18</td>
<td>18-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>18-50</td>
<td>7-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.06-0.16</td>
<td>Low</td>
<td>.17</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>1-10</td>
<td>1.25-1.50</td>
<td>6.00-20.00</td>
<td>0.02-0.08</td>
<td>Low</td>
<td>.10</td>
<td>.32</td>
</tr>
<tr>
<td>ChC:</td>
<td>0-10</td>
<td>12-20</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>10-45</td>
<td>18-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>45-70</td>
<td>7-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.06-0.16</td>
<td>Low</td>
<td>.17</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>1-10</td>
<td>1.25-1.50</td>
<td>6.00-20.00</td>
<td>0.02-0.08</td>
<td>Low</td>
<td>.10</td>
<td>.32</td>
</tr>
<tr>
<td>CmB:</td>
<td>0-10</td>
<td>8-16</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.24</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>8-18</td>
<td>1.25-1.60</td>
<td>2.00-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.24</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>15-80</td>
<td>7-22</td>
<td>1.25-1.60</td>
<td>6.00-20.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.24</td>
<td>.64</td>
</tr>
<tr>
<td>CmC:</td>
<td>0-10</td>
<td>8-16</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.24</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-70</td>
<td>7-22</td>
<td>1.25-1.60</td>
<td>6.00-20.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.24</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>2-9</td>
<td>1.20-1.50</td>
<td>6.00-20.00</td>
<td>0.02-0.06</td>
<td>Low</td>
<td>.10</td>
<td>.37</td>
</tr>
<tr>
<td>CoB:</td>
<td>0-11</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>11-23</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>23-45</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>45-70</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>70-72</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoC:</td>
<td>0-11</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>11-32</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>32-42</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>42-52</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>52-56</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoD:</td>
<td>0-4</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>4-24</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>24-48</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>48-75</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>75-77</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DAM:</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DgA:</td>
<td>0-15</td>
<td>15-25</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>18-35</td>
<td>1.40-1.60</td>
<td>0.20-0.60</td>
<td>0.16-0.20</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>20-32</td>
<td>1.60-1.80</td>
<td>0.06-0.20</td>
<td>0.06-0.08</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>20-35</td>
<td>1.40-1.60</td>
<td>0.20-0.60</td>
<td>0.15-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td>ErC:</td>
<td>0-8</td>
<td>12-22</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.14-0.20</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>18-35</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Moderate</td>
<td>.32</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>24-44</td>
<td>18-32</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>44-60</td>
<td>18-35</td>
<td>1.30-1.60</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.32</td>
<td>.55</td>
</tr>
</tbody>
</table>

Table 29.—Physical Properties of the Soils—Continued
<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Clay</th>
<th>Moist bulk density</th>
<th>Permeability</th>
<th>Available water capacity</th>
<th>Shrink-swell potential</th>
<th>Erosion factors</th>
<th>Wind erodibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Pct</td>
<td>g/cc</td>
<td>In/hr</td>
<td>In/in</td>
<td></td>
<td>Kw</td>
<td>Kf</td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ernest--------</td>
<td>0-14</td>
<td>12-22</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.14-0.20</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>14-33</td>
<td>18-35</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Moderate</td>
<td>.32</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>33-50</td>
<td>18-32</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>18-35</td>
<td>1.30-1.60</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td>FbB:</td>
<td>0-5</td>
<td>18-30</td>
<td>1.40-1.55</td>
<td>0.60-2.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>5-80</td>
<td>18-35</td>
<td>1.60-1.80</td>
<td>0.20-0.60</td>
<td>0.03-0.10</td>
<td>Moderate</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td>FbD:</td>
<td>0-4</td>
<td>18-30</td>
<td>1.40-1.55</td>
<td>0.60-2.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>18-35</td>
<td>1.60-1.80</td>
<td>0.20-0.60</td>
<td>0.03-0.10</td>
<td>Moderate</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td>FbF:</td>
<td>0-4</td>
<td>18-30</td>
<td>1.40-1.55</td>
<td>0.60-2.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>18-35</td>
<td>1.60-1.80</td>
<td>0.20-0.60</td>
<td>0.03-0.10</td>
<td>Moderate</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td>FcB:</td>
<td>0-8</td>
<td>18-40</td>
<td>1.40-1.65</td>
<td>0.20-0.60</td>
<td>0.12-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>8-80</td>
<td>18-35</td>
<td>1.60-1.80</td>
<td>0.20-0.60</td>
<td>0.03-0.10</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>FcD:</td>
<td>0-8</td>
<td>18-40</td>
<td>1.40-1.65</td>
<td>0.20-0.60</td>
<td>0.12-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>8-80</td>
<td>18-35</td>
<td>1.60-1.80</td>
<td>0.20-0.60</td>
<td>0.03-0.10</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>FdA:</td>
<td>0-10</td>
<td>16-27</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.17-0.21</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>10-68</td>
<td>20-35</td>
<td>1.45-1.70</td>
<td>0.20-0.60</td>
<td>0.15-0.19</td>
<td>Moderate</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>68-80</td>
<td>15-35</td>
<td>1.40-1.65</td>
<td>0.20-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td>FdB:</td>
<td>0-8</td>
<td>16-27</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.17-0.21</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>8-50</td>
<td>20-35</td>
<td>1.45-1.70</td>
<td>0.20-0.60</td>
<td>0.15-0.19</td>
<td>Moderate</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>15-35</td>
<td>1.40-1.65</td>
<td>0.20-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td>FeA:</td>
<td>0-80</td>
<td>---</td>
<td>---</td>
<td>0.06-20.00</td>
<td>0.19-0.25</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fluvaquents-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnC2:</td>
<td>0-10</td>
<td>7-19</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.24</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>12-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>25-80</td>
<td>5-15</td>
<td>1.30-1.55</td>
<td>2.00-20.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.37</td>
</tr>
<tr>
<td>FnD2:</td>
<td>0-9</td>
<td>7-18</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.24</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>9-60</td>
<td>12-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>5-15</td>
<td>1.30-1.55</td>
<td>2.00-20.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.37</td>
</tr>
<tr>
<td>FoB:</td>
<td>0-12</td>
<td>12-22</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>12-25</td>
<td>12-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>25-80</td>
<td>5-15</td>
<td>1.30-1.55</td>
<td>2.00-20.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.37</td>
</tr>
<tr>
<td>FaA:</td>
<td>0-4</td>
<td>15-26</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.18-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>4-24</td>
<td>20-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.16-0.18</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>16-32</td>
<td>1.50-1.75</td>
<td>0.01-0.20</td>
<td>0.08-0.10</td>
<td>Low</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>15-32</td>
<td>1.35-1.65</td>
<td>0.06-0.60</td>
<td>0.10-0.12</td>
<td>Low</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Clay</td>
<td>Moist bulk density</td>
<td>Permeability</td>
<td>Available water capacity</td>
<td>Shrink-swell potential</td>
<td>Erosion factors</td>
<td>Wind erodibility group</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>------</td>
<td>--------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td>In</td>
<td>Pct</td>
<td>g/cc</td>
<td>In/hr</td>
<td>In/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gavers</td>
<td>0-8</td>
<td>12-25</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.21-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>18-35</td>
<td>1.30-1.55</td>
<td>0.20-0.60</td>
<td>0.18-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>24-78</td>
<td>22-35</td>
<td>1.40-1.60</td>
<td>0.06-0.60</td>
<td>0.10-0.15</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>78-80</td>
<td>22-53</td>
<td>1.40-1.60</td>
<td>0.06-0.60</td>
<td>0.08-0.13</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td>GeC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano</td>
<td>0-10</td>
<td>7-15</td>
<td>1.20-1.45</td>
<td>2.00-6.00</td>
<td>0.16-0.18</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>10-26</td>
<td>7-18</td>
<td>1.30-1.60</td>
<td>2.00-6.00</td>
<td>0.07-0.15</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>26-33</td>
<td>4-15</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.05-0.10</td>
<td>Low</td>
<td>.15</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>33-43</td>
<td></td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germano</td>
<td>0-4</td>
<td>7-15</td>
<td>1.20-1.45</td>
<td>2.00-6.00</td>
<td>0.16-0.18</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>4-30</td>
<td>7-18</td>
<td>1.30-1.60</td>
<td>2.00-6.00</td>
<td>0.07-0.15</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>10-36</td>
<td>4-15</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.05-0.10</td>
<td>Low</td>
<td>.15</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>36-46</td>
<td></td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>0-9</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>22-26</td>
<td></td>
<td>---</td>
<td>0.60-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>0-3</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>3-25</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>25-35</td>
<td></td>
<td>---</td>
<td>0.60-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>0-10</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>30-32</td>
<td></td>
<td>---</td>
<td>0.60-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>0-7</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>7-20</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>20-28</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.24</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>28-38</td>
<td></td>
<td>---</td>
<td>0.60-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td>0-7</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>7-40</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>40-46</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>46-56</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>56-66</td>
<td></td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>0-7</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>7-28</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>28-38</td>
<td></td>
<td>---</td>
<td>0.60-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td>0-7</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>7-40</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>40-50</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>50-56</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>56-66</td>
<td></td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>0-6</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>6-30</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>30-40</td>
<td></td>
<td>---</td>
<td>0.60-2.00</td>
<td>---</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 29.—Physical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Clay</th>
<th>Moist bulk density</th>
<th>Permeability</th>
<th>Available water capacity</th>
<th>Shrink-swell potential</th>
<th>Erosion factors</th>
<th>Wind erodibility</th>
<th>group</th>
</tr>
</thead>
<tbody>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td>0-6</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>6-28</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-42</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-64</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
<td></td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GrB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford</td>
<td>0-8</td>
<td>15-27</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>8-30</td>
<td>18-35</td>
<td>1.45-1.65</td>
<td>0.20-2.00</td>
<td>0.14-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>18-35</td>
<td>1.45-1.65</td>
<td>0.20-0.60</td>
<td>0.13-0.17</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>15-32</td>
<td>1.40-1.60</td>
<td>0.20-2.00</td>
<td>0.12-0.17</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>GcC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford</td>
<td>0-7</td>
<td>15-27</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7-26</td>
<td>18-35</td>
<td>1.45-1.65</td>
<td>0.20-2.00</td>
<td>0.14-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>26-60</td>
<td>18-35</td>
<td>1.45-1.65</td>
<td>0.20-0.60</td>
<td>0.13-0.17</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
<td></td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>15-32</td>
<td>1.40-1.60</td>
<td>0.20-2.00</td>
<td>0.12-0.17</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
<td></td>
</tr>
<tr>
<td>GuC:</td>
<td>0-8</td>
<td>13-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.49</td>
<td>5</td>
</tr>
<tr>
<td>GuC2:</td>
<td>0-8</td>
<td>13-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.49</td>
<td>5</td>
</tr>
<tr>
<td>GuD:</td>
<td>0-8</td>
<td>13-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.49</td>
<td>5</td>
</tr>
<tr>
<td>HeB:</td>
<td>0-8</td>
<td>7-18</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.17</td>
<td>.17</td>
<td>3</td>
</tr>
<tr>
<td>HeC:</td>
<td>0-7</td>
<td>7-18</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.17</td>
<td>.17</td>
<td>3</td>
</tr>
<tr>
<td>HeD:</td>
<td>0-3</td>
<td>7-18</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.17</td>
<td>.17</td>
<td>3</td>
</tr>
<tr>
<td>Map symbol</td>
<td>Depth</td>
<td>Clay</td>
<td>Moist bulk density</td>
<td>Permeability</td>
<td>Available water capacity</td>
<td>Shrink-swell potential</td>
<td>Erosion factors</td>
<td>Wind erodibility group</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>HeE:</td>
<td>0-7</td>
<td>7-18</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7-42</td>
<td>5-18</td>
<td>1.20-1.40</td>
<td>2.00-20.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.15</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-48</td>
<td>5-15</td>
<td>1.20-1.40</td>
<td>2.00-20.00</td>
<td>0.06-0.12</td>
<td>Low</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>48-50</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HfF:</td>
<td>0-3</td>
<td>7-18</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.17</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-36</td>
<td>5-18</td>
<td>1.20-1.40</td>
<td>2.00-20.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.15</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36-44</td>
<td>5-15</td>
<td>1.20-1.40</td>
<td>2.00-20.00</td>
<td>0.06-0.12</td>
<td>Low</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-47</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Rock outcrop</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HgF:</td>
<td>0-2</td>
<td>---</td>
<td>0.13-0.23</td>
<td>2.00-6.00</td>
<td>0.35-0.45</td>
<td>Low</td>
<td>---</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-5</td>
<td>7-18</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-50</td>
<td>5-18</td>
<td>1.20-1.40</td>
<td>2.00-20.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50-67</td>
<td>5-15</td>
<td>1.20-1.40</td>
<td>2.00-20.00</td>
<td>0.06-0.12</td>
<td>Low</td>
<td>.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67-69</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>0-4</td>
<td>12-22</td>
<td>1.20-1.40</td>
<td>2.00-6.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.32</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-44</td>
<td>20-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>44-52</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>52-54</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HkA:</td>
<td>0-4</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.20-0.24</td>
<td>Low</td>
<td>.28</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4-20</td>
<td>16-32</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.17-0.21</td>
<td>Low</td>
<td>.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20-75</td>
<td>10-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.07-0.18</td>
<td>Low</td>
<td>.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>75-77</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HkB:</td>
<td>0-12</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-22</td>
<td>15-32</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.15-0.20</td>
<td>Low</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22-42</td>
<td>15-35</td>
<td>1.60-1.85</td>
<td>0.06-0.20</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42-62</td>
<td>20-35</td>
<td>1.40-1.60</td>
<td>0.20-0.60</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>62-66</td>
<td>10-32</td>
<td>1.20-1.40</td>
<td>0.20-0.60</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>HmA:</td>
<td>0-9</td>
<td>10-20</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Low</td>
<td>.37</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9-43</td>
<td>12-27</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43-80</td>
<td>35-55</td>
<td>1.60-1.80</td>
<td>0.01-0.20</td>
<td>0.06-0.10</td>
<td>Moderate</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmB:</td>
<td>0-13</td>
<td>10-20</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Low</td>
<td>.37</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13-38</td>
<td>12-27</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.12-0.16</td>
<td>Low</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>35-55</td>
<td>1.60-1.80</td>
<td>0.01-0.20</td>
<td>0.06-0.10</td>
<td>Moderate</td>
<td>.37</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 29.—Physical Properties of the Soils—Continued
Table 29.—Physical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Clay</th>
<th>Moist bulk density</th>
<th>Permeability</th>
<th>Available water capacity</th>
<th>Shrink-swell potential</th>
<th>Erosion factors</th>
<th>Wind erodibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JWa:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimtown------------------</td>
<td>0-8</td>
<td>10-22</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>8-16</td>
<td>15-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.10-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>16-32</td>
<td>15-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.10-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>32-39</td>
<td>6-25</td>
<td>1.25-1.60</td>
<td>0.60-6.00</td>
<td>0.07-0.11</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>39-80</td>
<td>4-20</td>
<td>1.25-1.65</td>
<td>2.00-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td>JWB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jimtown------------------</td>
<td>0-11</td>
<td>10-22</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>11-42</td>
<td>15-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.10-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>42-50</td>
<td>6-25</td>
<td>1.25-1.60</td>
<td>0.60-6.00</td>
<td>0.07-0.11</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>4-20</td>
<td>1.25-1.65</td>
<td>2.00-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td>KeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Keene---------------------</td>
<td>0-11</td>
<td>12-25</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.21-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>11-25</td>
<td>18-35</td>
<td>1.30-1.55</td>
<td>0.20-2.00</td>
<td>0.18-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>25-66</td>
<td>27-53</td>
<td>1.40-1.60</td>
<td>0.06-0.60</td>
<td>0.08-0.13</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td>0-10</td>
<td>12-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-16</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>16-33</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>33-42</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.06-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>42-50</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td>0-11</td>
<td>12-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>11-17</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>17-33</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>33-52</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.06-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>52-58</td>
<td>10-20</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.03-0.11</td>
<td>Low</td>
<td>.10</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>58-71</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>71-73</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington---------------</td>
<td>0-10</td>
<td>12-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-16</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>16-46</td>
<td>15-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>46-60</td>
<td>10-20</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.03-0.11</td>
<td>Low</td>
<td>.10</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lobdell------------------</td>
<td>0-10</td>
<td>15-27</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.20-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>10-42</td>
<td>18-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.17-0.22</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>42-76</td>
<td>15-32</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td>LnA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain-------------------</td>
<td>0-7</td>
<td>20-35</td>
<td>1.30-1.50</td>
<td>0.20-0.60</td>
<td>0.15-0.19</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>7-54</td>
<td>32-55</td>
<td>1.35-1.70</td>
<td>0.01-0.20</td>
<td>0.09-0.13</td>
<td>High</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>54-62</td>
<td>30-55</td>
<td>1.45-1.75</td>
<td>0.01-0.20</td>
<td>0.10-0.14</td>
<td>High</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td>McB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mechanicsburg------------</td>
<td>0-9</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>18-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>22-45</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.06-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>10-20</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.03-0.11</td>
<td>Low</td>
<td>.10</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>50-67</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>67-69</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 29.—Physical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Clay</th>
<th>Moist bulk density</th>
<th>Permeability</th>
<th>Available water capacity</th>
<th>Shrink-swell potential</th>
<th>Erosion factors</th>
<th>Wind erodibility group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Pct</td>
<td>g/cc</td>
<td>In/hr</td>
<td>In/in</td>
<td></td>
<td>Kw</td>
<td>Kf</td>
</tr>
<tr>
<td>McC: Mechanicsburg-------</td>
<td>0-8</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>8-30</td>
<td>18-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.11-0.22</td>
<td>Moderate</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.06-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>10-20</td>
<td>1.30-1.50</td>
<td>2.00-6.00</td>
<td>0.03-0.11</td>
<td>Low</td>
<td>.10</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MnB: Morristown---------</td>
<td>0-8</td>
<td>27-35</td>
<td>1.40-1.65</td>
<td>0.20-0.60</td>
<td>0.13-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>8-80</td>
<td>18-35</td>
<td>1.65-1.90</td>
<td>0.20-0.60</td>
<td>0.03-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>MnD: Morristown---------</td>
<td>0-5</td>
<td>27-35</td>
<td>1.40-1.65</td>
<td>0.20-0.60</td>
<td>0.13-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>5-80</td>
<td>18-35</td>
<td>1.65-1.90</td>
<td>0.20-0.60</td>
<td>0.03-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>MoB: Morristown---------</td>
<td>0-4</td>
<td>27-35</td>
<td>1.50-1.75</td>
<td>0.20-0.60</td>
<td>0.07-0.14</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>18-35</td>
<td>1.65-1.90</td>
<td>0.20-0.60</td>
<td>0.03-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>MoD: Morristown---------</td>
<td>0-3</td>
<td>27-35</td>
<td>1.50-1.75</td>
<td>0.20-0.60</td>
<td>0.07-0.14</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>3-80</td>
<td>18-35</td>
<td>1.65-1.90</td>
<td>0.20-0.60</td>
<td>0.03-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>OdA: Olmsted------------</td>
<td>0-8</td>
<td>10-20</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>8-21</td>
<td>10-27</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.24</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>21-34</td>
<td>8-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.10-0.14</td>
<td>Low</td>
<td>.24</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>34-60</td>
<td>3-30</td>
<td>1.25-1.60</td>
<td>2.00-6.00</td>
<td>0.06-0.14</td>
<td>Low</td>
<td>.24</td>
<td>.37</td>
</tr>
<tr>
<td>Valley-------------------</td>
<td>0-7</td>
<td>20-27</td>
<td>1.35-1.55</td>
<td>0.06-0.20</td>
<td>0.17-0.21</td>
<td>Moderate</td>
<td>.28</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>20-60</td>
<td>1.40-1.75</td>
<td>0.01-0.20</td>
<td>0.13-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>30-60</td>
<td>1.40-1.70</td>
<td>0.01-0.20</td>
<td>0.12-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>20-40</td>
<td>1.55-1.75</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.32</td>
<td>.43</td>
</tr>
<tr>
<td>OmB: Omulga-------------</td>
<td>0-9</td>
<td>12-20</td>
<td>1.25-1.40</td>
<td>0.60-2.00</td>
<td>0.22-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>9-34</td>
<td>20-35</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>34-51</td>
<td>18-32</td>
<td>1.60-1.80</td>
<td>0.06-0.20</td>
<td>0.06-0.08</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>51-80</td>
<td>15-45</td>
<td>1.50-1.60</td>
<td>0.20-0.60</td>
<td>0.10-0.18</td>
<td>Moderate</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td>OmC: Omulga-------------</td>
<td>0-9</td>
<td>12-20</td>
<td>1.25-1.40</td>
<td>0.60-2.00</td>
<td>0.22-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>20-35</td>
<td>1.30-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>22-38</td>
<td>18-32</td>
<td>1.60-1.80</td>
<td>0.06-0.20</td>
<td>0.06-0.08</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>15-45</td>
<td>1.50-1.60</td>
<td>0.20-0.60</td>
<td>0.10-0.18</td>
<td>Moderate</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td>OrA: Orrville-----------</td>
<td>0-10</td>
<td>12-27</td>
<td>1.25-1.45</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>10-32</td>
<td>18-32</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.15-0.19</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>32-50</td>
<td>10-27</td>
<td>1.20-1.40</td>
<td>0.60-6.00</td>
<td>0.08-0.15</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>10-25</td>
<td>1.20-1.40</td>
<td>0.60-20.00</td>
<td>0.08-0.15</td>
<td>Low</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td>Pg: Pits----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RaB: Rainsboro---------</td>
<td>0-8</td>
<td>12-20</td>
<td>1.40-1.55</td>
<td>0.60-2.00</td>
<td>0.22-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>8-26</td>
<td>20-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>26-41</td>
<td>20-35</td>
<td>1.70-1.90</td>
<td>0.06-0.20</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>41-80</td>
<td>15-35</td>
<td>1.55-1.75</td>
<td>0.60-6.00</td>
<td>0.12-0.14</td>
<td>Low</td>
<td>.28</td>
<td>.49</td>
</tr>
</tbody>
</table>
Table 29.—Physical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Clay</th>
<th>Moist bulk density</th>
<th>Permeability</th>
<th>Available water capacity</th>
<th>Shrink-swell potential</th>
<th>Erosion factors</th>
<th>Wind erodibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro</td>
<td>0-7</td>
<td>12-20</td>
<td>1.40-1.55</td>
<td>0.60-2.00</td>
<td>0.22-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>7-25</td>
<td>20-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>25-48</td>
<td>20-35</td>
<td>1.70-1.90</td>
<td>0.06-0.20</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>15-35</td>
<td>1.55-1.75</td>
<td>0.60-6.00</td>
<td>0.12-0.14</td>
<td>Low</td>
<td>.28</td>
<td>.49</td>
</tr>
<tr>
<td>RbC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rainsboro</td>
<td>0-10</td>
<td>12-20</td>
<td>1.40-1.55</td>
<td>0.60-2.00</td>
<td>0.22-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>10-21</td>
<td>20-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.18-0.22</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>21-47</td>
<td>20-35</td>
<td>1.70-1.90</td>
<td>0.06-0.20</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>47-80</td>
<td>15-35</td>
<td>1.55-1.75</td>
<td>0.60-6.00</td>
<td>0.12-0.14</td>
<td>Low</td>
<td>.28</td>
<td>.49</td>
</tr>
<tr>
<td>RaE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ravenna</td>
<td>0-10</td>
<td>15-24</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.17-0.22</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-24</td>
<td>18-32</td>
<td>1.45-1.75</td>
<td>0.60-2.00</td>
<td>0.14-0.19</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>24-40</td>
<td>16-27</td>
<td>1.60-1.90</td>
<td>0.06-0.20</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>15-27</td>
<td>1.55-1.70</td>
<td>0.06-0.60</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td>RhD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richland</td>
<td>0-8</td>
<td>15-27</td>
<td>1.30-1.40</td>
<td>0.60-2.00</td>
<td>0.14-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>9-55</td>
<td>18-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.10-0.16</td>
<td>Moderate</td>
<td>.28</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>18-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.07-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td>RhE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Richland</td>
<td>0-9</td>
<td>15-27</td>
<td>1.30-1.40</td>
<td>0.60-2.00</td>
<td>0.14-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>9-36</td>
<td>18-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.10-0.16</td>
<td>Moderate</td>
<td>.28</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>36-80</td>
<td>18-35</td>
<td>1.40-1.60</td>
<td>0.60-2.00</td>
<td>0.07-0.11</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td>RaB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>0-10</td>
<td>12-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-21</td>
<td>20-35</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>21-44</td>
<td>27-35</td>
<td>1.60-1.85</td>
<td>0.06-0.20</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>44-80</td>
<td>27-35</td>
<td>1.55-1.85</td>
<td>0.06-0.60</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td>RsC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>0-8</td>
<td>12-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>20-35</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>24-38</td>
<td>27-35</td>
<td>1.60-1.85</td>
<td>0.06-0.20</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>27-35</td>
<td>1.55-1.85</td>
<td>0.06-0.60</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td>RsD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td>0-4</td>
<td>12-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.24</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>4-20</td>
<td>20-35</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>20-45</td>
<td>27-35</td>
<td>1.60-1.85</td>
<td>0.06-0.20</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>27-35</td>
<td>1.55-1.85</td>
<td>0.06-0.60</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td>TeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>0-11</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>11-22</td>
<td>15-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.09-0.20</td>
<td>Moderate</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>22-32</td>
<td>20-32</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.14</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>32-65</td>
<td>15-45</td>
<td>1.30-1.60</td>
<td>0.20-0.60</td>
<td>0.06-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>65-80</td>
<td>15-45</td>
<td>1.30-1.60</td>
<td>0.20-0.60</td>
<td>0.06-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Clay</td>
<td>Moist bulk density</td>
<td>Permeability</td>
<td>Available water capacity</td>
<td>Shrink-swell potential</td>
<td>Erosion factors</td>
<td>Wind erodibility group</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>-------------</td>
<td>------------------------</td>
<td>----------------------</td>
<td>----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>TeC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>0-10</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>15-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.09-0.20</td>
<td>Moderate</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>20-32</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.14</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>34-52</td>
<td>15-45</td>
<td>1.30-1.60</td>
<td>0.20-0.60</td>
<td>0.06-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>15-45</td>
<td>1.30-1.60</td>
<td>0.20-0.60</td>
<td>0.06-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>65-80</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TeC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td>0-10</td>
<td>15-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.19-0.24</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>15-32</td>
<td>1.25-1.60</td>
<td>0.60-2.00</td>
<td>0.09-0.20</td>
<td>Moderate</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>20-32</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.14</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>34-52</td>
<td>15-45</td>
<td>1.30-1.60</td>
<td>0.20-0.60</td>
<td>0.06-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>15-45</td>
<td>1.30-1.60</td>
<td>0.20-0.60</td>
<td>0.06-0.11</td>
<td>Moderate</td>
<td>.32</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>65-80</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioga</td>
<td>0-9</td>
<td>8-18</td>
<td>1.15-1.40</td>
<td>0.60-6.00</td>
<td>0.15-0.21</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>9-40</td>
<td>7-18</td>
<td>1.15-1.45</td>
<td>0.60-6.00</td>
<td>0.07-0.20</td>
<td>Low</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>3-15</td>
<td>1.25-1.55</td>
<td>0.60-20.00</td>
<td>0.02-0.20</td>
<td>Low</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td>Us:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>0-4</td>
<td>7-35</td>
<td>1.20-1.80</td>
<td>0.06-0.20</td>
<td>0.06-0.15</td>
<td>Low</td>
<td>.24</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>7-35</td>
<td>1.30-1.90</td>
<td>0.06-6.00</td>
<td>0.04-0.13</td>
<td>Low</td>
<td>.32</td>
<td>---</td>
</tr>
<tr>
<td>Ub:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>0-24</td>
<td>5-27</td>
<td>1.20-1.80</td>
<td>0.06-0.60</td>
<td>0.03-0.15</td>
<td>Low</td>
<td>.24</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>24-80</td>
<td>0-0</td>
<td>---</td>
<td>0.06-6.00</td>
<td>0.00-0.00</td>
<td>Low</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents</td>
<td>0-4</td>
<td>7-35</td>
<td>1.20-1.80</td>
<td>0.06-0.20</td>
<td>0.06-0.15</td>
<td>Low</td>
<td>.24</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>7-35</td>
<td>1.30-1.90</td>
<td>0.06-6.00</td>
<td>0.04-0.13</td>
<td>Low</td>
<td>.32</td>
<td>---</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>0-8</td>
<td>27-35</td>
<td>1.20-1.50</td>
<td>0.20-0.60</td>
<td>0.12-0.16</td>
<td>Moderate</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>8-42</td>
<td>40-55</td>
<td>1.30-1.60</td>
<td>0.06-0.20</td>
<td>0.10-0.14</td>
<td>High</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>42-72</td>
<td>27-55</td>
<td>1.30-1.60</td>
<td>0.06-0.20</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>72-80</td>
<td>---</td>
<td>---</td>
<td>0.00-0.06</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>0-5</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>5-22</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkE2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur</td>
<td>0-3</td>
<td>27-35</td>
<td>1.20-1.50</td>
<td>0.20-0.60</td>
<td>0.12-0.16</td>
<td>Moderate</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>3-46</td>
<td>40-55</td>
<td>1.30-1.60</td>
<td>0.06-0.20</td>
<td>0.10-0.14</td>
<td>High</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>46-50</td>
<td>27-55</td>
<td>1.30-1.60</td>
<td>0.06-0.20</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>---</td>
<td>---</td>
<td>0.00-0.06</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Clay</td>
<td>Moist bulk density</td>
<td>Permeability</td>
<td>Available water capacity</td>
<td>Shrink-swell potential</td>
<td>Erosion factors</td>
<td>Wind erodibility</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>------</td>
<td>-------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>------------------------</td>
<td>------------------</td>
<td>----------------</td>
</tr>
<tr>
<td></td>
<td>In</td>
<td>Pct</td>
<td>g/cc</td>
<td>In/hr</td>
<td>In/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkE2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks---------------------</td>
<td>0-4</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>4-22</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ur:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UtB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>0-6</td>
<td>12-22</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>6-24</td>
<td>18-32</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.19</td>
<td>Low</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>28-48</td>
<td>15-27</td>
<td>1.60-1.90</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>12-27</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td>UtC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield-----------------</td>
<td>0-6</td>
<td>12-22</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>6-24</td>
<td>18-32</td>
<td>1.45-1.70</td>
<td>0.60-2.00</td>
<td>0.14-0.19</td>
<td>Low</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>12-27</td>
<td>1.55-1.85</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.37</td>
<td>.49</td>
</tr>
<tr>
<td>UvB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Chili---------------------</td>
<td>0-8</td>
<td>12-20</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.14-0.18</td>
<td>Low</td>
<td>.32</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>8-20</td>
<td>18-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.09-0.16</td>
<td>Low</td>
<td>.32</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>20-55</td>
<td>7-32</td>
<td>1.30-1.55</td>
<td>2.00-6.00</td>
<td>0.06-0.16</td>
<td>Low</td>
<td>.17</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>1-10</td>
<td>1.25-1.50</td>
<td>6.00-20.00</td>
<td>0.02-0.08</td>
<td>Low</td>
<td>.10</td>
<td>.32</td>
</tr>
<tr>
<td>VaA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley---------------------</td>
<td>0-7</td>
<td>20-27</td>
<td>1.35-1.55</td>
<td>0.06-0.20</td>
<td>0.17-0.21</td>
<td>Moderate</td>
<td>.28</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>20-60</td>
<td>1.40-1.75</td>
<td>0.01-0.20</td>
<td>0.13-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>30-60</td>
<td>1.40-1.70</td>
<td>0.01-0.20</td>
<td>0.12-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>20-40</td>
<td>1.55-1.75</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.32</td>
<td>.43</td>
</tr>
<tr>
<td>VbA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley---------------------</td>
<td>0-11</td>
<td>27-34</td>
<td>1.35-1.55</td>
<td>0.06-0.20</td>
<td>0.17-0.21</td>
<td>Moderate</td>
<td>.28</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>11-41</td>
<td>20-60</td>
<td>1.40-1.75</td>
<td>0.01-0.20</td>
<td>0.13-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>30-60</td>
<td>1.40-1.70</td>
<td>0.01-0.20</td>
<td>0.12-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>20-40</td>
<td>1.55-1.75</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.32</td>
<td>.43</td>
</tr>
<tr>
<td>VaA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley---------------------</td>
<td>0-7</td>
<td>20-27</td>
<td>1.35-1.55</td>
<td>0.06-0.20</td>
<td>0.17-0.21</td>
<td>Moderate</td>
<td>.28</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>20-60</td>
<td>1.40-1.75</td>
<td>0.01-0.20</td>
<td>0.13-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>30-60</td>
<td>1.40-1.70</td>
<td>0.01-0.20</td>
<td>0.12-0.17</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>20-40</td>
<td>1.55-1.75</td>
<td>0.06-0.20</td>
<td>0.07-0.10</td>
<td>Low</td>
<td>.32</td>
<td>.43</td>
</tr>
<tr>
<td>Lorain--------------------</td>
<td>0-7</td>
<td>20-35</td>
<td>1.30-1.50</td>
<td>0.20-0.60</td>
<td>0.15-0.19</td>
<td>Moderate</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>7-54</td>
<td>32-55</td>
<td>1.35-1.70</td>
<td>0.01-0.20</td>
<td>0.09-0.13</td>
<td>High</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>54-62</td>
<td>30-55</td>
<td>1.45-1.75</td>
<td>0.01-0.20</td>
<td>0.10-0.14</td>
<td>High</td>
<td>.32</td>
<td>.32</td>
</tr>
<tr>
<td>VnB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vandergrift---------------</td>
<td>0-10</td>
<td>15-27</td>
<td>1.30-1.40</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Moderate</td>
<td>.28</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>10-46</td>
<td>27-50</td>
<td>1.50-1.70</td>
<td>0.06-0.20</td>
<td>0.10-0.16</td>
<td>High</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>46-56</td>
<td>20-50</td>
<td>1.40-1.60</td>
<td>0.06-0.60</td>
<td>0.04-0.14</td>
<td>High</td>
<td>.28</td>
<td>.64</td>
</tr>
<tr>
<td></td>
<td>56-58</td>
<td>---</td>
<td>---</td>
<td>0.00-0.06</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 29.—Physical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Clay</th>
<th>Moist bulk density</th>
<th>Permeability</th>
<th>Available water capacity</th>
<th>Shrink-swell potential</th>
<th>Erosion factors</th>
<th>Wind erodibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>Pct</td>
<td>g/cc</td>
<td>In/hr</td>
<td>In/in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnC: Vandergrift--------</td>
<td>0-8</td>
<td>15-27</td>
<td>1.30-1.40</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Moderate</td>
<td>.28</td>
<td>.28</td>
</tr>
<tr>
<td></td>
<td>8-52</td>
<td>27-50</td>
<td>1.50-1.70</td>
<td>0.06-0.20</td>
<td>0.10-0.16</td>
<td>High</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>52-76</td>
<td>20-50</td>
<td>1.40-1.60</td>
<td>0.05-0.60</td>
<td>0.04-0.14</td>
<td>Low</td>
<td>.17</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>76-80</td>
<td>---</td>
<td>---</td>
<td>0.00-0.06</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>W: Water----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>0-8</td>
<td>13-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.17-0.22</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>10-24</td>
<td>22-35</td>
<td>1.45-1.70</td>
<td>0.20-2.00</td>
<td>0.14-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>22-32</td>
<td>1.60-1.85</td>
<td>0.01-0.20</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>15-32</td>
<td>1.55-1.85</td>
<td>0.06-0.60</td>
<td>0.06-0.12</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td>Wb: Wadsworth-----------</td>
<td>0-8</td>
<td>13-27</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.17-0.22</td>
<td>Low</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>8-27</td>
<td>22-35</td>
<td>1.45-1.70</td>
<td>0.20-2.00</td>
<td>0.14-0.18</td>
<td>Moderate</td>
<td>.43</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>27-46</td>
<td>22-32</td>
<td>1.60-1.85</td>
<td>0.01-0.20</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>46-80</td>
<td>15-32</td>
<td>1.55-1.85</td>
<td>0.06-0.60</td>
<td>0.06-0.12</td>
<td>Low</td>
<td>.43</td>
<td>.55</td>
</tr>
<tr>
<td>WkE: Westmoreland-------</td>
<td>0-3</td>
<td>12-23</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>3-36</td>
<td>20-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>36-50</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>0-4</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>4-20</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>20-24</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>2.00-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>24-26</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WkF: Westmoreland-------</td>
<td>0-1</td>
<td>---</td>
<td>0.13-0.23</td>
<td>2.00-6.00</td>
<td>0.35-0.45</td>
<td>Low</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>1-4</td>
<td>12-22</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>4-38</td>
<td>20-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.20</td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>0-3</td>
<td>12-23</td>
<td>1.20-1.50</td>
<td>0.60-6.00</td>
<td>0.08-0.12</td>
<td>Low</td>
<td>.17</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>3-22</td>
<td>7-27</td>
<td>1.20-1.60</td>
<td>0.60-6.00</td>
<td>0.04-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.24</td>
</tr>
<tr>
<td></td>
<td>22-32</td>
<td>---</td>
<td>---</td>
<td>0.00-0.20</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WmC: Westmoreland-------</td>
<td>0-6</td>
<td>12-22</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>6-32</td>
<td>20-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>32-60</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>60-70</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>0-8</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>8-31</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37</td>
<td>.43</td>
</tr>
<tr>
<td></td>
<td>31-45</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>45-66</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28</td>
<td>.55</td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WmD: Westmoreland-------</td>
<td>0-5</td>
<td>12-22</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.16-0.20</td>
<td>Low</td>
<td>.37</td>
<td>.37</td>
</tr>
<tr>
<td></td>
<td>5-37</td>
<td>20-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.12-0.18</td>
<td>Low</td>
<td>.28</td>
<td>.32</td>
</tr>
<tr>
<td></td>
<td>37-65</td>
<td>18-35</td>
<td>1.20-1.50</td>
<td>0.60-2.00</td>
<td>0.06-0.10</td>
<td>Low</td>
<td>.17</td>
<td>.20</td>
</tr>
<tr>
<td></td>
<td>65-75</td>
<td>---</td>
<td>---</td>
<td>0.20-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Columbiana County, Ohio 757
Table 29.—Physical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Clay Pct</th>
<th>Moist bulk density</th>
<th>Permeability In/hr</th>
<th>Available water capacity In/in</th>
<th>Erosion factors</th>
<th>Wind erodibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>In</td>
<td>g/cc</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmD:</td>
<td>0-3</td>
<td>15-23</td>
<td>1.30-1.50</td>
<td>0.60-2.00</td>
<td>0.18-0.23</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-14</td>
<td>18-35</td>
<td>1.35-1.55</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.37 .43 4 5</td>
</tr>
<tr>
<td></td>
<td>14-38</td>
<td>22-45</td>
<td>1.40-1.70</td>
<td>0.06-0.60</td>
<td>0.10-0.17</td>
<td>Moderate</td>
<td>.37 .55</td>
</tr>
<tr>
<td></td>
<td>38-72</td>
<td>22-45</td>
<td>1.45-1.70</td>
<td>0.06-0.60</td>
<td>0.08-0.12</td>
<td>Moderate</td>
<td>.28 .55</td>
</tr>
<tr>
<td></td>
<td>72-80</td>
<td>---</td>
<td>---</td>
<td>0.06-2.00</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WoA:</td>
<td>0-5</td>
<td>12-25</td>
<td>1.20-1.60</td>
<td>0.60-2.00</td>
<td>0.18-0.20</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-34</td>
<td>20-35</td>
<td>1.30-1.60</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Low</td>
<td>.43 .43 5 5</td>
</tr>
<tr>
<td></td>
<td>34-80</td>
<td>20-45</td>
<td>1.30-1.70</td>
<td>0.20-2.00</td>
<td>0.14-0.20</td>
<td>Moderate</td>
<td>.43 .43</td>
</tr>
<tr>
<td>ZeA:</td>
<td>0-10</td>
<td>12-25</td>
<td>1.20-1.40</td>
<td>0.60-2.00</td>
<td>0.15-0.23</td>
<td>Low</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10-50</td>
<td>18-35</td>
<td>1.20-1.45</td>
<td>0.20-2.00</td>
<td>0.18-0.23</td>
<td>Moderate</td>
<td>.32 .43</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>8-40</td>
<td>1.30-1.50</td>
<td>0.20-2.00</td>
<td>0.15-0.22</td>
<td>Moderate</td>
<td>.32 .43</td>
</tr>
</tbody>
</table>
Table 30.—Chemical Properties of the Soils
(Absence of an entry indicates that data were not estimated.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Soil reaction</th>
<th>Organic matter</th>
<th>Cation-exchange capacity</th>
<th>Calcium carbonate Pct</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>pH</td>
<td>Pct</td>
<td>meq/100 g</td>
<td>Pct</td>
</tr>
<tr>
<td>AmF: Amanda</td>
<td>0-5</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5-32</td>
<td>4.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>32-70</td>
<td>4.5-7.8</td>
<td>0.1-0.5</td>
<td>10-20</td>
<td>0-6</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>6.6-8.4</td>
<td>0.1-0.5</td>
<td>10-20</td>
<td>0-10</td>
</tr>
<tr>
<td>BkB: Berks</td>
<td>0-10</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-36</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>36-38</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkC: Berks</td>
<td>0-7</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-23</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkD: Berks</td>
<td>0-7</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-24</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-26</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkE: Berks</td>
<td>0-1</td>
<td>4.5-7.3</td>
<td>70-99</td>
<td>150-230</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1-8</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-22</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmB: Berks</td>
<td>0-6</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-22</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmC: Berks</td>
<td>0-6</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-22</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmD: Berks</td>
<td>0-6</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-23</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>23-25</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BpF: Bethesda</td>
<td>0-2</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>7.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2-80</td>
<td>3.5-5.5</td>
<td>0.0-0.3</td>
<td>7.0-20</td>
<td>0</td>
</tr>
<tr>
<td>BeC2: Bogart</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-34</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>34-44</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>44-52</td>
<td>4.5-6.5</td>
<td>0.1-0.3</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>52-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>5.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>BtA: Bogart</td>
<td>0-11</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-33</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>33-49</td>
<td>4.5-6.5</td>
<td>0.2-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>49-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>5.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>BtB: Bogart</td>
<td>0-7</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-28</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28-42</td>
<td>4.5-6.5</td>
<td>0.2-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-60</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>5.0-10</td>
<td>0-6</td>
</tr>
</tbody>
</table>
Table 30.—Chemical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Soil reaction</th>
<th>Organic matter</th>
<th>Cation-exchange capacity</th>
<th>Calcium carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>pH</td>
<td>Pct</td>
<td>meq/100 g</td>
<td>Pct</td>
</tr>
<tr>
<td>BtC: Bogart</td>
<td>0-9</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9-43</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>43-51</td>
<td>4.5-6.5</td>
<td>0.1-0.3</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>5.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>CaA: Calcutta</td>
<td>0-1</td>
<td>4.5-7.3</td>
<td>70-99</td>
<td>150-230</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1-9</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9-27</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>11-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>27-46</td>
<td>3.5-6.0</td>
<td>0.2-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>46-80</td>
<td>3.5-6.0</td>
<td>0.2-0.5</td>
<td>10-17</td>
<td>0</td>
</tr>
<tr>
<td>CCB: Canfield</td>
<td>0-11</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-22</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-45</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>6.1-14</td>
<td>0-6</td>
</tr>
<tr>
<td>CcC: Canfield</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-40</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>6.1-14</td>
<td>0-6</td>
</tr>
<tr>
<td>CcD: Canfield</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-21</td>
<td>4.5-5.5</td>
<td>0.5-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21-40</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>6.1-14</td>
<td>0-6</td>
</tr>
<tr>
<td>CcE: Canfield</td>
<td>0-7</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-26</td>
<td>4.5-5.5</td>
<td>0.5-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>26-50</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>6.1-14</td>
<td>0-6</td>
</tr>
<tr>
<td>CeaA: Carlisle</td>
<td>0-80</td>
<td>4.5-7.8</td>
<td>70-99</td>
<td>150-230</td>
<td>0-6</td>
</tr>
<tr>
<td>CED2: Chili</td>
<td>0-4</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-62</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>62-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>2.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>ChaA: Chili</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-16</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16-55</td>
<td>4.5-6.5</td>
<td>0.2-0.5</td>
<td>6.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>2.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>ChB: Chili</td>
<td>0-13</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13-18</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18-50</td>
<td>4.5-6.5</td>
<td>0.2-0.5</td>
<td>6.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>2.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>ChC: Chili</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-45</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-70</td>
<td>4.5-6.5</td>
<td>0.2-0.5</td>
<td>6.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>2.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>ChmB: Conotton</td>
<td>0-10</td>
<td>5.1-6.5</td>
<td>0.5-3.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>4.5-7.3</td>
<td>0.2-1.0</td>
<td>3.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15-80</td>
<td>4.5-7.3</td>
<td>0.1-0.5</td>
<td>3.0-12</td>
<td>0-6</td>
</tr>
<tr>
<td>ChmC: Conotton</td>
<td>0-10</td>
<td>5.1-6.5</td>
<td>0.5-3.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-70</td>
<td>4.5-7.3</td>
<td>0.2-1.0</td>
<td>3.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>70-80</td>
<td>5.6-7.8</td>
<td>0.1-0.5</td>
<td>2.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>Map symbol</td>
<td>Soil and soil name</td>
<td>Depth</td>
<td>pH</td>
<td>Organic matter</td>
<td>Cation-exchange capacity</td>
</tr>
<tr>
<td>------------</td>
<td>--------------------</td>
<td>-------</td>
<td>----</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoB:</td>
<td>Coshocton</td>
<td>0-11</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-23</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23-45</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>45-70</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70-72</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoC:</td>
<td>Coshocton</td>
<td>0-11</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11-32</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32-42</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>42-52</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52-56</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoD:</td>
<td>Coshocton</td>
<td>0-4</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-24</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-48</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48-75</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>75-77</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DAM:</td>
<td>Dam</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DgA:</td>
<td>Doles</td>
<td>0-15</td>
<td>4.5-7.3</td>
<td>0.5-3.0</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15-30</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30-60</td>
<td>4.5-6.0</td>
<td>0.2-0.5</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60-80</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>12-25</td>
</tr>
<tr>
<td>ErC:</td>
<td>Ernest</td>
<td>0-8</td>
<td>4.5-6.0</td>
<td>2.0-4.0</td>
<td>11-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-24</td>
<td>4.5-5.5</td>
<td>0.5-1.0</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24-44</td>
<td>4.5-5.5</td>
<td>0.2-0.5</td>
<td>9.0-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44-60</td>
<td>4.5-5.5</td>
<td>0.2-0.5</td>
<td>10-18</td>
</tr>
<tr>
<td>ErD:</td>
<td>Ernest</td>
<td>0-14</td>
<td>4.5-6.0</td>
<td>2.0-4.0</td>
<td>11-13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14-33</td>
<td>4.5-5.5</td>
<td>0.5-1.0</td>
<td>11-18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>33-50</td>
<td>4.5-5.5</td>
<td>0.2-0.5</td>
<td>9.0-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-80</td>
<td>4.5-5.5</td>
<td>0.2-0.5</td>
<td>10-18</td>
</tr>
<tr>
<td>FbB:</td>
<td>Fairpoint</td>
<td>0-5</td>
<td>5.6-7.3</td>
<td>0.0-0.5</td>
<td>7.0-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5-80</td>
<td>5.6-7.3</td>
<td>0.0-0.2</td>
<td>7.0-20</td>
</tr>
<tr>
<td>FbD:</td>
<td>Fairpoint</td>
<td>0-4</td>
<td>5.6-7.3</td>
<td>0.0-0.5</td>
<td>7.0-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-80</td>
<td>5.6-7.3</td>
<td>0.0-0.2</td>
<td>7.0-20</td>
</tr>
<tr>
<td>FbF:</td>
<td>Fairpoint</td>
<td>0-4</td>
<td>5.6-7.3</td>
<td>0.0-0.5</td>
<td>7.0-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-80</td>
<td>5.6-7.3</td>
<td>0.0-0.2</td>
<td>7.0-20</td>
</tr>
<tr>
<td>FcB:</td>
<td>Fairpoint</td>
<td>0-8</td>
<td>5.6-7.3</td>
<td>0.5-2.0</td>
<td>10-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-80</td>
<td>5.6-7.3</td>
<td>0.0-0.3</td>
<td>7.0-21</td>
</tr>
<tr>
<td>FcD:</td>
<td>Fairpoint</td>
<td>0-8</td>
<td>5.6-7.3</td>
<td>0.5-2.0</td>
<td>10-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-80</td>
<td>5.6-7.3</td>
<td>0.0-0.3</td>
<td>7.0-21</td>
</tr>
<tr>
<td>FdA:</td>
<td>Fitchville</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>14-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-48</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>10-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48-80</td>
<td>4.5-7.3</td>
<td>0.1-0.5</td>
<td>7.6-18</td>
</tr>
<tr>
<td>FdD:</td>
<td>Fitchville</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>14-22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8-50</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>10-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50-80</td>
<td>4.5-7.3</td>
<td>0.1-0.5</td>
<td>7.6-18</td>
</tr>
<tr>
<td>FeA:</td>
<td>Fluvaquents</td>
<td>0-80</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FnC2:</td>
<td>Fredericktown</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>1.0-4.0</td>
<td>6.0-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-25</td>
<td>4.5-6.5</td>
<td>0.3-1.0</td>
<td>6.0-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25-80</td>
<td>4.5-6.5</td>
<td>0.3-1.0</td>
<td>4.0-8.0</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Soil reaction</td>
<td>Organic matter</td>
<td>Cation-exchange capacity</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>-------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>In</td>
<td>pH</td>
<td>Pct</td>
<td>meq/100 g</td>
<td>Pct</td>
</tr>
<tr>
<td>FnD2: Fredericktown-----</td>
<td>0-9</td>
<td>4.5-7.3</td>
<td>1.0-4.0</td>
<td>6.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9-60</td>
<td>4.5-6.5</td>
<td>0.3-1.0</td>
<td>6.0-11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>5.1-6.5</td>
<td>0.3-1.0</td>
<td>4.0-8.0</td>
<td>0</td>
</tr>
<tr>
<td>FoB: Fredericktown-----</td>
<td>0-12</td>
<td>4.5-7.3</td>
<td>1.0-4.0</td>
<td>6.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>12-25</td>
<td>4.5-6.5</td>
<td>0.2-1.0</td>
<td>6.0-11</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-80</td>
<td>4.5-6.5</td>
<td>0.2-1.0</td>
<td>4.0-8.0</td>
<td>0</td>
</tr>
<tr>
<td>FrA: Frenchtown---------</td>
<td>0-4</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>10-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-24</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>15-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>4.5-6.5</td>
<td>0.2-0.5</td>
<td>10-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>4.5-8.4</td>
<td>0.1-0.3</td>
<td>6.0-19</td>
<td>0-10</td>
</tr>
<tr>
<td>G aB: Gavers-------------</td>
<td>0-8</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-24</td>
<td>5.1-6.0</td>
<td>0.3-0.7</td>
<td>12-19</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-78</td>
<td>5.6-7.3</td>
<td>0.1-0.3</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>78-80</td>
<td>5.1-8.4</td>
<td>0.0-0.0</td>
<td>16-25</td>
<td>0-10</td>
</tr>
<tr>
<td>GeC: Germano-------------</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>0.5-3.0</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-26</td>
<td>4.5-6.0</td>
<td>0.2-1.0</td>
<td>5.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>26-33</td>
<td>4.5-5.5</td>
<td>0.1-0.5</td>
<td>4.0-8.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>33-43</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GeD: Germano-------------</td>
<td>0-4</td>
<td>4.5-7.3</td>
<td>0.5-3.0</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-30</td>
<td>4.5-6.0</td>
<td>0.2-1.0</td>
<td>5.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30-36</td>
<td>4.5-5.5</td>
<td>0.1-0.5</td>
<td>4.0-8.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>36-46</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GnB: Gilpin-------------</td>
<td>0-9</td>
<td>3.5-7.3</td>
<td>0.5-4.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9-22</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>9.3-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-26</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GnC: Gilpin-------------</td>
<td>0-3</td>
<td>3.5-7.3</td>
<td>0.5-4.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-25</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>9.3-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-35</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GnD: Gilpin-------------</td>
<td>0-10</td>
<td>3.5-7.3</td>
<td>0.5-4.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-15</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>9.3-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>15-30</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>9.1-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30-32</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GoC: Gilpin-------------</td>
<td>0-7</td>
<td>3.5-7.3</td>
<td>0.5-4.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-20</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>9.3-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20-28</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>9.1-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28-38</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>0-7</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-40</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-46</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>46-56</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>56-66</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GoD: Gilpin-------------</td>
<td>0-7</td>
<td>3.5-7.3</td>
<td>0.5-4.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-28</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>9.3-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28-38</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>0-7</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-40</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-50</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-56</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>56-66</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 30. — Chemical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Soil reaction</th>
<th>Organic matter</th>
<th>Cation-exchange capacity</th>
<th>Calcium carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>pH</td>
<td>Pct</td>
<td>meq/100 g</td>
<td>Pct</td>
</tr>
<tr>
<td>GpC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilpin</td>
<td>0-6</td>
<td>3.5-7.3</td>
<td>0.5-4.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-30</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>9.3-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30-40</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton</td>
<td>0-6</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-28</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28-42</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-64</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>64-66</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban land:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-30</td>
<td>4.5-6.0</td>
<td>0.5-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30-60</td>
<td>4.5-7.3</td>
<td>0.3-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>4.5-7.8</td>
<td>0.2-0.3</td>
<td>6.0-18</td>
<td>0-6</td>
</tr>
<tr>
<td>GrC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glenford</td>
<td>0-7</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-26</td>
<td>4.5-6.0</td>
<td>0.5-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>26-60</td>
<td>4.5-7.3</td>
<td>0.3-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>4.5-7.8</td>
<td>0.1-0.3</td>
<td>6.0-18</td>
<td>0-6</td>
</tr>
<tr>
<td>GuC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>12-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-16</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>14-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16-52</td>
<td>4.5-8.4</td>
<td>0.1-0.5</td>
<td>24-40</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>5.1-8.4</td>
<td>0.1-0.3</td>
<td>24-50</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>65-75</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GuC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>12-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-16</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>14-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16-52</td>
<td>4.5-8.4</td>
<td>0.1-0.5</td>
<td>24-40</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>5.1-8.4</td>
<td>0.1-0.3</td>
<td>24-50</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>65-75</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GuD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guernsey</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>12-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-13</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>14-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>13-50</td>
<td>4.5-8.4</td>
<td>0.1-0.5</td>
<td>24-40</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>50-68</td>
<td>5.1-8.4</td>
<td>0.1-0.3</td>
<td>24-50</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>68-78</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td>0-8</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>15-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-36</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>36-44</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>44-46</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td>0-7</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>15-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-40</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-45</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-47</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td>0-3</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>15-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-45</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-58</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58-60</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td>0-7</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>15-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-42</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-48</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48-50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hff:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td>0-3</td>
<td>3.5-5.5</td>
<td>2.0-4.0</td>
<td>15-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-36</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>36-44</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>44-47</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rock outcrop:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Soil reaction</td>
<td>Organic matter</td>
<td>Cation-exchange capacity</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>HgF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hazleton</td>
<td>0-2</td>
<td>4.5-7.3</td>
<td>70-99</td>
<td>150-230</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2-5</td>
<td>3.5-5.5</td>
<td>2.0-4.0</td>
<td>15-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5-50</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-67</td>
<td>3.5-5.5</td>
<td>0.0-0.5</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>67-69</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Westmoreland</td>
<td>0-4</td>
<td>4.5-6.0</td>
<td>2.0-4.0</td>
<td>15-30</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-44</td>
<td>4.5-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>44-52</td>
<td>5.1-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>52-54</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HKA:</td>
<td>Holly</td>
<td>0-4</td>
<td>5.1-7.3</td>
<td>2.0-5.0</td>
<td>10-24</td>
</tr>
<tr>
<td></td>
<td>4-20</td>
<td>5.1-7.3</td>
<td>0.5-2.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20-75</td>
<td>5.1-7.8</td>
<td>0.5-2.0</td>
<td>5.0-12</td>
<td>0-6</td>
</tr>
<tr>
<td></td>
<td>75-77</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HLB:</td>
<td>Homewood</td>
<td>0-12</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>7.0-13</td>
</tr>
<tr>
<td></td>
<td>12-22</td>
<td>4.5-5.5</td>
<td>0.4-1.0</td>
<td>8.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-42</td>
<td>4.5-6.5</td>
<td>0.3-0.5</td>
<td>8.0-14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-62</td>
<td>4.5-6.5</td>
<td>0.3-0.5</td>
<td>8.0-14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>62-66</td>
<td>4.5-7.8</td>
<td>0.3-0.5</td>
<td>8.0-13</td>
<td>0-6</td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HMA:</td>
<td>Homeworth</td>
<td>0-9</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>8.0-15</td>
</tr>
<tr>
<td></td>
<td>9-43</td>
<td>5.1-7.3</td>
<td>0.3-1.0</td>
<td>8.0-14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>43-80</td>
<td>5.1-8.4</td>
<td>0.0-0.2</td>
<td>18-28</td>
<td>0-10</td>
</tr>
<tr>
<td>HMB:</td>
<td>Homeworth</td>
<td>0-13</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>8.0-15</td>
</tr>
<tr>
<td></td>
<td>13-38</td>
<td>5.1-7.3</td>
<td>0.3-1.0</td>
<td>8.0-14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>5.1-8.4</td>
<td>0.0-0.2</td>
<td>18-28</td>
<td>0-10</td>
</tr>
<tr>
<td>HOB:</td>
<td>Homeworth</td>
<td>0-12</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>8.0-15</td>
</tr>
<tr>
<td></td>
<td>12-40</td>
<td>5.1-7.3</td>
<td>0.3-1.0</td>
<td>8.0-14</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>5.1-8.4</td>
<td>0.0-0.2</td>
<td>18-28</td>
<td>0-10</td>
</tr>
<tr>
<td>JWA:</td>
<td>Jintown</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>8.0-15</td>
</tr>
<tr>
<td></td>
<td>8-16</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>10-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16-32</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>10-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>32-39</td>
<td>5.1-6.5</td>
<td>0.2-0.5</td>
<td>4.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>39-80</td>
<td>5.1-7.3</td>
<td>0.1-0.3</td>
<td>2.0-8.0</td>
<td>0</td>
</tr>
<tr>
<td>JWB:</td>
<td>Jintown</td>
<td>0-11</td>
<td>4.5-7.3</td>
<td>2.0-3.0</td>
<td>8.0-15</td>
</tr>
<tr>
<td></td>
<td>11-42</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>10-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-50</td>
<td>5.1-6.5</td>
<td>0.2-0.5</td>
<td>4.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>5.1-7.3</td>
<td>0.1-0.3</td>
<td>2.0-8.0</td>
<td>0</td>
</tr>
<tr>
<td>KeB:</td>
<td>Keene</td>
<td>0-11</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
</tr>
<tr>
<td></td>
<td>11-25</td>
<td>4.5-5.5</td>
<td>0.3-1.0</td>
<td>12-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-66</td>
<td>4.5-6.5</td>
<td>0.1-0.3</td>
<td>12-35</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KnB:</td>
<td>Kensington</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>1.0-4.0</td>
<td>6.0-15</td>
</tr>
<tr>
<td></td>
<td>10-16</td>
<td>4.5-6.0</td>
<td>1.0-3.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16-33</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>6.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>33-42</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>6.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-50</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 30.—Chemical Properties of the Soils—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Depth</th>
<th>Soil reaction</th>
<th>Organic matter</th>
<th>Cation-exchange capacity</th>
<th>Calcium carbonate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In</td>
<td>pH Pct</td>
<td></td>
<td>meq/100 g</td>
<td></td>
</tr>
<tr>
<td>KnC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kensington</td>
<td>0-11</td>
<td>4.5-7.3</td>
<td>1.0-4.0</td>
<td>6.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-17</td>
<td>4.5-6.0</td>
<td>1.0-3.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>17-33</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>6.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>33-52</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>6.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>52-58</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>5.0-9.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>58-71</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>71-73</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KnD:</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>1.0-4.0</td>
<td>6.0-15</td>
<td>0</td>
</tr>
<tr>
<td>Kensington</td>
<td>10-16</td>
<td>4.5-6.0</td>
<td>1.0-3.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>16-46</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>6.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>46-60</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>5.0-9.0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60-80</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>LbA:</td>
<td>0-10</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td>Lobdell</td>
<td>10-42</td>
<td>5.1-7.3</td>
<td>0.5-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-76</td>
<td>5.6-7.3</td>
<td>0.1-0.5</td>
<td>9.0-15</td>
<td>0</td>
</tr>
<tr>
<td>LnA:</td>
<td>0-7</td>
<td>5.1-7.3</td>
<td>4.0-11.0</td>
<td>14-26</td>
<td>0</td>
</tr>
<tr>
<td>Lorain</td>
<td>7-54</td>
<td>5.1-7.3</td>
<td>0.5-1.0</td>
<td>16-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>54-62</td>
<td>6.6-8.4</td>
<td>0.1-0.5</td>
<td>15-28</td>
<td>0-10</td>
</tr>
<tr>
<td>McB:</td>
<td>0-9</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td>Mechanicsburg</td>
<td>9-22</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-45</td>
<td>4.5-6.0</td>
<td>0.2-0.5</td>
<td>7.0-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>6.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-57</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>67-69</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>McC:</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td>Mechanicsburg</td>
<td>8-30</td>
<td>4.5-6.0</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>30-45</td>
<td>4.5-6.0</td>
<td>0.2-0.5</td>
<td>7.0-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-50</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>6.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MnB:</td>
<td>0-8</td>
<td>6.1-8.4</td>
<td>0.5-2.0</td>
<td>10-25</td>
<td>0-10</td>
</tr>
<tr>
<td>Morristown</td>
<td>8-80</td>
<td>7.4-8.4</td>
<td>0.0-0.2</td>
<td>8.0-21</td>
<td>2-20</td>
</tr>
<tr>
<td>MnD:</td>
<td>0-5</td>
<td>6.1-8.4</td>
<td>0.5-2.0</td>
<td>10-25</td>
<td>0-10</td>
</tr>
<tr>
<td>Morristown</td>
<td>5-80</td>
<td>7.4-8.4</td>
<td>0.0-0.2</td>
<td>8.0-21</td>
<td>2-20</td>
</tr>
<tr>
<td>MoB:</td>
<td>0-4</td>
<td>6.1-8.4</td>
<td>0.0-0.5</td>
<td>10-25</td>
<td>0-10</td>
</tr>
<tr>
<td>Morristown</td>
<td>4-80</td>
<td>7.4-8.4</td>
<td>0.0-0.2</td>
<td>8.0-21</td>
<td>2-20</td>
</tr>
<tr>
<td>MoD:</td>
<td>0-3</td>
<td>6.1-8.4</td>
<td>0.0-0.5</td>
<td>10-25</td>
<td>0-10</td>
</tr>
<tr>
<td>Morristown</td>
<td>3-80</td>
<td>7.4-8.4</td>
<td>0.0-0.2</td>
<td>8.0-21</td>
<td>2-20</td>
</tr>
<tr>
<td>OdA:</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>4.0-11.0</td>
<td>11-19</td>
<td>0</td>
</tr>
<tr>
<td>Olmsted</td>
<td>8-21</td>
<td>4.5-7.3</td>
<td>0.5-1.0</td>
<td>6.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21-34</td>
<td>5.1-7.8</td>
<td>0.1-0.5</td>
<td>8.0-18</td>
<td>0-6</td>
</tr>
<tr>
<td></td>
<td>34-60</td>
<td>5.1-7.8</td>
<td>0.1-0.5</td>
<td>3.0-15</td>
<td>0-6</td>
</tr>
<tr>
<td>Valley</td>
<td>0-7</td>
<td>4.5-7.3</td>
<td>3.0-8.0</td>
<td>15-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>5.1-7.8</td>
<td>0.2-1.0</td>
<td>11-31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>15-30</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>10-20</td>
<td>0-10</td>
</tr>
<tr>
<td>OmB:</td>
<td>0-9</td>
<td>4.5-7.3</td>
<td>0.5-2.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td>Omulga</td>
<td>9-34</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>34-51</td>
<td>4.5-6.0</td>
<td>0.1-0.5</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>51-80</td>
<td>4.5-7.3</td>
<td>0.1-0.3</td>
<td>11-22</td>
<td>0</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Soil reaction</td>
<td>Organic matter</td>
<td>Cation-exchange capacity</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>Pct</td>
<td>meq/100 g</td>
<td>Pct</td>
</tr>
<tr>
<td>OmC:</td>
<td></td>
<td>4.5-7.3</td>
<td>0.5-2.0</td>
<td>9-10-20</td>
<td>0</td>
</tr>
<tr>
<td>Omulga</td>
<td>0-9</td>
<td>4.5-7.3</td>
<td>0.5-2.0</td>
<td>9-10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-38</td>
<td>4.5-6.0</td>
<td>0.1-0.5</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>4.5-7.3</td>
<td>0.1-0.3</td>
<td>11-22</td>
<td>0</td>
</tr>
<tr>
<td>GrA:</td>
<td>0-10</td>
<td>5.1-7.3</td>
<td>2.0-4.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td>Orrville</td>
<td>10-32</td>
<td>4.5-6.5</td>
<td>0.2-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>32-50</td>
<td>5.1-6.5</td>
<td>0.1-0.3</td>
<td>5.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>5.1-7.3</td>
<td>0.1-0.3</td>
<td>5.0-13</td>
<td>0</td>
</tr>
<tr>
<td>Pg:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RaB:</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>0.5-2.0</td>
<td>6.0-11</td>
<td>0</td>
</tr>
<tr>
<td>Rainsboro</td>
<td>8-26</td>
<td>4.5-6.5</td>
<td>0.3-1.0</td>
<td>10-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>26-41</td>
<td>4.5-6.5</td>
<td>0.1-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41-80</td>
<td>4.5-6.5</td>
<td>0.1-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td>RaC2:</td>
<td>0-7</td>
<td>4.5-7.3</td>
<td>0.5-2.0</td>
<td>6.0-11</td>
<td>0</td>
</tr>
<tr>
<td>Rainsboro</td>
<td>7-25</td>
<td>4.5-6.5</td>
<td>0.3-1.0</td>
<td>10-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-48</td>
<td>4.5-6.5</td>
<td>0.1-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>4.5-6.5</td>
<td>0.1-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td>RhC:</td>
<td>0-10</td>
<td>4.5-6.5</td>
<td>0.5-2.0</td>
<td>6.0-11</td>
<td>0</td>
</tr>
<tr>
<td>Rainsboro</td>
<td>10-21</td>
<td>4.5-6.5</td>
<td>0.3-1.0</td>
<td>10-17</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21-47</td>
<td>4.5-6.5</td>
<td>0.1-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>47-80</td>
<td>4.5-6.5</td>
<td>0.1-0.5</td>
<td>8.0-15</td>
<td>0</td>
</tr>
<tr>
<td>ReA:</td>
<td>0-10</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td>Ravenna</td>
<td>10-24</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-40</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>4.5-7.8</td>
<td>0.1-0.3</td>
<td>6.0-17</td>
<td>0-6</td>
</tr>
<tr>
<td>ReB:</td>
<td>0-13</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td>Ravenna</td>
<td>13-25</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-42</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-80</td>
<td>4.5-7.8</td>
<td>0.1-0.3</td>
<td>6.0-17</td>
<td>0-6</td>
</tr>
<tr>
<td>RhD:</td>
<td>0-8</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td>Richland</td>
<td>8-55</td>
<td>5.1-7.3</td>
<td>0.3-1.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>5.6-7.3</td>
<td>0.1-0.3</td>
<td>9.0-18</td>
<td>0</td>
</tr>
<tr>
<td>RbE:</td>
<td>0-9</td>
<td>5.1-7.3</td>
<td>1.0-3.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td>Richland</td>
<td>9-36</td>
<td>5.1-7.3</td>
<td>0.3-1.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>36-80</td>
<td>5.6-7.3</td>
<td>0.1-0.3</td>
<td>9.0-18</td>
<td>0</td>
</tr>
<tr>
<td>RsB:</td>
<td>0-10</td>
<td>3.5-7.3</td>
<td>2.0-3.0</td>
<td>12-25</td>
<td>0</td>
</tr>
<tr>
<td>Rittman</td>
<td>10-21</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>21-44</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>8.0-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>44-80</td>
<td>6.1-7.8</td>
<td>0.1-0.3</td>
<td>10-20</td>
<td>0-6</td>
</tr>
<tr>
<td>RsC:</td>
<td>0-8</td>
<td>3.5-7.3</td>
<td>2.0-3.0</td>
<td>12-25</td>
<td>0</td>
</tr>
<tr>
<td>Rittman</td>
<td>8-24</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-38</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>8.0-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>6.1-7.8</td>
<td>0.1-0.3</td>
<td>10-20</td>
<td>0-6</td>
</tr>
<tr>
<td>RsD2:</td>
<td>0-4</td>
<td>3.5-7.3</td>
<td>2.0-3.0</td>
<td>12-25</td>
<td>0</td>
</tr>
<tr>
<td>Rittman</td>
<td>4-20</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20-45</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>8.0-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>6.1-7.8</td>
<td>0.1-0.3</td>
<td>10-20</td>
<td>0-6</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Soil reaction</td>
<td>Organic matter</td>
<td>Cation-exchange capacity</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>TeB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden---------------</td>
<td>0-11</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>5.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-22</td>
<td>4.5-5.5</td>
<td>0.4-1.0</td>
<td>8.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-32</td>
<td>3.5-5.5</td>
<td>0.3-0.5</td>
<td>8.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>32-65</td>
<td>3.5-5.5</td>
<td>0.3-0.5</td>
<td>8.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>65-80</td>
<td>4.5-5.5</td>
<td>0.0-0.1</td>
<td>7.5-23</td>
<td>0</td>
</tr>
<tr>
<td>TeC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden---------------</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>5.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>4.5-5.5</td>
<td>0.4-1.0</td>
<td>8.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>3.5-5.5</td>
<td>0.3-0.5</td>
<td>8.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>34-52</td>
<td>3.5-5.5</td>
<td>0.3-0.5</td>
<td>8.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>4.5-5.5</td>
<td>0.0-0.1</td>
<td>7.5-23</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>65-80</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>TeC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teegarden---------------</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>5.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-25</td>
<td>4.5-5.5</td>
<td>0.4-1.0</td>
<td>8.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-34</td>
<td>3.5-5.5</td>
<td>0.3-0.5</td>
<td>8.0-12</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>34-52</td>
<td>3.5-5.5</td>
<td>0.3-0.5</td>
<td>8.0-13</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>52-65</td>
<td>4.5-5.5</td>
<td>0.0-0.1</td>
<td>7.5-23</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>65-80</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tioga-------------------</td>
<td>0-9</td>
<td>5.1-7.8</td>
<td>2.0-6.0</td>
<td>12-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>9-40</td>
<td>5.1-7.8</td>
<td>0.0-1.0</td>
<td>3.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>40-80</td>
<td>5.6-8.4</td>
<td>0.0-1.0</td>
<td>3.0-15</td>
<td>0</td>
</tr>
<tr>
<td>Ua:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents-------------</td>
<td>0-4</td>
<td>---</td>
<td>0.0-5.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>---</td>
<td>0.0-0.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ub:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents-------------</td>
<td>0-24</td>
<td>---</td>
<td>0.0-4.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>24-80</td>
<td>---</td>
<td>0.0-0.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Uc:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents-------------</td>
<td>0-4</td>
<td>---</td>
<td>0.0-5.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>4-80</td>
<td>---</td>
<td>0.0-0.0</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pits-------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UcC2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>0-4</td>
<td>4.5-7.3</td>
<td>0.5-3.0</td>
<td>14-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-44</td>
<td>4.5-8.4</td>
<td>0.0-0.3</td>
<td>20-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>44-54</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks------------------</td>
<td>0-7</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-20</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20-24</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-34</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UkD2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>0.5-3.0</td>
<td>14-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-42</td>
<td>4.5-8.4</td>
<td>0.0-0.3</td>
<td>20-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>42-72</td>
<td>5.1-8.4</td>
<td>0.0-0.1</td>
<td>14-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>72-80</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks------------------</td>
<td>0-5</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5-22</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UkE2:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upshur-----------------</td>
<td>0-3</td>
<td>4.5-7.3</td>
<td>0.5-3.0</td>
<td>14-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-46</td>
<td>4.5-8.4</td>
<td>0.0-0.3</td>
<td>20-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>46-50</td>
<td>5.1-8.4</td>
<td>0.0-0.1</td>
<td>14-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks------------------</td>
<td>0-4</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-22</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-24</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>Soil reaction</td>
<td>Organic matter</td>
<td>Cation-exchange capacity</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pH</td>
<td>Pct</td>
<td>meq/100 g</td>
<td>Pct</td>
</tr>
<tr>
<td>Ur:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>UcB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield</td>
<td>0-6</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-28</td>
<td>4.5-5.5</td>
<td>0.5-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28-48</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>6.1-14</td>
<td>0-6</td>
</tr>
<tr>
<td>UcC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield</td>
<td>0-6</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-24</td>
<td>4.5-5.5</td>
<td>0.5-1.0</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>4.5-7.3</td>
<td>0.2-0.5</td>
<td>10-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>6.1-14</td>
<td>0-6</td>
</tr>
<tr>
<td>UvB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban land</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Canfield</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-20</td>
<td>4.5-6.5</td>
<td>0.5-1.0</td>
<td>8.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20-55</td>
<td>4.5-6.5</td>
<td>0.2-0.5</td>
<td>6.0-16</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>55-80</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>2.0-10</td>
<td>0-6</td>
</tr>
<tr>
<td>VaA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley</td>
<td>0-7</td>
<td>4.5-7.3</td>
<td>3.0-8.0</td>
<td>15-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>5.1-7.8</td>
<td>0.2-1.0</td>
<td>11-31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>15-30</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>10-20</td>
<td>0-10</td>
</tr>
<tr>
<td>VbA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley</td>
<td>0-11</td>
<td>4.5-7.3</td>
<td>3.0-8.0</td>
<td>15-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-41</td>
<td>5.1-7.8</td>
<td>0.2-1.0</td>
<td>11-31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>15-30</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>10-20</td>
<td>0-10</td>
</tr>
<tr>
<td>VcA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valley</td>
<td>0-7</td>
<td>4.5-7.3</td>
<td>3.0-8.0</td>
<td>15-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-41</td>
<td>5.1-7.8</td>
<td>0.2-1.0</td>
<td>11-31</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>41-48</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>15-30</td>
<td>0-10</td>
</tr>
<tr>
<td></td>
<td>48-80</td>
<td>5.6-8.4</td>
<td>0.1-0.3</td>
<td>10-20</td>
<td>0-10</td>
</tr>
<tr>
<td>Lorain</td>
<td>0-7</td>
<td>5.1-7.3</td>
<td>4.0-11.0</td>
<td>14-26</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>7-54</td>
<td>5.1-7.3</td>
<td>0.5-1.0</td>
<td>16-28</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>54-62</td>
<td>6.6-8.4</td>
<td>0.1-0.5</td>
<td>15-28</td>
<td>0-10</td>
</tr>
<tr>
<td>VnB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vandergrift</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>2.0-4.0</td>
<td>9.5-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-48</td>
<td>4.5-6.5</td>
<td>0.1-1.0</td>
<td>14-26</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>46-56</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>10-25</td>
<td>0-6</td>
</tr>
<tr>
<td></td>
<td>56-58</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VnC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vandergrift</td>
<td>0-8</td>
<td>4.5-7.3</td>
<td>2.0-4.0</td>
<td>9.5-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-52</td>
<td>4.5-6.5</td>
<td>0.1-1.0</td>
<td>14-26</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>52-76</td>
<td>5.1-7.8</td>
<td>0.1-0.3</td>
<td>10-25</td>
<td>0-6</td>
</tr>
<tr>
<td></td>
<td>76-80</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>W:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WaA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wadsworth</td>
<td>0-10</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>14-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-24</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>15-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-45</td>
<td>3.5-7.3</td>
<td>0.2-0.5</td>
<td>0.0-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-80</td>
<td>5.1-8.4</td>
<td>0.1-0.3</td>
<td>6.0-20</td>
<td>0-10</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Depth</td>
<td>pH</td>
<td>Organic matter</td>
<td>Cation-exchange capacity</td>
<td>Calcium carbonate</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>WaB:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wadsworth</td>
<td>0-8</td>
<td>3.5-7.3</td>
<td>2.0-4.0</td>
<td>14-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-27</td>
<td>3.5-6.0</td>
<td>0.5-1.0</td>
<td>15-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>27-46</td>
<td>3.5-7.3</td>
<td>0.2-0.5</td>
<td>0.0-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>46-80</td>
<td>5.1-8.4</td>
<td>0.1-0.3</td>
<td>6.0-20</td>
<td>0-10</td>
</tr>
<tr>
<td>WkE:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>0-3</td>
<td>4.5-6.0</td>
<td>1.0-4.0</td>
<td>15-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-36</td>
<td>4.5-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>36-50</td>
<td>5.1-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-60</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Berks</td>
<td>0-4</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-20</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>20-24</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>24-26</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WkF:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>0-1</td>
<td>4.5-6.0</td>
<td>70-99</td>
<td>150-230</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1-4</td>
<td>4.5-6.0</td>
<td>1.0-4.0</td>
<td>15-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>4-38</td>
<td>4.5-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38-80</td>
<td>5.1-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td>Berks</td>
<td>0-3</td>
<td>3.5-6.5</td>
<td>2.0-4.0</td>
<td>5.0-15</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-22</td>
<td>3.5-6.5</td>
<td>0.0-0.5</td>
<td>5.0-10</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>22-32</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WmC:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>0-6</td>
<td>4.5-7.3</td>
<td>1.0-3.0</td>
<td>15-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>6-32</td>
<td>4.5-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>32-60</td>
<td>5.1-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>60-70</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton</td>
<td>0-8</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>8-31</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>31-45</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>45-66</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>66-76</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WmD:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>0-5</td>
<td>4.5-7.3</td>
<td>1.0-4.0</td>
<td>15-25</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5-37</td>
<td>4.5-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>37-65</td>
<td>5.1-6.0</td>
<td>0.0-0.5</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>65-75</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton</td>
<td>0-3</td>
<td>3.5-7.3</td>
<td>1.0-3.0</td>
<td>10-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>3-14</td>
<td>3.5-5.5</td>
<td>0.3-1.0</td>
<td>10-20</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>14-38</td>
<td>3.5-5.5</td>
<td>0.1-0.5</td>
<td>12-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>38-72</td>
<td>4.5-6.0</td>
<td>0.1-0.3</td>
<td>10-22</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>72-80</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WoA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wick</td>
<td>0-5</td>
<td>4.5-7.3</td>
<td>2.0-4.0</td>
<td>33-34</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>5-34</td>
<td>4.5-6.0</td>
<td>0.5-1.0</td>
<td>13-27</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>34-80</td>
<td>5.1-7.3</td>
<td>0.1-0.3</td>
<td>17-18</td>
<td>0</td>
</tr>
<tr>
<td>ZeA:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zepernick</td>
<td>0-10</td>
<td>4.5-7.3</td>
<td>2.0-5.0</td>
<td>8.0-18</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-50</td>
<td>3.5-5.5</td>
<td>0.5-1.2</td>
<td>9.5-19</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>50-80</td>
<td>3.5-7.3</td>
<td>0.1-0.2</td>
<td>4.1-20</td>
<td>0</td>
</tr>
</tbody>
</table>
Table 31.—Water Features

(Depts of layers are in feet. See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Hydrologic group</th>
<th>Month</th>
<th>Water table</th>
<th>Kind</th>
<th>Surface water depth</th>
<th>Frequency</th>
<th>Duration</th>
<th>Frequency</th>
<th>Duration</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmF: Amanda---------------</td>
<td>C</td>
<td>Jan-May</td>
<td>5.0-6.7</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>5.0-6.7</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BkE: Berks---------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BmB: Berks---------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BpF: Bethesda------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Bsc2: Bogart-------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BtA: Bogart-------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BtB: Bogart-------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>BtC: Bogart-------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydrologic group</td>
<td>Month</td>
<td>Water table</td>
<td>Ponding</td>
<td>Flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>-----------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Duration</td>
<td>Frequency and soil type</td>
<td>Duration</td>
<td>Frequency</td>
</tr>
<tr>
<td>CaA: Calcutta------------</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaB: Canfield------------</td>
<td>C</td>
<td>Jan-May</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CcC: Canfield------------</td>
<td>C</td>
<td>Jan-May</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CcD: Canfield------------</td>
<td>C</td>
<td>Jan-May</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaA: Carlisle------------</td>
<td>A/D</td>
<td>Jan-Jun</td>
<td>0.0-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-2.0</td>
<td>Very long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Aug</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sep</td>
<td>0.0-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-2.0</td>
<td>Very long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct-Dec</td>
<td>0.0-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-2.0</td>
<td>Very long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CED2: Chili---------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaA: Chili---------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaB: Chili---------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaC: Chili---------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaB: Conotton------------</td>
<td>A</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaC: Conotton------------</td>
<td>A</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CaB: Coshocton------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydrologic group</td>
<td>Month</td>
<td>Water table</td>
<td>Ponding</td>
<td>Flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Duration</td>
<td>Frequency</td>
<td>Duration</td>
<td>Frequency</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>CcC:</td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>CcD:</td>
<td></td>
</tr>
<tr>
<td>Coshocton---------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>DgA:</td>
<td></td>
</tr>
<tr>
<td>Doles--------------------</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>ErC:</td>
<td></td>
</tr>
<tr>
<td>Ernest-------------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.0-2.0</td>
<td>1.7-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>1.7-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>ErD:</td>
<td></td>
</tr>
<tr>
<td>Ernest-------------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.0-2.0</td>
<td>1.7-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>1.7-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>FbB:</td>
<td></td>
</tr>
<tr>
<td>Fairpoint----------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>FbD:</td>
<td></td>
</tr>
<tr>
<td>Fairpoint----------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>FbF:</td>
<td></td>
</tr>
<tr>
<td>Fairpoint----------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>FcB:</td>
<td></td>
</tr>
<tr>
<td>Fairpoint----------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>FcD:</td>
<td></td>
</tr>
<tr>
<td>Fairpoint----------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>FaA:</td>
<td></td>
</tr>
<tr>
<td>Pitchville--------------</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Fdb:</td>
<td></td>
</tr>
<tr>
<td>Pitchville--------------</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>FeA:</td>
<td></td>
</tr>
<tr>
<td>Fluvuquents-------------</td>
<td>D</td>
<td>Jan-Jun</td>
<td>0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-2.0</td>
<td>Very long</td>
<td>Frequent</td>
<td>Very long</td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Sep</td>
<td>0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-2.0</td>
<td>Very long</td>
<td>Frequent</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct-Dec</td>
<td>0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-2.0</td>
<td>Very long</td>
<td>Frequent</td>
<td>Very long</td>
<td>Frequent</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydro-logic group</td>
<td>Month</td>
<td>Water table</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Ponding</td>
<td>Flooding</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Duration</td>
<td>Frequency</td>
<td>Duration</td>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FmC2: Fredericktown-----</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FmD2: Fredericktown-----</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoB: Fredericktown-----</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FrA: Frenchtown--------</td>
<td>C</td>
<td>Jan-May</td>
<td>0.0-0.5</td>
<td>1.7-3.2</td>
<td>Perched</td>
<td>0.0-1.0</td>
<td>Brief</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Sep</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct-Dec</td>
<td>0.0-0.5</td>
<td>1.7-3.2</td>
<td>Perched</td>
<td>0.0-1.0</td>
<td>Brief</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaB: Gavers------------</td>
<td>C</td>
<td>Jan-Nov</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeC: Germano-----------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeD: Germano-----------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmB: Gilpin------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmC: Gilpin------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GmD: Gilpin------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoC: Gilpin------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoD: Gilpin------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GpC: Gilpin------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton--------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydro-logic group</td>
<td>Month</td>
<td>Water table</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Duration</td>
<td>Frequency</td>
<td>Flooding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>----------</td>
<td>-------------</td>
<td>------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrB: Glenford------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.0-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Nov</td>
<td>1.0-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>GrC: Guernsey------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Nov</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>GuC2: Guernsey-----------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Nov</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>GuD: Guernsey------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Nov</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.8-2.0 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HeB: Hazleton------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0 >6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HeC: Hazleton------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0 >6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HeD: Hazleton------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0 >6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HeE: Hazleton------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0 >6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HFF: Hazleton------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0 >6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HgF: Hazleton------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0 >6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0 >6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HKA: Holly---------------</td>
<td>B/D</td>
<td>Jan-Jun</td>
<td>0.0-0.5 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Long</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Sep</td>
<td>0.0-0.5 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct</td>
<td>0.0-0.5 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5 >6.0 Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Long</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HLB: Homewood------------</td>
<td>C</td>
<td>Jan-May</td>
<td>1.5-2.3 1.7-2.5 Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>1.5-2.3 1.7-2.5 Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.5-2.3 1.7-2.5 Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydrologic group</td>
<td>Month</td>
<td>Water table</td>
<td>Ponding</td>
<td>Flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmA:</td>
<td></td>
</tr>
<tr>
<td>Homworth-----</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HmB:</td>
<td></td>
</tr>
<tr>
<td>Homworth-----</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HoA:</td>
<td></td>
</tr>
<tr>
<td>Homworth-----</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>HoB:</td>
<td></td>
</tr>
<tr>
<td>Homworth-----</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>0.5-1.0</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>JWA:</td>
<td></td>
</tr>
<tr>
<td>Jimtown----------------</td>
<td>C</td>
<td>Jan-Jun</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Sep</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct-Dec</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>JWB:</td>
<td></td>
</tr>
<tr>
<td>Jimtown----------------</td>
<td>C</td>
<td>Jan-Jun</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Sep</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct-Dec</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>KeB:</td>
<td></td>
</tr>
<tr>
<td>Keene------------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.0-2.0</td>
<td>3.3-7.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0</td>
<td>3.3-7.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>KnB:</td>
<td></td>
</tr>
<tr>
<td>Kensington-------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.5-3.5</td>
<td>3.3-5.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.5-3.5</td>
<td>3.3-5.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>KnC:</td>
<td></td>
</tr>
<tr>
<td>Kensington-------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.5-3.5</td>
<td>3.3-5.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.5-3.5</td>
<td>3.3-5.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>KnD:</td>
<td></td>
</tr>
<tr>
<td>Kensington-------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.5-3.5</td>
<td>3.3-5.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.5-3.5</td>
<td>3.3-5.0</td>
<td>Perched</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>LbA:</td>
<td></td>
</tr>
<tr>
<td>Lobdell---------------</td>
<td>B</td>
<td>Jan-Apr</td>
<td>1.2-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Jun</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.2-2.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydrologic group</td>
<td>Month</td>
<td>Water table</td>
<td>Ponding</td>
<td>Flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Duration</td>
<td>Frequency</td>
<td>Duration</td>
<td>Frequency</td>
</tr>
<tr>
<td>Lna:</td>
<td>C/D</td>
<td>Jan-Jun</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Lorain---</td>
<td></td>
<td>Jul-Sep</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.0-0.5</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Mcb:</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Mechanicsburg---</td>
<td></td>
</tr>
<tr>
<td>McC:</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Mechanicsburg---</td>
<td></td>
</tr>
<tr>
<td>MnB:</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Morristown-----</td>
<td></td>
</tr>
<tr>
<td>MnD:</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Morristown-----</td>
<td></td>
</tr>
<tr>
<td>MoB:</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Morristown-----</td>
<td></td>
</tr>
<tr>
<td>MoD:</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Morristown-----</td>
<td></td>
</tr>
<tr>
<td>Oda:</td>
<td>B/D</td>
<td>Jan-May</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-1.0</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Olmsted---</td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-1.0</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Valley-------</td>
<td>C/D</td>
<td>Jan-Jun</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>OmB:</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.0-2.5</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Omulga--</td>
<td></td>
<td>May-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.5</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>OmC:</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.0-2.5</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Omulga--</td>
<td></td>
<td>May-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.5</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>OrA:</td>
<td>C</td>
<td>Jan-May</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
</tr>
<tr>
<td>Orrville--</td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
</tr>
<tr>
<td>Rab:</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Rainsboro---</td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>RaC2:</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Rainsboro---</td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydro-logic group</td>
<td>Month</td>
<td>Water table</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Duration</td>
<td>Frequency</td>
<td>Flooding</td>
<td>Duration</td>
<td>Frequency</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>-------</td>
<td>-------------</td>
<td>------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Kind</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RbC:</td>
<td></td>
<td></td>
<td>1.5-2.5</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Rainbowsboro</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>1.7-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>ReA:</td>
<td></td>
<td></td>
<td>0.5-1.0</td>
<td>1.2-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Ravenna</td>
<td>C</td>
<td>Jan-Jun</td>
<td>0.5-1.0</td>
<td>1.2-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>1.2-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>ReB:</td>
<td></td>
<td></td>
<td>0.5-1.0</td>
<td>1.2-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Ravenna</td>
<td>C</td>
<td>Jan-Jun</td>
<td>0.5-1.0</td>
<td>1.2-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>1.2-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>RhD:</td>
<td></td>
<td></td>
<td>2.0-3.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Richland</td>
<td>B</td>
<td>Jan-Apr</td>
<td>2.0-3.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>2.0-3.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>RhE:</td>
<td></td>
<td></td>
<td>2.0-3.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Richland</td>
<td>B</td>
<td>Jan-Apr</td>
<td>2.0-3.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>2.0-3.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>RsB:</td>
<td></td>
<td></td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Rittman</td>
<td>C</td>
<td>Jan-May</td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>RsC:</td>
<td></td>
<td></td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Rittman</td>
<td>C</td>
<td>Jan-May</td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>RsD2:</td>
<td></td>
<td></td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Rittman</td>
<td>C</td>
<td>Jan-May</td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0</td>
<td>1.5-3.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>TeB:</td>
<td></td>
<td></td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Teegarden</td>
<td>C</td>
<td>Jan-May</td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>TeC:</td>
<td></td>
<td></td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Teegarden</td>
<td>C</td>
<td>Jan-May</td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>TeC2:</td>
<td></td>
<td></td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Teegarden</td>
<td>C</td>
<td>Jan-May</td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Nov</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dec</td>
<td>1.0-2.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>ToA:</td>
<td></td>
<td></td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
</tr>
<tr>
<td>Tioga</td>
<td>B</td>
<td>Jan-Jun</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydrologic group</td>
<td>Month</td>
<td>Water table</td>
<td>Ponding</td>
<td>Flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Kind</td>
<td>Duration</td>
<td>Frequency</td>
<td>Duration</td>
<td>Frequency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ua: Udorthents---------</td>
<td>A/D</td>
<td>Jan-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ub: Udorthents---------</td>
<td>A</td>
<td>Jan-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Uc: Udorthents---------</td>
<td>A/D</td>
<td>Jan-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UkC2: Upshur------------</td>
<td>D</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UkD2: Upshur------------</td>
<td>D</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UkE2: Upshur------------</td>
<td>D</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>C</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UtB: Canfield-----------</td>
<td>C</td>
<td>Jan-May</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UtC: Canfield-----------</td>
<td>C</td>
<td>Jan-May</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jun-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.2-2.3</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>UvB: Chili---------------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VaA: Valley--------------</td>
<td>C/D</td>
<td>Jan-Jun</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>VbA: Valley--------------</td>
<td>C/D</td>
<td>Jan-Jun</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydrologic group</td>
<td>Month</td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Duration</td>
<td>Frequency</td>
<td>Duration</td>
<td>Frequency</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------</td>
<td>---------------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>VcA: Valley--------------</td>
<td>C/D</td>
<td>Jan-Jun</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Brief</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Lorain--------------------</td>
<td>C/D</td>
<td>Jan-Jun</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Sep</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>0.0-0.5</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.0-0.5</td>
<td>>6.0</td>
<td>Apparent</td>
<td>0.0-0.5</td>
<td>Long</td>
<td>Frequent</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>VnB: Vandergrift---------</td>
<td>C</td>
<td>Jan-Mar</td>
<td>1.0-2.0</td>
<td>2.9-5.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apr-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>2.9-5.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>VnC: Vandergrift---------</td>
<td>C</td>
<td>Jan-Mar</td>
<td>1.0-2.0</td>
<td>2.9-5.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apr-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>1.0-2.0</td>
<td>2.9-5.0</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>WaA: Wadsworth-----------</td>
<td>C</td>
<td>Jan-Jun</td>
<td>0.5-1.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>WaB: Wadsworth-----------</td>
<td>C</td>
<td>Jan-Jun</td>
<td>0.5-1.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>1.5-2.5</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>WkE: Westmoreland--------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berks-------</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>WkF: Westmoreland--------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Berks-------</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>WmC: Westmoreland--------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>WmD: Westmoreland--------</td>
<td>B</td>
<td>Jan-Dec</td>
<td>>6.0</td>
<td>>6.0</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>C</td>
<td>Jan-Apr</td>
<td>1.5-2.5</td>
<td>2.5-4.2</td>
<td>Perched</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May-Dec</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>None</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Hydrologic group</td>
<td>Month</td>
<td>Water table</td>
<td>Ponding</td>
<td>Flooding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Upper limit</td>
<td>Lower limit</td>
<td>Kind</td>
<td>Surface water depth</td>
<td>Duration</td>
<td>Frequency</td>
<td>Duration</td>
<td>Frequency</td>
</tr>
<tr>
<td>WoA: Wick---------------</td>
<td>D</td>
<td>Jan-Jun</td>
<td>0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Long</td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Sep</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Long</td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Long</td>
<td>Frequent</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Long</td>
<td>Frequent</td>
</tr>
<tr>
<td>ZeA: Zepernick----------</td>
<td>C</td>
<td>Jan-Jun</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jul-Oct</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nov-Dec</td>
<td>0.5-1.0</td>
<td>>6.0</td>
<td>Apparent</td>
<td>---</td>
<td>---</td>
<td>None</td>
<td>Brief</td>
<td>Occasional</td>
</tr>
</tbody>
</table>
Table 32.—Soil Features

(See text for definitions of terms used in this table. Absence of an entry indicates that the feature is not a concern or that data were not estimated.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Restrictive layer</th>
<th>Subsidence</th>
<th>Potential for frost action</th>
<th>Risk of corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>AmF: Amanda---------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkC: Berks---------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkD: Berks---------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BkB: Berks---------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmB: Berks---------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmC: Berks---------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BmD: Berks---------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Urban land---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BpF: Bethesda-------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BcC2: Bogart-------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BtA: Bogart-------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>BtB: Bogart-------------</td>
<td>---</td>
<td>> 60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>----------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>BtC: Bogart--------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CaA: Calcutta------------</td>
<td>Fragipan</td>
<td>20-30</td>
<td>15-30</td>
<td>---</td>
</tr>
<tr>
<td>CcB: Canfield------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>15-37</td>
<td>---</td>
</tr>
<tr>
<td>CcC: Canfield------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>15-37</td>
<td>---</td>
</tr>
<tr>
<td>CcD: Canfield------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>15-37</td>
<td>---</td>
</tr>
<tr>
<td>CcE: Canfield------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>15-37</td>
<td>---</td>
</tr>
<tr>
<td>CaA: Carlisle------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CcD2: Chili--------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ChA: Chili---------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ChB: Chili---------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>ChC: Chili---------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CmB: Conotton------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CmC: Conotton------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoB: Coshocton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoC: Coshocton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>CoD: Coshocton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 32.—Soil Features—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Restrictive layer</th>
<th>Subsidence</th>
<th>Potential for frost action</th>
<th>Risk of corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>DAM: Dam------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>DgA: Doles----------</td>
<td>Fragipan</td>
<td>20-30</td>
<td>14-36</td>
<td>---</td>
</tr>
<tr>
<td>ErC: Ernest----------</td>
<td>Fragipan</td>
<td>20-36</td>
<td>10-40</td>
<td>---</td>
</tr>
<tr>
<td>ErD: Ernest----------</td>
<td>Fragipan</td>
<td>20-36</td>
<td>10-40</td>
<td>---</td>
</tr>
<tr>
<td>FbB: Fairpoint-------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FbD: Fairpoint-------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FbF: Fairpoint-------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FcB: Fairpoint-------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FcD: Fairpoint-------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FdA: Fitchville------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FdB: Fitchville------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>FeA: Fluvaquents------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fnc2: Fredericktown--</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fnd2: Fredericktown--</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Fob: Fredericktown----</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In</td>
<td>In</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>GrB: Glenford-----------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GrC: Glenford-----------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GuC: Guernsey-----------</td>
<td>Bedrock (paralithic)</td>
<td>50-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GuC2: Guernsey----------</td>
<td>Bedrock (paralithic)</td>
<td>50-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>GuD: Guernsey-----------</td>
<td>Bedrock (paralithic)</td>
<td>50-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeB: Hazleton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeC: Hazleton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeD: Hazleton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>HeE: Hazleton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hff: Hazleton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Rock outcrop-----------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hgf: Hazleton-----------</td>
<td>Bedrock (lithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Westmoreland------------</td>
<td>Bedrock (lithic)</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hka: Holly--------------</td>
<td>Bedrock (lithic)</td>
<td>70-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Hlb: Homewood-----------</td>
<td>Fragipan Bedrock (paralithic)</td>
<td>20-30</td>
<td>16.58</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td>60-120</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 32.—Soil Features—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Restrictive layer</th>
<th>Subsidence</th>
<th>Potential for frost action</th>
<th>Risk of corrosion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
<td>--------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>HmA: Homeworth----------</td>
<td>Strongly contrasting textural stratification</td>
<td>30-50</td>
<td>30-50</td>
<td>Noncemented</td>
</tr>
<tr>
<td>HoB: Homeworth----------</td>
<td>Strongly contrasting textural stratification</td>
<td>30-50</td>
<td>30-50</td>
<td>Noncemented</td>
</tr>
<tr>
<td>HoA: Homeworth----------</td>
<td>Strongly contrasting textural stratification</td>
<td>30-50</td>
<td>30-50</td>
<td>Noncemented</td>
</tr>
<tr>
<td>HoB: Homeworth----------</td>
<td>Strongly contrasting textural stratification</td>
<td>30-50</td>
<td>30-50</td>
<td>Noncemented</td>
</tr>
<tr>
<td>JwA: Jimtown------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>JwB: Jimtown------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KeB: Keene--------------</td>
<td>Bedrock (paralithic)</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KnB: Kensington---------</td>
<td>Bedrock (paralithic)</td>
<td>40-60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KnC: Kensington---------</td>
<td>Bedrock (paralithic)</td>
<td>40-60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>KnD: Kensington---------</td>
<td>Bedrock (paralithic)</td>
<td>40-60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>LhA: Lobdell------------</td>
<td>---</td>
<td>> 76</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>LnA: Lorain------------</td>
<td>---</td>
<td>> 62</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>McB: Mechanicsburg------</td>
<td>Bedrock (paralithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>McC: Mechanicsburg-----</td>
<td>Bedrock</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MgB: Morristown--------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MnD: Morristown--------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MoB: Morristown--------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>MoG: Morristown--------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OdA: Olmsted------------</td>
<td>---</td>
<td>> 60</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Valley------------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>OmB: Omulga-------------</td>
<td>Fragipan</td>
<td>18-36</td>
<td>13-36</td>
<td>---</td>
</tr>
<tr>
<td>OmC: Omulga-------------</td>
<td>Fragipan</td>
<td>18-36</td>
<td>13-36</td>
<td>---</td>
</tr>
<tr>
<td>OrA: Orrville-----------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pg: Pits---------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RaB: Rainsboro---------</td>
<td>Fragipan</td>
<td>20-30</td>
<td>10-40</td>
<td>---</td>
</tr>
<tr>
<td>RAC2: Rainsboro---------</td>
<td>Fragipan</td>
<td>20-30</td>
<td>10-40</td>
<td>---</td>
</tr>
<tr>
<td>RbC: Rainsboro---------</td>
<td>Fragipan</td>
<td>20-30</td>
<td>10-40</td>
<td>---</td>
</tr>
<tr>
<td>RaA: Ravenna------------</td>
<td>Fragipan</td>
<td>14-30</td>
<td>15-45</td>
<td>---</td>
</tr>
<tr>
<td>ReB: Ravenna------------</td>
<td>Fragipan</td>
<td>14-30</td>
<td>15-45</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>RhD: Richland------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RhE: Richland------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>RsC: Rittman-------------</td>
<td>Fragipan</td>
<td>18-36</td>
<td>10-40</td>
<td>---</td>
</tr>
<tr>
<td>RsD2: Rittman------------</td>
<td>Fragipan</td>
<td>18-36</td>
<td>10-40</td>
<td>---</td>
</tr>
<tr>
<td>TeB: Teegarden-----------</td>
<td>Fragipan Bedrock (paralithic)</td>
<td>18-30</td>
<td>10-24</td>
<td>---</td>
</tr>
<tr>
<td>TeC: Teegarden-----------</td>
<td>Fragipan Bedrock (paralithic)</td>
<td>18-30</td>
<td>9-24</td>
<td>---</td>
</tr>
<tr>
<td>TeC2: Teegarden----------</td>
<td>Fragipan Bedrock (paralithic)</td>
<td>18-30</td>
<td>9-24</td>
<td>---</td>
</tr>
<tr>
<td>ToA: Tioga---------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ua: Uorthents------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Ub: Uorthents------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Uc: Uorthents------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pits---------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In</td>
<td>In</td>
<td></td>
</tr>
<tr>
<td>UkuC2:</td>
<td>Bedrock (paralithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Upshur------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Bedrock (paralithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkuE2:</td>
<td>Bedrock (paralithic)</td>
<td>40-72</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Upshur------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks-------------------</td>
<td>Bedrock (lithic)</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ur:</td>
<td>Urban land-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtB:</td>
<td>Urban land-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>15-37</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Utc:</td>
<td>Urban land-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield----------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>15-37</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uvb:</td>
<td>Urban land-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili--------------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaA:</td>
<td>Valley------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vba:</td>
<td>Valley------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>hardness</td>
</tr>
<tr>
<td>VnA: Valley--------------</td>
<td>---</td>
<td>> 80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VnA: Lorasin-------------</td>
<td>---</td>
<td>> 62</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VnB: Vandergrift---------</td>
<td>Bedrock</td>
<td>40-80</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>VnB: Vandergrift---------</td>
<td>(paralithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>W: Water-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>W: Wadsworth-------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>10-32</td>
<td>---</td>
</tr>
<tr>
<td>W: Wadsworth-------------</td>
<td>Fragipan</td>
<td>18-30</td>
<td>10-32</td>
<td>---</td>
</tr>
<tr>
<td>WkB: Westmoreland--------</td>
<td>Bedrock</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WkB: Westmoreland--------</td>
<td>(paralithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE: Berks---------------</td>
<td>Bedrock</td>
<td>20-40</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WkE: Berks---------------</td>
<td>(lithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkF: Westmoreland--------</td>
<td>Bedrock</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WkF: Westmoreland--------</td>
<td>(paralithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmC: Westmoreland--------</td>
<td>Bedrock</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WmC: Westmoreland--------</td>
<td>(paralithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Bedrock</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>(paralithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WmD: Westmoreland--------</td>
<td>Bedrock</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WmD: Westmoreland--------</td>
<td>(paralithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>Bedrock</td>
<td>40-120</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Coshocton----------------</td>
<td>(paralithic)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Restrictive layer</td>
<td>Subsidence</td>
<td>Potential for frost action</td>
<td>Risk of corrosion</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Kind</td>
<td>Depth to top</td>
<td>Thickness</td>
<td>Hardness</td>
</tr>
<tr>
<td>WoA: Wick</td>
<td>---</td>
<td>In</td>
<td>In</td>
<td>---</td>
</tr>
<tr>
<td>ZeA: Zepernick</td>
<td>---</td>
<td>In</td>
<td>In</td>
<td>---</td>
</tr>
</tbody>
</table>
Table 33.—Classification of the Soils
9th Edition of Keys to Soil Taxonomy

(An asterisk in the first column indicates a taxadjunct to the series. See text for a description of those characteristics that are outside the range of the series.)

<table>
<thead>
<tr>
<th>Soil name</th>
<th>Family or higher taxonomic class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amanda</td>
<td>Fine-loamy, mixed, active, mesic Typic Hapludalfs</td>
</tr>
<tr>
<td>Berks</td>
<td>Loamy-skeletal, mixed, active, mesic Typic Dystrudepts</td>
</tr>
<tr>
<td>Bethesda</td>
<td>Loamy-skeletal, mixed, active, acid, mesic Typic Udorthents</td>
</tr>
<tr>
<td>Bogart</td>
<td>Fine-loamy, mixed, active, mesic Aquic Hapludalfs</td>
</tr>
<tr>
<td>Calcutta</td>
<td>Fine-silty, mixed, superactive, mesic Aeric Fragiaquults</td>
</tr>
<tr>
<td>*Canfield</td>
<td>Euc, mesic Typic Haplosapristans</td>
</tr>
<tr>
<td>Chili</td>
<td>Fine-loamy, mixed, active, mesic Typic Hapludalfs</td>
</tr>
<tr>
<td>Conotton</td>
<td>Loamy-skeletal, mixed, active, mesic Typic Hapludalfs</td>
</tr>
<tr>
<td>Coshcotton</td>
<td>Fine-loamy, mixed, active, mesic Aquultic Hapludalfs</td>
</tr>
<tr>
<td>Doles</td>
<td>Fine-silty, mixed, active, mesic Aeric Fragiaquults</td>
</tr>
<tr>
<td>Ernest</td>
<td>Fine-loamy, mixed, superactive, mesic Aquic Fragiludults</td>
</tr>
<tr>
<td>Fairpoint</td>
<td>Loamy-skeletal, mixed, active, nonacid, mesic Typic Udorthents</td>
</tr>
<tr>
<td>Fitchville</td>
<td>Fine-silty, mixed, superactive, mesic Aeric Endoaqualfs</td>
</tr>
<tr>
<td>Fluvaquents, silty</td>
<td>Fluvaquents</td>
</tr>
<tr>
<td>Fredericktown</td>
<td>Fine-loamy, mixed, superactive, mesic Ultic Hapludalfs</td>
</tr>
<tr>
<td>Frenchtown</td>
<td>Fine-loamy, mixed, active, mesic Typic Fragiaguels</td>
</tr>
<tr>
<td>Gavers</td>
<td>Fine-silty, mixed, superactive, mesic Aeric Endoaqualfs</td>
</tr>
<tr>
<td>Germano</td>
<td>Coarse-loamy, mixed, active, mesic Typic Hapludults</td>
</tr>
<tr>
<td>Gilpin</td>
<td>Fine-loamy, mixed, active, mesic Typic Hapludults</td>
</tr>
<tr>
<td>Glenford</td>
<td>Fine-silty, mixed, superactive, mesic Aquic Hapludalfs</td>
</tr>
<tr>
<td>Guernsey</td>
<td>Fine, mixed, superactive, mesic Aquic Hapludalfs</td>
</tr>
<tr>
<td>*Hazleton</td>
<td>Loamy-skeletal, mixed, active, mesic Typic Dystrudepts</td>
</tr>
<tr>
<td>Holly</td>
<td>Fine-loamy, mixed, active, nonacid, mesic Fluvaquentic Endoaquepts</td>
</tr>
<tr>
<td>Homewood</td>
<td>Fine-loamy, mixed, superactive, mesic Oxyaquic Fragiludals</td>
</tr>
<tr>
<td>Homeworth</td>
<td>Fine-loamy, mixed, superactive, mesic Aeric Epiqualufs</td>
</tr>
<tr>
<td>Jintown</td>
<td>Fine-silty, mixed, superactive, mesic Aeric Endoaqualfs</td>
</tr>
<tr>
<td>Keene</td>
<td>Fine-silty, mixed, superactive, mesic Aquic Hapludalfs</td>
</tr>
<tr>
<td>Kensington</td>
<td>Fine-loamy, mixed, active, mesic Aquic Hapludults</td>
</tr>
<tr>
<td>Lobdell</td>
<td>Fine-loamy, mixed, active, mesic Fluvaquentic Eutrodepts</td>
</tr>
<tr>
<td>Lorain</td>
<td>Fine, illitic, mesic Mollic Epiqualufs</td>
</tr>
<tr>
<td>Mechanicsburg</td>
<td>Fine-loamy, mixed, active, mesic Ultic Hapludalfs</td>
</tr>
<tr>
<td>Morristown</td>
<td>Loamy-skeletal, mixed, active, calcareous, mesic Typic Udorthents</td>
</tr>
<tr>
<td>Olmsted</td>
<td>Fine-loamy, mixed, active, mesic Mollic Endoaqualfs</td>
</tr>
<tr>
<td>Omulga</td>
<td>Fine-silty, mixed, active, mesic Oxyaquic Fragiludals</td>
</tr>
<tr>
<td>Orrville</td>
<td>Fine-loamy, mixed, active, nonacid, mesic Fluventic Endoaquepts</td>
</tr>
<tr>
<td>Rainsboro</td>
<td>Fine-silty, mixed, superactive, mesic Oxyaquic Fragiludals</td>
</tr>
<tr>
<td>Ravenna</td>
<td>Fine-loamy, mixed, active, mesic Aeric Fragiaguels</td>
</tr>
<tr>
<td>Rittman</td>
<td>Fine-loamy, mixed, active, mesic Aquic Fragiaguels</td>
</tr>
<tr>
<td>Teegarden</td>
<td>Fine-loamy, mixed, active, mesic Aquic Fragiaguels</td>
</tr>
<tr>
<td>Tioga</td>
<td>Coarse-loamy, mixed, superactive, mesic Dystric Fluventic Eutrodepts</td>
</tr>
<tr>
<td>Udorthents</td>
<td>Udorthents</td>
</tr>
<tr>
<td>Udorthents, loamy-</td>
<td>Udorthents</td>
</tr>
<tr>
<td>Udorthents, refuse</td>
<td>Udorthents</td>
</tr>
<tr>
<td>Upper</td>
<td>Fine, mixed, superactive, mesic Typic Hapludalfs</td>
</tr>
<tr>
<td>Valley</td>
<td>Fine, mixed, active, nonacid, mesic Typic Endoaquepts</td>
</tr>
<tr>
<td>Vandergrift</td>
<td>Fine, mixed, superactive, mesic Aquic Hapludalfs</td>
</tr>
<tr>
<td>Wadsworth</td>
<td>Fine-silty, mixed, active, mesic Aeric Fragiaguels</td>
</tr>
<tr>
<td>Westmoreland</td>
<td>Fine-loamy, mixed, active, mesic Ultic Hapludalfs</td>
</tr>
<tr>
<td>Wick</td>
<td>Fine-silty, mixed, superactive, nonacid, mesic Fluvaquentic Endoaquepts</td>
</tr>
<tr>
<td>Zepernick</td>
<td>Fine-silty, mixed, superactive, acid, mesic Fluvaquentic Endoaquepts</td>
</tr>
</tbody>
</table>
Interpretive Groups

Interpretive groups are specified land use and specific management groupings that are assigned to soil map units because combinations of soils have similar behavior for specified practices. Most are based on soil properties and other factors that directly influence the specific use of the soil. These groups allow users of soil surveys to plan reasonable alternatives for the use and management of soils.

The Interpretive Groups table shows the interpretive groups for land capability classification; pasture and hayland suitability groups; prime farmland; and hydric condition of each soil map unit in the survey area.

Land capability classification is a system of grouping soils primarily on the basis of their capability to produce common cultivated crops and pasture plants without deterioration over a long period of time. The table shows the land capability class and subclass for each of the soils in Columbiana County. Additional information on land capability classification is provided under the heading “Land Capability Classification” in the “Crops and Pasture” section of this survey.

Pasture and hayland suitability groups are composed of soil map units having similar potentials and limitations for forage production. These groups simplify soils information and provide soil and plant science information for planning purposes. The table shows the pasture and hayland suitability group for each of the soil map units in Columbiana County. Additional information on pasture and hayland suitability groups is provided under the heading “Pasture and Hayland Management” in the “Crops and Pasture” section of this survey.

Prime farmland classification identifies the location and extent of the most suitable land for producing food, feed, fiber, forage, and oilseed crops. This identification is useful in the management and maintenance of the resource base that supports the productive capacity of Ohio agriculture. The table shows which of the soil map units in Columbiana County are prime farmland. Additional information on prime farmland is provided under the heading “Prime Farmland” in the “Important Farmland” section of this survey.

The identification of hydric soils and information about hydrophytic vegetation and wetland hydrology are used to define wetlands. The table shows which of the soil map units in Columbiana County are hydric. Additional information on hydric soils is provided under the heading “Hydric Soils” elsewhere in this survey.
Interpretive Groups

(Dashes indicate that the soil was not assigned to the interpretive group.)

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Land capability classification</th>
<th>Pasture and hayland suitability group</th>
<th>Prime farmland</th>
<th>Hydric</th>
</tr>
</thead>
<tbody>
<tr>
<td>AmF:-------------------</td>
<td>7e</td>
<td>H-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Amanda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkB:-------------------</td>
<td>2e</td>
<td>F-1</td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkC:-------------------</td>
<td>3e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkD:-------------------</td>
<td>4e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BkE:-------------------</td>
<td>6e</td>
<td>F-2</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BmB:-------------------</td>
<td>---</td>
<td></td>
<td>Not rated</td>
<td>No</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td></td>
<td>Not rated</td>
<td>Unranked</td>
</tr>
<tr>
<td>BmC:-------------------</td>
<td>---</td>
<td></td>
<td>Not rated</td>
<td>No</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td></td>
<td>Not rated</td>
<td>Unranked</td>
</tr>
<tr>
<td>BmD:-------------------</td>
<td>---</td>
<td></td>
<td>Not rated</td>
<td>No</td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td></td>
<td>Not rated</td>
<td>Unranked</td>
</tr>
<tr>
<td>BpF:-------------------</td>
<td>7e</td>
<td>H-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Bethesda</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BsC2:------------------</td>
<td>3e</td>
<td>A-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Bogart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtA:-------------------</td>
<td>1</td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Bogart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtB:-------------------</td>
<td>2e</td>
<td>A-1</td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Bogart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BtC:-------------------</td>
<td>3e</td>
<td>A-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Bogart</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaA:-------------------</td>
<td>2w</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Calcutta</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcB:-------------------</td>
<td>2e</td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcC:-------------------</td>
<td>3e</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CcD:-------------------</td>
<td>4e</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Interpretive Groups—Continued

<table>
<thead>
<tr>
<th>Map symbol and soil name</th>
<th>Land capability classification</th>
<th>Pasture and hayland suitability group</th>
<th>Prime farmland</th>
<th>Hydric</th>
</tr>
</thead>
<tbody>
<tr>
<td>CcE:---------------------- 6e</td>
<td>F-4</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CeA:---------------------- 5w</td>
<td>D-1</td>
<td>Not prime farmland</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Carlisle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CfdD2:--------------------- 4e</td>
<td>A-1</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Chili</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cha:---------------------- 2s</td>
<td></td>
<td>All areas are prime farmland</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>ChB:---------------------- 2e</td>
<td></td>
<td>All areas are prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Chili</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChC:---------------------- 3e</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Chili</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmB:---------------------- 3s</td>
<td></td>
<td>All areas are prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Conotton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CmC:---------------------- 4e</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Conotton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoB:---------------------- 2e</td>
<td></td>
<td>All areas are prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoC:---------------------- 3e</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoD:---------------------- 4e</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DAM:----------------------- ---</td>
<td></td>
<td>Not rated</td>
<td></td>
<td>Unranked</td>
</tr>
<tr>
<td>Dam</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DgA:---------------------- 2w</td>
<td></td>
<td>Prime farmland if drained</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doles</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>ErC:---------------------- 3e</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Ernest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ErD:---------------------- 4e</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Ernest</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbB:---------------------- 4s</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Fairpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbD:---------------------- 6s</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Fairpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FbF:---------------------- 7s</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Fairpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FcB:---------------------- 3s</td>
<td></td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Fairpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Land capability classification</td>
<td>Pasture and hayland suitability group</td>
<td>Prime farmland</td>
<td>Hydric</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>FcD:---------------------</td>
<td>4s</td>
<td>B-4</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Fairpoint</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FdA:---------------------</td>
<td>2w</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Fitchville</td>
<td></td>
<td>C-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FdB:---------------------</td>
<td>2e</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Fitchville</td>
<td></td>
<td>C-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeA:---------------------</td>
<td>5w</td>
<td>Not rated</td>
<td>Not prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>Fluvaquents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnC2:-------------------</td>
<td>3e</td>
<td>B-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Fredericktown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FnD2:-------------------</td>
<td>4e</td>
<td>A-2</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Fredericktown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FoB:---------------------</td>
<td>2e</td>
<td>A-1</td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Fredericktown</td>
<td></td>
<td>C-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FrA:---------------------</td>
<td>3w</td>
<td></td>
<td>Prime farmland if drained</td>
<td>Yes</td>
</tr>
<tr>
<td>Frenchtown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GaB:---------------------</td>
<td>2e</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Gavers</td>
<td></td>
<td>C-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeC:---------------------</td>
<td>3e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Germano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GeD:---------------------</td>
<td>4e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Germano</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnB:---------------------</td>
<td>2e</td>
<td>F-1</td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Gilpin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnC:---------------------</td>
<td>3e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Gilpin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GnD:---------------------</td>
<td>4e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Gilpin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GoC:---------------------</td>
<td>3e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Gilpin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td>A-6</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>GoD:---------------------</td>
<td>4e</td>
<td>F-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Gilpin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td>A-2</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>GpC:---------------------</td>
<td>---</td>
<td>Not rated</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Land capability classification</td>
<td>Pasture and hayland suitability group</td>
<td>Prime farmland</td>
<td>Hydric</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>GrB:----------------------</td>
<td>2e</td>
<td>All areas are prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Glenford</td>
<td>A-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GrC:----------------------</td>
<td>3e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Glenford</td>
<td>A-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC:----------------------</td>
<td>3e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Guernsey</td>
<td>A-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuC2:---------------------</td>
<td>3e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Guernsey</td>
<td>A-6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GuD:----------------------</td>
<td>4e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Guernsey</td>
<td>A-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeB:----------------------</td>
<td>2e</td>
<td>All areas are prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Hazleton</td>
<td>B-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeC:----------------------</td>
<td>3e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Hazleton</td>
<td>B-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeD:----------------------</td>
<td>4e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Hazleton</td>
<td>B-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HeE:----------------------</td>
<td>6e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Hazleton</td>
<td>B-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HfF:----------------------</td>
<td>7e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Hazleton</td>
<td>H-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rock Outcrop</td>
<td>Not rated</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>HgF:----------------------</td>
<td>7e</td>
<td>Not prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Hazleton</td>
<td>H-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westmoreland</td>
<td>H-1</td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>HkA:----------------------</td>
<td>3w</td>
<td>Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season</td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Holly</td>
<td>C-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HlB:----------------------</td>
<td>2e</td>
<td>All areas are prime farmland</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Homewood</td>
<td>F-3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmA:----------------------</td>
<td>2w</td>
<td>Prime farmland if drained</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Homeworth</td>
<td>C-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HmB:----------------------</td>
<td>2w</td>
<td>Prime farmland if drained</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Homeworth</td>
<td>C-2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HoA:----------------------</td>
<td>2w</td>
<td>Prime farmland if drained</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Homeworth</td>
<td>C-1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Land capability classification</td>
<td>Pasture and hayland suitability group</td>
<td>Prime farmland</td>
<td>Hydric</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>HoB:---------------------</td>
<td>2e</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Homeworth</td>
<td></td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Jwa:---------------------</td>
<td>2w</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Jimtown</td>
<td></td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Jwb:---------------------</td>
<td>2e</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>KeB:---------------------</td>
<td>2e</td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Keene</td>
<td></td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>KnB:---------------------</td>
<td>2e</td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Kensington</td>
<td></td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>KnC:---------------------</td>
<td>3e</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>KnD:---------------------</td>
<td>4e</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Lba:---------------------</td>
<td>1</td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Lobdell</td>
<td></td>
<td></td>
<td>All areas are prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>LnA:---------------------</td>
<td>3w</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Lorain</td>
<td></td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Mcb:---------------------</td>
<td>2e</td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Mechanicsburg</td>
<td></td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>McC:---------------------</td>
<td>3e</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>MnB:---------------------</td>
<td>3s</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Morristown</td>
<td></td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>MnD:---------------------</td>
<td>4s</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>MoB:---------------------</td>
<td>4s</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Morristown</td>
<td></td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>MoD:---------------------</td>
<td>6s</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>OdA:---------------------</td>
<td>3w</td>
<td></td>
<td>Not prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>Olmsted</td>
<td></td>
<td></td>
<td>Not prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>Valley</td>
<td></td>
<td></td>
<td>Not prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>OmB:---------------------</td>
<td>2e</td>
<td></td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Omulga</td>
<td></td>
<td></td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Land capability classification</td>
<td>Pasture and hayland suitability group</td>
<td>Prime farmland</td>
<td>Hydric</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>OmC:---------------------</td>
<td>3e</td>
<td>F-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Omulga</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OrA:--------------------</td>
<td>2w</td>
<td>C-3</td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Orrville</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pg:----------------------</td>
<td>---</td>
<td>Not rated</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Pits</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RaB:--------------------</td>
<td>2e</td>
<td></td>
<td>All areas are prime farmland</td>
<td></td>
</tr>
<tr>
<td>Rainsboro</td>
<td></td>
<td>F-3</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>RaC2:--------------------</td>
<td>3e</td>
<td>F-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Rainsboro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RbC:--------------------</td>
<td>3e</td>
<td>F-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Rainsboro</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReA:--------------------</td>
<td>2w</td>
<td>C-1</td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Ravenna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReB:--------------------</td>
<td>2e</td>
<td>C-1</td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Ravenna</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhD:--------------------</td>
<td>4e</td>
<td>A-2</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Richland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RhE:--------------------</td>
<td>6e</td>
<td>A-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Richland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RsB:--------------------</td>
<td>2e</td>
<td>F-3</td>
<td>All areas are prime farmland</td>
<td></td>
</tr>
<tr>
<td>Rittman</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>RsC:--------------------</td>
<td>3e</td>
<td>F-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Rittman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RsD2:--------------------</td>
<td>4e</td>
<td>F-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Rittman</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeB:--------------------</td>
<td>2e</td>
<td>F-3</td>
<td>All areas are prime farmland</td>
<td></td>
</tr>
<tr>
<td>Teegarden</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>TeC:--------------------</td>
<td>3e</td>
<td>F-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Teegarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TeC2:--------------------</td>
<td>3e</td>
<td>F-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Teegarden</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ToA:--------------------</td>
<td>1</td>
<td></td>
<td>All areas are prime farmland</td>
<td></td>
</tr>
<tr>
<td>Tioga</td>
<td></td>
<td>A-5</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>Us:----------------------</td>
<td>---</td>
<td>B-1</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Udorthents</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ub:----------------------</td>
<td>---</td>
<td>A-6</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Land capability classification</td>
<td>Pasture and hayland suitability group</td>
<td>Prime farmland</td>
<td>Hydric</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Uc:----------------------</td>
<td>---</td>
<td>---</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Udorthents</td>
<td></td>
<td>B-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pits</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkC2:-------------------</td>
<td>4e</td>
<td>E-2</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Upshur</td>
<td></td>
<td>A-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td>F-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkD2:-------------------</td>
<td>6e</td>
<td>Not rated</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Upshur</td>
<td></td>
<td>A-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td>F-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UkE2:-------------------</td>
<td>7e</td>
<td>4e</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Upshur</td>
<td></td>
<td>B-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td>F-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ur:---------------------</td>
<td>---</td>
<td>---</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtcB:--------------------</td>
<td>---</td>
<td>---</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UtcC:--------------------</td>
<td>---</td>
<td>---</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canfield</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UvB:--------------------</td>
<td>---</td>
<td>---</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Urban Land</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chili</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaA:--------------------</td>
<td>3w</td>
<td>3w</td>
<td>Not prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>Valley</td>
<td></td>
<td>C-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VaB:--------------------</td>
<td>3w</td>
<td>3w</td>
<td>Not prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>Valley</td>
<td></td>
<td>C-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VcA:--------------------</td>
<td>3w</td>
<td>3w</td>
<td>Not prime farmland</td>
<td>Yes</td>
</tr>
<tr>
<td>Valley</td>
<td></td>
<td>C-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lorain</td>
<td></td>
<td>C-2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnA:--------------------</td>
<td>2e</td>
<td>2e</td>
<td>All areas are prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Vandergrift</td>
<td></td>
<td>A-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VnC:--------------------</td>
<td>3e</td>
<td>3e</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Vandergrift</td>
<td></td>
<td>A-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W:----------------------</td>
<td>---</td>
<td>---</td>
<td>Not prime farmland</td>
<td>Unranked</td>
</tr>
<tr>
<td>Water</td>
<td></td>
<td>Not rated</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WaA:--------------------</td>
<td>3w</td>
<td>3w</td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Wadsworth</td>
<td></td>
<td>C-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Map symbol and soil name</td>
<td>Land capability classification</td>
<td>Pasture and hayland suitability group</td>
<td>Prime farmland</td>
<td>Hydric</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>WaB:---------------------</td>
<td>3e</td>
<td>C-1</td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Wadsworth</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WkE:---------------------</td>
<td>6e</td>
<td>A-3</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Westmoreland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td>F-2</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>WkF:---------------------</td>
<td>7e</td>
<td>H-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Westmoreland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berks</td>
<td></td>
<td>H-1</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>WmC:---------------------</td>
<td>3e</td>
<td>A-1</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Westmoreland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td>A-6</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>WmD:---------------------</td>
<td>4e</td>
<td>A-2</td>
<td>Not prime farmland</td>
<td>No</td>
</tr>
<tr>
<td>Westmoreland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coshocton</td>
<td></td>
<td>A-2</td>
<td></td>
<td>No</td>
</tr>
<tr>
<td>WoA:---------------------</td>
<td>5w</td>
<td></td>
<td>Prime farmland if drained and either protected from flooding or not frequently flooded during the growing season</td>
<td>Yes</td>
</tr>
<tr>
<td>Wick</td>
<td></td>
<td>C-3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZeA:---------------------</td>
<td>2w</td>
<td></td>
<td>Prime farmland if drained</td>
<td>No</td>
</tr>
<tr>
<td>Zepernick</td>
<td></td>
<td>C-3</td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>
NRCS Accessibility Statement

The Natural Resources Conservation Service (NRCS) is committed to making its information accessible to all of its customers and employees. If you are experiencing accessibility issues and need assistance, please contact our Helpdesk by phone at 1-800-457-3642 or by e-mail at ServiceDesk-FTC@ftc.usda.gov. For assistance with publications that include maps, graphs, or similar forms of information, you may also wish to contact our State or local office. You can locate the correct office and phone number at http://offices.sc.egov.usda.gov/locator/app.