NRCS CONSERVATION PRACTICE EFFECTS - NETWORK DIAGRAM

Streambank and Shoreline Protection (580)

1. Stabilization and protection of bank of natural streams, constructed channels, and shorelines of lakes, reservoirs, and estuaries

D.1 (+) Cost of installation and maintenance
D.2 (-) Loss of land or damage to adjacent facilities or land uses
D.3 (-) Streambank/shoreline erosion
D.4 (+) Flow capacity of streams and channels
D.5 (+) Streambank vegetation and root matrix (where vegetative treatment is used or bank armoring does not restrict plant growth)

C.1 (+) Water quality
C.2 (+/-) Aquatic and terrestrial habitat (streambank, shoreline, instream, riparian, etc.)
C.3 (+/-) Aquatic and terrestrial populations and diversity
C.4 (+/-) Recreational opportunities
C.5 (+/-) Income and income stability (individuals and community)
C.6 (+/-) Biodiversity
C.7 (+) Air quality
C.8 (+/-) Sedimentation
C.9 (+/-) Shade
C.10 (+/-) Native plant seed recruitment
C.11 (+/-) Water temperature
C.12 (+) Flow capacity of streams and channels
C.13 (-) Invasive/noxious species (with vegetation management)
C.14 (+) Storage of organic matter/soil carbon
C.15 (+) Soil quality
C.16 (-) Greenhouse gases
C.17 (+) Water quality
C.18 (-) Nutrients and organics in surface water
C.19 (+) Water quantity
C.20 (+) Water temperature
C.21 (+) Sedimentation

Notes:
Effects are qualified with a plus (+) or minus (-). These symbols indicate only an increase (+) or a decrease (-) in the effect upon the resource, not whether the effect is beneficial or adverse.

Projects involving long lengths of bank or shoreline, structural controls, substantial earth moving and/or fill, or sensitive waters may need to be evaluated in a site-specific EA or EIS.

1 Additional information about potential protection measures and their impacts is available in the EIS for the Emergency Watershed Protection (EWP) Program.
2 Conventional bank armoring (e.g., rip rap, gabions) may result in decreased (-) channel/flood plain dynamics, and associated impacts, while other less intrusive methods (e.g., stream barbs, stone toes with sloped, vegetated banks) may result in increased (+) channel/flood plain dynamics.