A Public Health Perspective on Industrial Animal Operations

D’Ann Williams DrPH, MS
Research Associate
Environmental Health Sciences
Johns Hopkins Bloomberg School of Public Health
Agriculture and the Environment

• Emissions associated with agricultural operations
 – PM$_{10}$ and PM$_{2.5}$
 – O$_3$ precursors, NO$_x$ and VOCs
 – Greenhouse gases (CO$_2$, N$_2$, and CH$_4$)
 – NH$_3$
 – H$_2$S
 – Biologically active agents,
 • bacteria, mold spores, allergens, endotoxin
 – Odors - related to the over 200 volatile organic compounds
 – Chemical drift – pesticides, herbicides, pharmaceuticals
Agriculture and Occupational Exposures

• What we know from industrial animal workers
 – pulmonary changes – reduced lung function
 – mucous membrane irritation,
 – asthma
 – chronic bronchitis
 – asthma-like syndrome
 – bronchial hyper-responsiveness
 – chronic obstructive pulmonary disease
 – sensitization
 – acute toxicity from high-dose gas exposures (nitrogen oxides, hydrogen sulfide, ammonia)
 – hypersensitivity pneumonitis,
 – eczema and skin disorders

Source: Mitloehner and Schekner, 2007, Omland, 2002
Public Health Implications

• Respiratory health
• GI health
• Odors
• Psychological
• Quality of life

• Nuisance
• Environmental Impact
• Economics
“Sound Science”

• These exposure situations are not clear-cut

• Clear-cut findings would include
 • an objective finding (e.g., a measurable effect, such as an altered blood chemistry or abnormal radiograph)
 • an adverse health effect, measured toxic substances at known toxic concentration, and an obvious dose-response relationship.

• These community exposures are much more complex because they are a mix of physical, mental, emotional, and social stressors.

Source - Donham. 2010
The public health perspective

• Rural vs Urban

• Traditional farming and the industrial farming process

• Susceptible populations
 – Children
 – Asthma
 – Elderly

• There is no “safe level of PM
• Threshold limits for allergens are being questioned
• Gases are irritants and contributors of chronic respiratory disease
Environmental Health paradigm

- "Susceptibility" Genes & Effect Modifiers
- Agents, Sources, Distribution
- Exposure
- Effects on Health
- Assess Risk
- Reduce Risk
- Policy & Law
- Work environment
- Intervention
Study Area
Yakima County

• One in 11 adults have asthma.

• One in 14 adults have had a heart attack, coronary heart disease, angina, or stroke.

Economic costs of asthma as reported in “The Burden of Washington Asthma”
Study

- 20 Proximal (P) within ¼ mile from facility or facility sprayfield
- 7 Intermediate (I) 3 miles from facility, but not > 3 mile from sprayfield
- 13 Distal (D) > 3 miles from facility and sprayfield
 - Simultaneous indoor/outdoor sampling for 5 days
 - Study Sampling Timeframe June 10 – August 19, 2008

Collected Samples and Analysis

- Airborne PM Total Dust
 - BGI 400S pump, 37mm cassette, PTFE filter
 - PM Mass – gravimetric analysis, JHSPH
- Bos d 2 Cow Allergen – ELISA, Indoor Biotechnologies, Inc.
- Ammonia – Grandko Passive Sampler, ICP analysis, JHSPH

Settled Dust

- Bos d 2 Cow Allergen – ELISA, Indoor Biotechnologies, Inc.
- Endotoxin analysis – LAL, Thorne Lab U. Iowa
Housing Characteristics

Home types were similar:

- home age
- # of people in home
- presence of pets
- air conditioning use
Air Results

Outdoor concentrations - 80, 8 and 2 times higher in proximal vs distal homes

Indoor concentrations 10, 2, NSD higher in proximal vs distal homes
Settled Dust Results

Log Bos d2 by Home Type

Log Endotoxin by Home Type
Results
Distance to Facility

Airborne concentrations above “background” seen at up to 5 miles
Communities

• These findings illustrate that large scale dairies influence the concentrations of environmental contaminants inside and outside of Yakima County community homes.

• There is little research in the US on communities impacted by animal operations.

• There are currently no studies which are looking specifically at community exposures to airborne agricultural contaminants and health outcomes.

• There are no national reporting programs for rural health or agricultural community illnesses
Further Research is Needed

• Studies are needed which evaluate the benefits of research demonstration projects

• Need to evaluate the benefits of best management practices and proposed technologies

• Rural ambient air quality monitoring is needed to evaluate these exposures.

• The establishment of a rural health reporting system is recommended which evaluates:
 • Respiratory
 • GI
 • Mental Health (odors, extra stressors)
 • Quality of Life (enjoyment of environment, economic)