DEFINITION
A manufactured hydraulic barrier consisting of a functionally continuous layer of synthetic or partially synthetic, flexible material.

PURPOSE
To restrict, impede, and control seepage of water and contaminants from water and waste impoundment structures for water conservation and environmental protection.

CONDITIONS WHERE PRACTICE APPLIES
On ponds and water storage structures that require treatment to control seepage rates within acceptable limits.
On earthen waste storage ponds or lagoons and other waste impoundment structures that require treatment to control seepage of contaminants from the storage structure.

CRITERIA
Design. Structures to be lined shall be constructed to meet all applicable NRCS standards. All inlets, outlets, ramps, and other appurtenances may be installed before, during, or after the liner placement, but shall be done in a manner that does not damage or impair the proper operation of the liner.

Design and installation of the flexible membrane shall be in accordance with manufacturer recommendations. All flexible membrane installations shall be certified by the installer or manufacturer as meeting the material and installation requirements of the plans and specifications. Manufacturer recommendations shall be followed with regard to protection from weather and exposure.

Liner Materials. Flexible membrane liner materials shall meet the requirements of the specifications indicated in the following tables:

<table>
<thead>
<tr>
<th>Minimum Geomembrane Thickness Criteria</th>
<th>Type</th>
<th>Minimum Thickness</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wastewater</td>
<td>Clear Water</td>
</tr>
<tr>
<td>HDPE</td>
<td>40 mil</td>
<td>30 mil</td>
</tr>
<tr>
<td>LLDPE</td>
<td>40 mil</td>
<td>30 mil</td>
</tr>
<tr>
<td>LLDPE-R</td>
<td>36 mil</td>
<td>24 mil</td>
</tr>
<tr>
<td>PVC</td>
<td>40 mil</td>
<td>30 mil</td>
</tr>
<tr>
<td>EPDM</td>
<td></td>
<td>45 mil</td>
</tr>
<tr>
<td>FPP</td>
<td>40 mil</td>
<td>30 mil</td>
</tr>
<tr>
<td>FPP-R</td>
<td>36 mil</td>
<td>24 mil</td>
</tr>
<tr>
<td>PE-R</td>
<td>NR</td>
<td>24 mil</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Minimum Bentonite Content for Geosynthetic Clay Liners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>GCL</td>
</tr>
</tbody>
</table>

<p>| Reference Specifications for Geomembranes |</p>
<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDPE</td>
<td>NRCS Mtl. Spec. 594, Geomembrane Liner</td>
</tr>
<tr>
<td>LLDPE</td>
<td></td>
</tr>
<tr>
<td>LLDPE-R</td>
<td></td>
</tr>
<tr>
<td>PVC</td>
<td></td>
</tr>
<tr>
<td>EPDM</td>
<td></td>
</tr>
<tr>
<td>FPP</td>
<td></td>
</tr>
<tr>
<td>FPP-R</td>
<td></td>
</tr>
<tr>
<td>PE-R</td>
<td></td>
</tr>
</tbody>
</table>

Conservation practice standards are reviewed periodically and updated if needed. To obtain the current version of this standard, contact your Natural Resources Conservation Service State Office or visit the Field Office Technical Guide.

NRCS, NHCP
September 2011
NRCS, NHCP
September 2011

Reference Specifications for Geosynthetic Clay Liners

<table>
<thead>
<tr>
<th>Type</th>
<th>Applicable Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>GCL</td>
<td>NRCS Material Specification 595, Geosynthetic Clay Liner</td>
</tr>
</tbody>
</table>

1 mil = 1/1000 of an inch

HDPE – High Density Polyethylene Geomembrane
LLDPE – Linear Low Density Polyethylene Geomembrane
LLDPE-R – Reinforced Linear Low Density Polyethylene Geomembrane,
PVC – Polyvinyl Chloride Geomembrane
EPDM – Ethylene Propylene Diene Terpolymer Geomembrane
FPP – Flexible Polypropylene Geomembrane
FPP-R – Reinforced Flexible Polypropylene Geomembrane
PE-R – Reinforced, Silt–Film, Woven Polyethylene Geomembrane
NR – Not Recommended
GCL – Geosynthetic Clay Liner

NRCS – Natural Resources Conservation Service

Cover Soil. PVC and GCL liners shall be covered with a minimum of 12 inches of soil measured perpendicular to the finished surface. Cover soil may be used on other liners but is not required unless essential for the proper performance, protection, and durability of the installation. Cover soils shall not contain sharp, angular stones or any objects that could damage the liner. Maximum allowable particle size of soil cover material shall be 3/8-in for geomembrane liners and ½-inch for GCL’s, unless the liner is protected by a 10-oz/sq yd or heavier non-woven geotextile or a layer at least 6 inches thick of soil meeting the particle size and shape requirements of the subgrade. Geotextile cushion material shall meet the requirements of GRI Test Method GT12(a). Follow the manufacturer’s recommendations for any additional protective measures.

Anchorage. Liners shall be anchored to prevent uplift due to wind or slippage down the side slope.

Safety. Design shall include appropriate safety features to minimize the hazards of the structure. Warning signs, fences, ladders, ropes, bars, rails, and other devices shall be provided, as appropriate, to ensure the safety of humans and livestock.

Underliner Drainage and Venting.

Subsurface conditions such as soil type and groundwater levels will dictate the direction and scope of the design of the drainage and venting system beneath the geomembrane liner. An inadequate drainage and venting system may result in floating of the geomembrane liner. Hydrostatic pressures from fluctuating groundwater levels or leakage through the liner may cause the liner to float. Gas production and buildup beneath the liner due to the presence of organic material in the soil or leachate leakage through the liner may cause “whales” or bubbling of the liner.

Groundwater and Leakage Drainage. If the groundwater level may be near the invert elevation of the pond, groundwater monitoring should be conducted during the site investigation to verify the expected water table location. In some situations, it may be necessary to install groundwater monitoring wells for a year or more to determine the ground water levels and gather enough information to properly determine the required flow capacity of the drainage system. If high water tables could adversely affect the
proper functioning of the structure, interceptor or relief-type drainage systems should be included to control uplift pressures. Leakage through the liner due to liner damage should also be considered. Giroud and Bonaparte (1989) recommend designing the drainage system based on a frequency of one hole (0.16 in²) per acre of surface area.

Gas Venting. The need for venting for wastewater pond liners shall be investigated as part of the design. Site conditions which may be conducive to gas production include sites which have been subject to long-term seepage of animal waste into the foundation soil, sites with naturally occurring organics in the soil, or fine grained foundation soils where fluctuating groundwater levels may trap gases present in the soil. Venting of wastewater pond liners may not be required if other site conditions exist to allow dissipation of gas pressure from beneath the liner. One such condition is the presence of clean granular foundation soils (SW, SP, GW or GP).

Drainage and Venting System Design. The use of a geosynthetic such as a geonet or geocomposite under the liner to facilitate collection, drainage of liquids and venting of gas should be considered. If drainage and/or venting is needed, the geocomposite manufacturer’s recommendations shall be followed in the system design. The allowable flow rate of the geocomposite shall be determined in accordance with GRI Standard GC8. The pond bottom should be sloped, typically a minimum of 1 percent, to permit positive flow of the liquids or gases. In most cases, the geocomposite will serve both purposes of drainage and venting. In large impoundments, the bottom may need to be sloped in multiple directions in order to decrease the required drainage and venting flow travel distances.

CONSIDERATIONS

The number of penetrations through the liner should be minimized. Trenching and backfilling of fill pipes should be detailed such that charging of the underside of the liner with subsurface water is prevented.

For GCL liners, wastewater and subgrade and cover soils should be analyzed to ensure that undesirable cation exchange (calcium and/or magnesium for sodium) will not occur in the GCL.

A leak detection system is recommended beneath all liners, especially geomembranes.

If agitation operations may result in abrasion or other mechanical damage to the liner, then protective measures should be provided as needed to ensure the integrity of the liner, such as increasing the liner thickness above the minimum values indicated above or providing protective ramps and aprons at agitation locations.

PLANS AND SPECIFICATIONS

Plans and specifications shall be prepared for specific field sites in accordance with this standard and shall describe the requirements for applying the practice to achieve its intended uses.

As a minimum, the plans and specifications shall provide the following:

1. Layout of the containment structure, collection points, waste transfer locations or pipelines, and topography of the site
2. Required liner properties, cushion materials, and pipeline materials
3. Subgrade details, including tolerances on smoothness of the finished grade
4. Details of liner installation, seaming requirements, and requirements for attachments and appurtenances
5. Minimum qualifications of installers
6. Warranty requirements, if desired
7. Quality control testing requirements
8. Fence and signage requirements, if required.

OPERATION AND MAINTENANCE

A plan for operation and maintenance (O&M) of the liner and structure shall be prepared. The plan shall be consistent with the purposes of the type of liner chosen, intended life, safety requirements and design criteria. The plan shall contain requirements including but not limited to:

1. Design capacity and liquid level of the structure.
2. A description of the normal operation, safety concerns and maintenance requirements.
3. Monitoring procedures for leak detection systems, including alarm level leakage rates.

NRCS, NHCP
September 2011
and actions to be taken if these rates are exceeded.

4. Repair procedures.

5. Periodic inspection of the following:
 - Visible portions of the liner for tears, punctures, or other damage;
 - Liner interface with inlets, outlets, ramps, or other appurtenances for damage;
 - Liquid level in the structure;
 - Ballooning of the liner indicating presence of gas beneath the liner.

REFERENCES

ASTM D 5887-09, Test Method for Measurement of Index Flux Through Saturated Geosynthetic Clay Liner Specimens Using a Flexible Wall Permeameter

ASTM D 5890-06, Test Method for Swell Index of Clay Mineral Component of Geosynthetic Clay Liners

ASTM D 5891-02(2009), Test Method for Fluid Loss of Clay Component of Geosynthetic Clay Liners

ASTM D 6392-08, Test Method for Determining the Integrity of Nonreinforced Geomembrane Seams Produced Using Thermo-Fusion Methods.

ASTM D 6497-02(2010), Guide for Mechanical Attachment of Geomembrane to Penetrations or Structures.

ASTM D 7272-06, Test Method for Determining the Integrity of Seams Used in Joining Geomembranes by Pre-manufactured Taped Methods.

ASTM D 7408-08, Specification for Non Reinforced PVC (Polyvinyl Chloride) Geomembrane Seams.

ASTM D 7465-08, Specification for Ethylene Propylene Diene Terpolymer (EPDM) Sheet Used in Geomembrane Applications.

Geosynthetic Research Institute, GRI Test Method GT12(a) – ASTM Version, Test Methods and Properties for Nonwoven Geotextiles Used as Protection (or Cushioning) Materials.

