Index

A
Adaptive management, 6-37, 9-32
Aggradation
 - regression functions, 7-55
Agriculture
 - vegetative clearing, 3-14
 - hypothetical condition and restoration response, 8-83
 - instream modifications, 3-14
 - irrigation and drainage, 3-15
 - restoration, 8-83
 - sediment and contaminants, 3-15
 - soil exposure and compaction, 3-15
Alternatives
design, 5-17
 - restoration alternatives, 5-17
 - supporting analyses, 5-25
Aquatic habitat, 2-59
 - subsystems, 2-59
Aquatic vegetation, 2-63

B
Backwater
computation, 7-24
 - effects, 7-23
Bank stability, 7-57
 - bank erosion, 8-45
 - bank stability check, 8-44
 - charts, 7-60
 - critical bank heights, 7-60
 - protection measures, 8-46
 - qualitative assessment, 7-57
 - quantitative assessment, 7-59
Bank stabilization, 8-45, 8-61
 - anchored cutting systems, 8-64
 - geotextile systems, 8-65
 - trees and logs, 8-66
Bank restoration, 8-61
inspections, 9-23
Bankfull discharge, 1-17, 7-10
 - field indicators, 7-10
Benthic invertebrates, 2-64
 - benthic rapid bioassessment, 7-82
Beaver
 - ecosystem impacts, 8-26
 - impact of dams, 2-58
 - transplanting, 8-26
Biological diversity
 - complexity, 7-78
 - evaluating indices, 7-84
 - in developing goals and objectives, 5-6
Index of Biotic Integrity, 7-79
 - measures of diversity, 7-79
 - spacial scale, 7-79
 - standard of comparison, 7-83
 - subsets of concern, 7-79
Buffers, 8-11
 - forested buffer strips, 8-89
 - multispecies riparian buffer system, 8-81
 - requirements, 8-90
 - urban stream buffers, 8-12

C
Channel, 1-12
 - equilibrium, 1-13
 - scarp, 1-12
 - size, 1-13
 - thalweg, 1-12
Channel form, 1-26
 - anastomosed streams, 1-27
 - braided streams, 1-27
 - predicting stable type, 8-30
Channel incision, 1-20
Channel slope, 2-22
Channel cross section, 2-23
 - composite and compound cross sections, 7-23
 - field procedures, 7-24
 - site/reach selection, 2-23, 7-23
Channel evolution models, 7-30
 - advantages of, 7-34
 - applications of geomorphic analysis, 7-37
 - limitations of, 7-36
Channel-forming (or dominant) discharge, 1-16, 7-3, 7-8
 - determining from recurrence interval, 7-4, 7-12
 - determining from watershed variables, 7-15
 - mean annual flow, 7-15
Channel models, 8-40
 - computer models, 8-41
 - physical models, 8-41
Channel restoration, 8-28
 - dimensions, 8-32, 8-37
 - inspection, 9-23
 - maintenance, 9-26
 - moving beds, known slope, 8-38
 - moving beds, known sediment concentration, 8-39
 - reconstruction procedures, 8-28
 - reference reach, 8-33
 - shape, 8-43
Channel roughness, 2-24
 - formation of aquatic habitat, 2-25
 - in meandering streams, 2-25
Channel stability
 - bank, 7-50
 - bed, 7-51
 - local, 7-51
 - systemwide, 7-51
Channel widening, 7-60
 - predictions, 7-62
Channelization and diversions, 3-8
 - restoration design, 8-79
CompMech (compensatory mechanisms), 7-92
 - use with PHABSIM, 7-92
Conditions in stream corridor, 4-19
 - causes of impairment, 4-23
 - condition continuum, 4-22
 - management influence, 4-26
 - Conduit function, 2-82
Connectivity and width, 2-79, 8-4, 8-17
 - reference stream corridor, 8-7
 - restoration design, 8-20
Conservation easements, 6-7
Contouring, 9-13
Cost components and analysis, 5-21
 - benefits evaluation, 5-29
 - cost-effectiveness analysis, 5-26
 - data requirements, 5-21
 - decision making, 5-28
 - estimations, 6-29
 - incremental cost analysis, 5-27
Cross section surveys, 7-53
Cultural resources, 9-8

D
Dams
 - as a disturbance, 3-7
 - best management practices, 8-77
 - effects on stream corridors, 8-77
 - Glen Canyon Dam spiked flow experiment, 3-9
 - removal, 8-78
Data analysis and management, 7-72
 - costs, 6-30
Degradation
 - regression functions, 7-54
Design, 8-1
Discharge, 1-16
 - continuity equation, 7-17
 - design discharge for restoration, 8-29
 - measurement, 7-25
Drainage, for implementation, 9-11
Dynamic equilibrium, I-1, 2-86
Disturbance, 2-87, 3-1
 - Arnold, MO flood, 3-5
 - biological, 3-6, 7-96
 - broad scale, 3-3
 - causal chain of events, 3-1
 - chemical, 3-6
 - natural disturbances, 3-3
 - physical, 3-6

E
Ecological Restoration, I-3
Ecosystem
 - internal/external movement model, 1-3
 - stream-riparian, 2-53
 - relationship btw. terrestrial/aquatic ecosystems, 2-75
 - river floodplain, 2-53
Effective discharge, 1-17, 7-13
Erosion, 2-15, 2-27
 - control of, 2-27, 9-4
Environmental impact analysis, 5-30
Eutrophication, 2-73
Instream structures, 8-72
design, 8-72
engineered log jams, 9-30
inspection, 9-23
Interception, 2-4
precipitation pathways, 2-5
Irrigation, 9-20

L
Landscape scale, 1-7
in goals and objective development, 5-5
Land use
design approaches for common effects, 8-76
developing goals and objectives, 5-3
summary of disturbance activities, 3-26
Log jams, engineered, 9-30
Longitudinal zones, 1-24
Longitudinal profile, 2-23, 8-43
adjustments, 2-23

M
Managing restoration, 9-40
Manning's equation, 7-17
direct solution for Manning's n, 7-18
Froude number, 7-21
indirect solution for Manning's n, 7-19
Manning's n in relation to bedforms, 7-21
Monitoring, 6-22
acting on results, 6-37
dissemination of results, 6-39
documenting and reporting, 6-38
inspection, 9-21
monitoring plan, 6-23, 6-25, 6-29, 6-33
performance criteria, 6-24
level of effort, 6-31
parameters, and methods, 6-26
target conditions, 6-26
types of data, 6-31
Montgomery and Buffington classification system, 7-29
Mining
altered hydrology, 3-19
contaminants, 3-20
reclamation, 8-96
soil disturbance, 3-20
vegetative clearing, 3-20
Mulches, 9-19

N
Nest structures, 8-25

O
Oak Ridge Chinook salmon model (ORCM), 7-92
Organic material, 2-73
autochthonous, 1-30, 2-73
allochthonous, 1-30, 2-73
heterotrophic, 1-30
Organizing restoration
advisory group, 4-4
boundary setting, 4-3
commitments, 6-10
contractors, 6-10
characteristics of success, 6-17
decision maker, 4-4
decision structure, 4-10
dividing responsibilities, 6-4, 6-6
documentation, 4-13
information sharing, 4-12
permits, 6-13
schedules, 6-12
scoping process, 4-3
sponsor, 4-4
technical teams, 4-5, 6-8
tools, 6-3
volunteers, 6-8
Overland flow, 2-11
depression storage, 2-11
Horton overland flow, 2-12
overland flow, 2-12
saturated overland flow, 2-13
quick return flow, 2-13

R
Rapid bioassessment, 7-80
Reach file/National Hydrography Dataset, 1-9
Reach scale, 1-10
in developing goals and objectives, 5-7
Rehabilitation, I-3
Recovery, 2-87
Recreation, 3-21
restoration design, 8-97
Regional hydrological analysis, 7-15
Regional scale, 1-6
Rehabilitation, I-3
Resilience, 2-87
in Eastern upland forests, 3-4
Restoration, I-2, I-3
Riffles (see Pools and riffles)
Risk assessment, 5-29
River continuum concept, 1-30
Riverine Community Habitat Assessment and Restoration Concept Model (RCHARC), 7-91
Rosgen stream classification system, 7-29
Runoff, 2-11
S
Salmonid population model (SALMOD), 7-93
Sampling
automatic, 7-65
chain of custody, 7-70
discrete versus composite, 7-66
field analysis, 7-67
field sampling plan, 6-30
frequency, 7-63, 6-32
grab, 7-65
labeling, 7-69
laboratory sample analysis, 6-30
manual, 7-65
packaging and shipping, 7-70
preparation and handling, 7-69
preservation, 7-69
site selection, 7-64
timing and duration, 6-32
Saturated overland flow, 2-13
Scarp, 1-12
Schumm classification system, 7-29
equation, 2-21
Sediment
ecological and water quality impacts, 2-26
Sediment control, 9-4
hay bales, 9-5
silt fence, 9-5
Sediment deposition, 2-15
Sediment sampling
analysis, 7-71
collection techniques, 7-71
Index
Sediment transport, 2-15, 8-53
bed load, 2-18
bed-material load, 2-18, 2-19
budget, 8-56
discharge functions, 8-55
HEC-6, 8-54
impact on habitat, 2-26
impact on water quality, 2-26
measured load, 2-19
particle movement, 2-17
processes, 7-57
saltation, 2-17
sediment load, 2-18
sediment rating curve, 7-13, 8-29
stream competence, 2-16
stream power, 2-19, 8-52
suspended bed material load, 2-18
suspended load, 2-18, 2-19
suspended sediment discharge, 2-18
tractive (shear) stress, 2-16, 8-38, 8-48, 8-51
unmeasured load, 2-19
wash load, 2-18, 2-19
Single-thread streams, 1-26
Sinuosity, 1-27
affecting slope, 2-22
meander design, 8-34, 8-36
Site access, 6-15, 9-4
access easement, 6-16
drainage easement, 6-16
fee acquisition, 6-16
implementation easement, 6-16
right of entry, 6-15
Site clearing, 9-10
Species requirements, 7-86, 8-7
Specific gauge analysis, 7-52
Soil compaction, 8-9
ecological role of, 2-51
depleted matrix, 2-49
functions, 2-45
hydric soils, 2-48
microbiology, 2-46, 2-51, 8-9
salinity, 8-10
soil surveys, 8-9
topographic position, 2-47
type, 2-46
wetland, 2-48
Soil bioengineering, 8-23, 8-61
geotechnical engineering, 9-13
Soil moisture, 2-9
evaporation, 2-6
deep percolation, 2-9
field capacity, 2-9
permanent wilting point, 2-9
relationship with temperature, 2-47
Source and sink functions, 2-86
Spatial scale, 1-3
lakes, 1-7
region, 1-6
reach, 1-10
watershed, 1-8
Stability (in stream and floodplain), 2-20, 2-87
avaluable stress check, 8-44
allowable velocity check, 8-48
controls, 8-64
horizontal stability, 8-45
vertical stability, 8-44
Storm hydrograph, 1-15
after urbanization, 1-15
recession limb, 1-15
rising limb, 1-15
Stream classification, 7-26, 7-85
applications of geomorphic analysis, 7-37
advantages, 7-27
alluvial vs. non-alluvial, 7-27
limitations, 7-27
use in restoring biological conditions, 7-86
Stream corridor, 1-1
adjustments, 2-21
common features, 1-12
Stream corridor scale, 1-10
in developing goals and objectives, 5-6
Stream health
visual assessment, 7-76
Stream instability, 7-50
budget, 7-51
local, 7-51
systemwide, 7-51
Stream order, 1-25
as a classification system, 7-28
stream continuum concept, 1-30
Stream scale, 1-10
Stream stability (balance), 1-14, 2-20
Stream system dynamics, 7-48
Substrate, 2-71
bed material particle size distribution, 7-25, 8-28
hyphoric zone, 2-72
pebble count, 7-25
vertical (bed) stability
Subsurface flow, 2-12
T
Temporal scale, 1-11
Terrace, 1-20
formation, 1-20
numbering, 1-21
Thalweg, 1-12
profiles, 7-53
surveys, 7-53
Transitional upland fringe, 1-12, 1-20
Transpiration, 2-5
Two-dimensional flow modeling, 7-90
U
Urbanization, 3-22
altered channels, 3-24, 8-97
altered hydrology, 3-23, 8-97
design tools, 8-101
habitat and aquatic life, 3-25
inpection program, 9-25
runoff controls, 8-99
sediment controls, 8-100
sedimentation and contaminants, 3-24
V
Valley form, 8-4
Vegetation across the stream corridor, 1-21
along the stream corridor, 1-29
canyon effect, 2-54
distribution and characteristics, 2-51
flooding tolerances, 7-96, 8-22
horizontal complexity, 2-52, 8-17
internal complexity (diversity), 2-51
landscape scale, 2-53
structure, 2-55
stream corridor scale, 2-53
vertical complexity (diversity), 2-55, 8-21
zonation, 7-96
Vegetation-hydroperiod modeling, 7-94
use in restoration, 8-23
Vegetation restoration, 8-14
existing vegetation, 8-11
inpection, 9-24
maintenance, 9-28
restoration species, 8-10
revegetation, 8-14, 9-15
W
Waste disposal, sanitation, 9-9
Water surface energy equation, 7-21
profile, 7-18
slope survey, 7-24
Water temperature, 2-28
effects of cover, 2-68
impacts of surface versus ground water pathways, 2-28
impacts on fauna, 2-68
sampling, 7-68
thermal loading, 2-28
Water quality
acidity, 2-30, 2-31
alkalinity, 2-30, 2-31
biochemical oxygen demand (BOD),
dissolved oxygen, 2-31, 2-70,
iron, 2-29
metals, 2-44
nitrogen, 2-35
pH, 2-30, 2-71
phosphorus, 2-35
restoration implementation, 9-6
salinity, 2-29
toxic organic chemicals, 2-38

Watershed, 1-24
designing for drainage and
topography, 8-8
drainage patterns, 1-25
watershed scale, 1-8

Wetlands, 2-60
functions, 2-61
hydrogeomorphic approach, 2-62
National Wetlands Inventory, 2-61
palustrine wetlands, 2-62
plant adaptation, 2-49
USFWS Classification of Wetlands
and Deepwater Habitats of the
United States, 2-61

Width (see Connectivity and width)