Dig In!
Hands-On Soil Investigations
Dig In!
Hands-On Soil Investigations
Featuring sciLINKS®—a new way of connecting text and the Internet. Up-to-the-minute online content, classroom ideas, and other materials are just a click away. Go to page xxii to learn more about this educational resource.

NSTApres
NATIONAL SCIENCE TEACHERS ASSOCIATION
Arlington, Virginia

Published with support from the Natural Resources Conservation Service, U.S. Department of Agriculture
Dig In! Hands-On Soil Investigations
NSTA Stock Number: PB159X
ISBN 0-87355-189-3
Library of Congress Card Number: 00-112121
Printed in the USA by FRY COMMUNICATIONS, INC.
Printed on recycled paper

Copyright © 2001 by the National Science Teachers Association.
The mission of the National Science Teachers Association is to promote excellence and innovation in science teaching and learning for all.

Permission is granted in advance for reproduction for purpose of classroom or workshop instruction. To request permission for other uses, send specific requests to:

NSTA Press
1840 Wilson Boulevard
Arlington, Virginia 22201-3000
www.nsta.org
Contents

Preface ... vii
Acknowledgments .. viii
How to Use This Book ... ix
Maps for Learning .. xi
Lesson Assessment ... xvi
Interdisciplinary Correlations xviii
Correlations with the National Science Education Standards xix
sciLINES ... xxii

Section I
What Is Soil?
Overview .. 1
Lesson 1: Soil Searching .. 3
Lesson 2: Scenic Soil .. 9
Lesson 3: Soil Supreme .. 17

Section II
Who Uses Soil?
Overview ... 25
Lesson 4: Lofty, Level, and Lumpy 27
Lesson 5: Life on the Land 43
Lesson 6: Plant a Plant .. 49
Story: "The Trees Speak" ... 57
Section III
What Lives in Soil?
Overview .. 63
Lesson 7: Animal Apartments .. 65
Lesson 8: Living Links ... 73
Story: "Sara, Queen of Corn" .. 81
Lesson 9: Watching Worms .. 87

Section IV
Where Is Our Soil Going?
Overview ... 93
Lesson 10: Going, Going, Gone? 95
Lesson 11: Soil Scientists .. 105
Lesson 12: An Outdoor Learning Center 109

Appendices
Appendix A: Glossary .. 119
Appendix B: Resources .. 123
Preface

Nature offers many moods: the serenity of running water, the seasonal color change of leaves, the violence of a howling blizzard, the movement of animals in flight, the pastoral beauty of a landscape, the kaleidoscope of colors in a desert sunset. But as we enjoy the natural world, we don't often think of one very important part: the soil. Soil is the substance in which most of our food is grown or raised. Soil is also the mud that squishes under our shoes after a rainstorm, and the grit that grazes our faces as the wind whips across a dry landscape. Soil provides space for our buildings and communities, but also is the substance that muddies our rivers when we don't properly care for the land.

Soil results from a complex series of geological, human, and biological forces. It is a tangible and traceable record of these forces. This record is illustrated by the color, feel, odor, and even the taste differences of the world's thousands of soils.

The Natural Resources Conservation Service (NRCS) has collaborated with the National Science Teachers Association (NSTA) on Dig In! Hands-On Soil Investigations for elementary science teachers and supervisors. The activities in Dig In!, designed for students in kindergarten through fourth grade, introduce soil's mysteries in an enjoyable and educational way.

As you use these activities, you and your students will gain a greater appreciation for the value of soil. Such an understanding is critical if today's students are to become informed decision-makers and conservers of our natural resources.
Acknowledgments

Dig-In! Hands-On Soil Investigations is a co-publication of the Natural Resources Conservation Service (an agency of the U.S. Department of Agriculture) and the National Science Teachers Association.

This book was conceptualized by the former NRCS Educational Relations Staff and by Agri-Education, Stratford, Iowa, under contract with NRCS. Paul DuMont and Theodore Kupelian (Educational Relations Staff) and Thomas Levermann (NRCS) incorporated new ideas and product direction. Other former agency staff contributing to the initial development of Dig-In! include Hubert Kelly and Duane Bosworth.

Lesson 9: Watching Worms was adapted from a Science and Children article by Lori Gibb (Noah Wallace School, Farmington, Connecticut). Sandra Laskey wrote and illustrated two special stories for teachers to read to students.

NRCS soil scientists, including Dr. Richard Arnold, Dr. Hari Eswaran, Dr. Sheryl Kunickis, and Soil Survey Division Director Horace Smith, reviewed various drafts of Dig-In! NRCS Earth Team volunteers contributed to the further development and refinement of Dig-In! Greg Donaldson developed and refined the initial publication design, and Barbara Levermann provided extensive proofreading and editorial review.

Dig-In! was thoroughly reviewed and tested by educators. In addition to the numerous educators who advised NRCS during the book's development, the book was reviewed by Rhonda Bajalia (Crown Point Elementary School, Jacksonville, Florida), Betsy Benz (Wickliffe Elementary School, Wickliffe, Ohio), Dr. E. Barbara Klemm (Associate Professor of Education, University of Hawaii at Manoa), and David Brown (St. Peter School, Quincy, Illinois). Special thanks also go to Melody Orban (Elementary Science Resource Teacher, Kenosha Unified School District, Kenosha, Wisconsin) and the following teachers for testing these activities with their students: Kimberly George, Mary Pilot, and Steve Plato (Bain Elementary School, Kenosha, Wisconsin); Judith Herr (Grewenow Elementary School, Kenosha, Wisconsin); Corinne Nelson and Debbie Schuebel (Harvey Elementary School, Kenosha, Wisconsin); Kathy Leffler (Jefferson Elementary School, Kenosha, Wisconsin); and Gigi Bohm and Sharon Tilton (Union Grove Elementary School, Union Grove, Wisconsin).

The NRCS project manager for Dig In! Hands-On Soil Investigations was Thomas Levermann, Head of Education and Publications, Conservation Communications Staff. At NSTA, the project editor was Jessica Green. Also at NSTA, Linda Olliver designed the book and the cover, Tracey Shipley and Joanne Cunha created line art, Nguyet Tran did book layout, and Catherine Lorrain-Hale coordinated production and printing of the book.
How to Use This Book

These activities are designed to heighten student awareness of the value of soil. The focus of information and activities should not be on getting the right answers, but on asking the right questions. All reasonable ideas given by students are acceptable.

Concepts and Vocabulary

Significant words are italicized in the Teacher Background of each lesson and are also defined in the glossary (Appendix A). These key words allow classroom teachers to match the skill and instructional areas required by school boards with activities contained in each lesson. You will also find tables on the following pages correlating each lesson with other disciplines, the National Science Education Standards, and the Benchmarks for Science Literacy.

Adapt the teaching methods in each lesson to your classroom's individual needs. You might use vocabulary lists, word charts, and concept maps to help students relate ideas and understand key terms.

Planning

Each lesson has a special emphasis and builds upon previous lessons, although each may be used separately. The lessons include background information and guidelines for conducting the activities. Each lesson is made up of five short activities that correspond to the stages in a student's learning cycle. The Dig In! learning cycle is adapted from the 5 E instructional model (Trowbridge and Bybee 1995).

1 Perception: students discuss ideas
2 Exploration: students engage in hands-on investigations of concepts
3 Application: students communicate ideas and apply ideas to a new situation
4 Evaluation: students' knowledge is assessed
5 Extensions (optional): students expand their understanding of concepts

Each Learning Cycle activity requires approximately 30 minutes. The directions for planning and conducting activities include estimated times, but the actual time will vary depending on your pupils' age and abilities and on material availability. Make sure students have plenty of time to explore and experiment, especially during the Exploration and Application stages.

Students can work individually or in groups. Dividing your class into groups will reduce the amount of materials and preparation time needed, and may help students learn the concepts. When conducting activities in groups, remind the class that everybody has strengths and weaknesses and that each group
member should participate, cooperate, and contribute to the success of the group.

Think about ways to make the activities and learning fully accessible to all students, including those with special needs.

Materials

The activities call for inexpensive, low-impact items such as plastic jars, lids, egg cartons, and rocks. Before introducing each lesson, ask students to bring materials from home and send a note to parents explaining why these items are needed. Use recycled products and reuse items as much as possible. The materials list in each lesson gives the items necessary for the first four activities of the Learning Cycle, but not for the optional Extensions at the end of each lesson.

Soil is required for Lessons 1, 2, 3, 6, 9, and 10. In some areas of the United States, soil use is restricted because of concern about transporting agricultural pests and invasive species into vulnerable ecological areas. Check local regulations concerning the use and transportation of soil before you conduct these lessons. Ask the school custodian, a greenhouse or nursery, construction business, or a local NRCS or USDA Office for donations of or suggestions on how to obtain samples of silty, sandy, and clayey soil. In Lessons 1 and 2, your class will sample soil from the school yard. Before you start these lessons, secure permission from school administrators and custodial staff to take soil from the school grounds.

Do not substitute potting soil—because it has been sterilized, potting soil does not contain the items found in natural soil.

Only once, in Lesson 1, is it appropriate to use the word “dirt.” After that, the proper term is “soil.”

Stories

Lessons 6 and 8 include stories to read to students as an optional Extension activity. The stories are preceded by suggestions for activities that will reinforce the concepts in the stories and the lessons.
Maps for Learning

What should students learn? In what order? And how does each strand of knowledge connect to other vital threads? These are the tough questions every teacher faces, and the illustrations on the following pages are designed to help you answer them.

The following illustrations introduce a way of considering and organizing science content standards. The maps use the learning goals of the American Association for the Advancement of Science (AAAS)'s *Science for All Americans* and *Benchmarks for Science Literacy*. The maps are excerpted from *Atlas of Science Literacy*, copublished by AAAS and NSTA in a two-volume work (Volume I, AAAS 2001). The complete Atlas will contain nearly one hundred similar maps on the major elementary and secondary basic science topics: solar system, cells and organs, laws of motion, chemical reactions, evolution, and more.

How to Use the Atlas Maps

Atlas of Science Literacy shows that understanding one goal contributes to the understanding of another. Each Atlas map is designed to help clarify the context of a science benchmark or standard: where it comes from, where it leads, and how it relates to other standards. With the maps as guides, you can make sure your students have experience with the prerequisite learning, and you can draw students’ attention to related content—getting their framework for learning ready!

The Atlas maps included in this book list the ideas relevant to students’ understanding of three main topics: “Processes that Shape the Earth,” “Flow of Matter in Ecosystems,” and “Agricultural Technology” (see Figures i.1–i.3). These maps trace the ideal development of knowledge from kindergarten to eighth grade. Horizontal lines represent the grade-level appropriateness. Goals that deal with the same idea are organized into columns (called “strands”) with more sophisticated goals above simpler ones, connected by arrows. The concept squares in the map that relate directly to *Dig In!* learning goals are shaded in gray. These are the concepts that you want your students to fully grasp. They underlie the Student Objectives presented at the beginning of each lesson.

The Atlas maps can help you connect your instruction to your state science standards. As of this writing, 49 of the 50 states in the US have developed their own standards, most modeled directly on the *Standards* or AAAS's
Benchmarks. The correlation between the Standards and Benchmarks in science content is nearly one hundred percent. So there is a unity of purpose and direction, if not quite a common language. Fortunately, the National Science Foundation, the Council of Chief State School Officers, and other groups have developed websites to guide educators in correlating these national standards with their state goals (for example, the ExplorAsource website at www.explorasource.com/educator gives these correlations). The websites of many state departments of education also provide these correlations.

Exploring the Atlas Maps

Though the three excerpted maps in Figures 1.1-1.3 represent many of the science learning goals for Dig In!, you will want to visit the AAAS Project 2061 website at www.project2061.org to download and explore other maps relevant to Dig In! lessons. The full Atlas maps also display strands of science learning for K-12; for reasons of space, the maps printed here only show K-8 science learning goals.

The maps suggest the progression of learning. A particular Dig In! lesson may not be sufficient for students to become proficient with some of the basic or extended ideas in the map strand; checking the progress of your students along the way will help you see how to adapt instruction. Lessons may also touch on concepts outside of what the various science standards consider essential for basic science literacy. Therefore, you may decide to focus activities to achieve your core learning goals.

In addition to using the maps to plan instruction, you may wish to annotate maps with common student misconceptions, or accurate conceptions you can invoke to dispel these misconceptions. Motivating questions that have worked for you, and phenomena that illustrate points, may also find a place on your annotated maps.

Dig In! activities are interdisciplinary, covering art, geography, language arts, math, and social studies as well as science. You can annotate the Atlas maps with opportunities to achieve learning goals for other disciplines, or use the map design to trace your lesson plan structure for learning goals in the other disciplines.
The interior of the Earth is hot. Heat flow and movement of material within the Earth cause earthquakes and volcanic eruptions and create mountains and ocean basins. 4C/1

The Earth first formed in a molten plate and then the surface cooled into solid rock. (New Benchmark) 4C/1

Vibrations in materials set up wavellite disturbances that spread away from the source. Sound and earthquake waves are examples. 4F/4

Some changes in the Earth’s surface are abrupt (such as earthquakes and volcanic eruptions) while other changes happen very slowly (such as uplift and wearing down of mountains). 4C/2

The Earth’s surface is shaped in part by the motion of water (including ice) and wind over very long times, which act to level mountain ranges. 4C/2

Rivers and glacial ice carry off soil and break down rock, eventually depositing the material in sediments or carrying it in solution to the sea. (SFAA, p.45)

Waves, wind, water, and ice shape and reshape the Earth’s land surface by eroding rock and soil in some areas and depositing them in other areas, sometimes in seasonal layers. 4C/1

Rock is composed of different combinations of minerals. Smaller rocks come from the breakage and weathering of bedrock and larger rocks. Soil is made partly from weathered rock, partly from plant remains—and also contains many living organisms. 4C/2

Earthquakes and Volcanos strand

Rates of Change strand

Weathering and Erosion strand

Rocks and Sediments strand

This map was adapted from Atlas of Science Literacy (AAAS 2001). For more information, or to order, to go www.nsta.org/store.
The idea of atoms explains the conservation of matter: If the number of atoms stays the same no matter how the same atoms are rearranged, then their total mass stays the same. 4D/7

Food provides molecules that serve as fuel and building material for all organisms. 5E/1

Over a long time, matter is transferred from one organism to another repeatedly and between organisms and their physical environment. As in all material systems, the total amount of matter remains constant, even though its form and location change. 5E/2

The cycles continue indefinitely because organisms are decomposed after death to return food materials to the environment. 5A/5

Almost all kinds of animals' food can be traced back to plants. 5E11

Animals eat plants or other animals for food. 5D/1

One organism may scavenge or decompose another. 5D/2

Insects and various other organisms depend on dead plant and animal material for food. 5D/2

Over the whole Earth, organisms are growing, dying, decaying, and new organisms are being produced by the old ones. 5E/3

Map Key

BSL concept from Benchmarks for Science Literacy (AAAS 1993)

code chapter, section, and number of corresponding Benchmark goal

SFAA concept from Science for All Americans (AAAS 1993)

New concept from a newly written benchmark

concept covered in Dig In!

This map was adapted from Atlas of Science Literacy (AAAS 2001). For more information, or to order, to go www.nsta.org/store.
People control some characteristics of plants and animals they raise by selective breeding and by preserving varieties of seeds (old and new) to use if growing conditions change. 8A/2

Some plant varieties and animal breeds have more desirable characteristics than others, but some may be more difficult or costly to grow or raise. 8A/1

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

In agriculture, as in all technologies, there are always trade-offs to be made. Specializing in one crop may risk disaster if changes in weather or increases in pest populations wipe out that crop. Also, the soil may be exhausted of some nutrients, which can be replenished by rotating the right crops. 8A/3

Damage to crops by rodents, weeds, or insects can be reduced by using poisons, but their use may harm other plants or animals. 8A/2

Irrigation and fertilizers can help crops grow in places where there is too little water or the soil is poor. 8A/1

Places too cold or dry to grow certain crops can obtain food from places with more suitable climates. Much of the food eaten by Americans comes from other parts of the country and the world. 8A/5

The kinds of crops that can grow in an area depend on the climate and soil. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

Places too cold or dry to grow certain crops can obtain food from places with more suitable climates. Much of the food eaten by Americans comes from other parts of the country and the world. 8A/5

With improved technology, only a small fraction of workers in the U.S. actually plant and harvest the products that people use. Most workers are engaged in processing packaging, transporting, and selling what is produced. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

With improved technology, only a small fraction of workers in the U.S. actually plant and harvest the products that people use. Most workers are engaged in processing packaging, transporting, and selling what is produced. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

To grow well, plants need enough warmth, light, and water. Crops must be protected from weeds and pests. 8A/1

Machines improve what people get from crops by helping in planting and harvesting. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Most food comes from farms either directly as crops or as the animals that eat the crops. 8A/1

Machines keep food fresh by packaging and cooling and move it long distances from where it is grown to where people live. 8A/4

A crop that is fine when harvested may spoil before it gets to consumers. 8A/3

Heating, salting, smoking, drying, cooling, and airtight packaging are ways to slow down the spoiling of food by microscopic organisms so food can be stored longer before being used. 8A/3

Modern technology has increased the efficiency of agriculture so that fewer people are needed to work on farms than ever before. 8A/4

This map was adapted from Atlas of Science Literacy (AAAS 2001). For more information, or to order, go to www.nsta.org/store.
Lesson Assessment

Use the maps from Atlas of Science Literacy (Figures i.1–i.3) as an aid to your constructivist teaching methods. Allow students to recognize and integrate concepts—either never learned or incompletely remembered—into the big picture of why these concepts are useful to know.

Before you undertake any of the Dig In! activities, it is important to know whether your students have mastered the principles in the map that lead to their current grade level. You may, for example, be surprised to learn that some of your fourth-graders do not really understand that “Most food comes from farms either directly as crops or as the animals that eat the crops” (Benchmark 8A/1), a concept that, according to the Atlas map, should be mastered by grade two.

Students may also have a mix of true and false understandings about what plants need in order to grow. It may be wise to ensure—perhaps by a class-developed concept map—that all students start Dig In! with the basic information needed to understand the concepts presented in these lessons.

The lessons in Dig In! use an inquiry approach to guide student understanding of the concept goals. Each lesson takes students through a learning cycle of making observations, exploring, making predictions, and testing their conclusions. Throughout each lesson, guided discussion, plus verbal and written presentation methods for students, provide a record of thinking and learning—showing you and your students what they understand, what is still fuzzy or missing, and whether students can now use what they know. Use these methods as formative assessments to guide your plans for how to use the Dig In! activities.

Each activity ends with an Evaluation section to assess your students’ understanding of the concepts. The goal of any summative assessment is to determine whether students can apply their learning to new situations—to show you, and to show themselves, that they have a new tool for understanding.

There are many ways to evaluate your students, and you should adapt your methods to the activity and to your class. For instance, Lesson 1 emphasizes ways to describe and characterize soil. An appropriate assessment method may be to have students draw the three types of soil and then fill in the blanks or use vocabulary words to label the drawings. Figure i.4 has an example of a rubric you might use to assess students for this lesson. You can adapt this rubric to match the Student Objectives of any of the lessons.
NSTA's *Science Educator's Guide to Assessment* has more guidelines on this topic (see the resources list in Appendix B).

Extensions

Each lesson concludes with a set of extensions for ways students can expand and test their learning. These extensions are applications of the concepts students have just investigated. You may wish to build a rubric for one or more of these extensions to share with your students, and use the extension as a summative assessment of your students' mastery of concepts.

Figure i.4. A sample assessment rubric for Lesson 1.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Excellent</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description of dirt and soil</td>
<td>Students explain that dirt is a negative term and that soil refers to a valuable Earth material.</td>
<td>Students have difficulty describing the difference between dirt and soil.</td>
<td>Students cannot describe the difference between dirt and soil.</td>
</tr>
<tr>
<td>Comparison of clayey, silty, and sandy soil types</td>
<td>Students describe differences between size and texture of the three soil types.</td>
<td>Students describe only one difference between the three soil types.</td>
<td>Students cannot show any differences between the three soil types.</td>
</tr>
<tr>
<td>Identification of materials in soil</td>
<td>Students identify six or more materials in soil.</td>
<td>Students identify three to five materials in soil.</td>
<td>Students identify only one or two materials in soil.</td>
</tr>
</tbody>
</table>
Interdisciplinary Correlations

The activities in *Dig In! Hands-On Soil Investigations* are designed for elementary science classes, and can also be used to teach concepts in art, geography, language arts, mathematics, and social studies (see Figure i.5).

Figure i.5. Subjects covered by Dig In!

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Art</td>
<td>•</td>
</tr>
<tr>
<td>Geography</td>
<td>•</td>
</tr>
<tr>
<td>Language Arts</td>
<td>•</td>
</tr>
<tr>
<td>Mathematics</td>
<td>•</td>
</tr>
<tr>
<td>Science</td>
<td>•</td>
</tr>
<tr>
<td>Social Studies</td>
<td>•</td>
</tr>
</tbody>
</table>
Correlations with the National Science Education Standards

Dig In! is built upon the precepts of the National Science Education Standards for kindergarten to fourth grade. The science content standards outline what students should know, understand, and be able to do in the natural sciences over the course of K-12 education. Figure 1.6 on the next page shows the correlation between those content standards and the concepts addressed in Dig In!
Figure i.6. Correlations with the *National Science Education Standards* for grades K–4.

<table>
<thead>
<tr>
<th>Content Standard</th>
<th>Topic</th>
<th>Section I</th>
<th>Section II</th>
<th>Section III</th>
<th>Section IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ask a question about objects, organisms, and events in the environment</td>
<td>Lesson 1</td>
<td>Lesson 2</td>
<td>Lesson 3</td>
<td>Lesson 4</td>
</tr>
<tr>
<td></td>
<td>Plan and conduct a simple investigation</td>
<td>Lesson 4</td>
<td>Lesson 5</td>
<td>Lesson 6</td>
<td>Lesson 7</td>
</tr>
<tr>
<td>(A)</td>
<td>Employ simple equipment and tools to gather data and extend the senses</td>
<td>Lesson 8</td>
<td>Lesson 9</td>
<td>Lesson 10</td>
<td>Lesson 11</td>
</tr>
<tr>
<td>Science As Inquiry</td>
<td>Use data to construct a reasonable explanation</td>
<td>Lesson 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Communicate investigations and explanations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure i.6 continued

<table>
<thead>
<tr>
<th>Content Standard</th>
<th>Topic</th>
<th>Section I</th>
<th>Section II</th>
<th>Section III</th>
<th>Section IV</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C) Life Science</td>
<td>The characteristics of organisms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D) Earth and Space Science</td>
<td>Organisms and their environment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Properties of Earth materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes in the Earth and sky</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(F) Science in Personal and Social Perspectives</td>
<td>Types of resources</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Changes in environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(G) History and Nature of Science</td>
<td>Science and technology in local challenges</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Science as a human endeavor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Dig In! Hands-On Soil Investigations brings you sciLlNKS, a creative project from NSTA that blends the best of the two main educational "drivers"—textbooks and telecommunications—into a dynamic new educational tool for all children, their parents, and their teachers. This sciLlNKS effort links specific textbook and supplemental resource locations with instructionally rich Internet resources. As you and your students use sciLlNKS, you will find rich new pathways for learners, new opportunities for professional growth among teachers, and new modes of engagement for parents.

In this sciLlINKed text, you will find an icon near several of the concepts you are studying. Under it, you will find the sciLlNKS URL (www.sciLlNKS.org) and a code. Go to the sciLlNKS Web site, sign in, type the code from your text, and you will receive a list of URLs that are selected by science educators. Sites are chosen for accurate and age-appropriate content and good pedagogy. The underlying database changes constantly, eliminating dead or revised sites or simply replacing them with better selections. The ink may dry on the page, but the science it describes will always be fresh.

sciLlNKS also ensures that the online content that teachers count on remains available for the life of this text. The sciLlNKS search team regularly reviews the materials to which Dig In! points—revising the URLs as needed or replacing webpages that have disappeared with new pages. When you send your students to sciLlNKS to use a code from this text, you can always count on good content being available.

The site selection process involves four review stages:

1 A cadre of undergraduate science education majors searches the World Wide Web for interesting science resources. The undergraduates submit about 500 sites a week for consideration.

2 Packets of these webpages are organized and sent to teacher-webwatchers with expertise in given fields and grade levels. The teacher-webwatchers can also submit webpages they have found on their own. The teachers pick the jewels from this selection and correlate them to the National Science Education Standards. These pages are submitted to the sciLlNKS database.

3 Scientists review these correlated sites for accuracy.

4 NSTA staff approves the webpages and edits the information for accuracy and consistent style.

Who pays for sciLlNKS? sciLlNKS is a free service for textbook and supplemental resource users, but obviously, someone must pay for it. Participating publishers pay a fee to NSTA for each book that contains sciLlNKS. The program is also supported by a grant from the National Aeronautics and Space Administration.