Micro-Irrigation Design Data Worksheet

Project Owner's Name & Address:

Project Location
Field No: Legal Description:

________, Section ________, T________ , R________ ; ____________________________ County, WA

Project Designer
Design Prepared By: Representing: (name of agency, company, etc.) Date:

Attach Construction Drawings or other documentation that identify and locate:
(check all that apply)

- Site Specific Contour or Grid Elevation Map
 Include map scale, legend, north arrow & critical elevations

- Irrigation well(s) or Other Water Source
 Indicate design capacity (gpm) and operating pressure (psi)

- Delivery Pipeline (from source to system controller)
 Indicate sizes, lengths, locations, material type, pressure ratings

- Control Station & Filter Station(s)

- Main Distribution Line & Sub-main Lines
 Indicate sizes, lengths, locations, material type, pressure ratings

- Manifolds, Headers, and Flush Lines
 Indicate sizes, lengths, locations, material type, pressure ratings

- Valves
 Indicate type, make, model, & size

- Zones or Blocks
 Identify zones & provide drip tape layout, number of tapes, and material type

Attach Supporting Documentation that includes:

- Construction Specifications
- Material List and Itemized Cost Estimate
- Recent (< 1 year old) Pump Test Data
- Filter Selection & Design Computations
- Hydraulic Design Computations
Micro-Irrigation Design Data Worksheet, cont.

Project Owner’s Name:

CROP & SOILS DATA SUMMARY

Basic Crop Data

<table>
<thead>
<tr>
<th>Crop to be Irrigated</th>
<th>Rooting Depth (feet)</th>
<th>Plant Spacing (feet)</th>
<th>Row Spacing (inches)</th>
<th>Threshold Salinity (mmhos/cm)</th>
<th>Net Water Requirement (inches/yr)</th>
<th>Peak Daily ET<sub>c</sub> (inches/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Threshold salinity, EC_{e(ch)}, is the maximum mean root zone soil salinity at which yield reductions will not occur.

Computed:

\[
Q_{\text{max}} = 23 \times ET_{\text{max}} = 23 \times _____ \text{ in/day} = _______ \text{ gpm/acre}
\]

where:

- \(Q_{\text{max}} \) = max. water requirement, gpm/day,
- \(ET_{\text{max}} \) = highest peak daily ET_c, inches/day, from above.

(assumes a maximum operating period of 22 hours/day and a design efficiency of 90%)

Basic Soil Data

<table>
<thead>
<tr>
<th>Soil Type/Name</th>
<th>Dominant Texture</th>
<th>Design Soil Intake Rate (Inches/hour)</th>
<th>Available Water Holding Capacity (inches/foot)</th>
<th>MAD<sup>1</sup> (%)</th>
<th>EC<sub>e(ave)</sub><sup>2</sup> (mmhos/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 MAD is Management Allowed Deficit

2 EC_{e(ave)} is Average Soil Extract Electrical Conductivity

Irrigation Water Electrical Conductivity, EC_w ____ mmhos/cm. Compute Leaching Fraction, LF, where:

\[
LF = \frac{0.1794}{\left(\frac{EC_{\text{e(ch)}}}{EC_w} \right)^{3.0417}} = \frac{0.1794}{\left(\frac{_____}{_____} \right)^{3.0417}} = \underline{________}. \quad \text{Use } LF = _____
\]

Attach Supporting Documentation that includes:

(check all that apply)

- Method for determining net annual water requirement and peak daily ET_c
- Rationale for selected Management Allowed Deficit (MAD)
- Rationale for selected leaching fraction
- Laboratory analysis of irrigation water with suitability assessment for drip irrigation including analysis to determine filtration requirements
- Proposed chemical treatments of irrigation water
Micro-Irrigation Design Data Worksheet, cont.

BASIC SYSTEM DATA
(Refer to NRCS Standard 441- Irrigation System, Micro Irrigation, for design requirements)

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total area irrigated</td>
<td></td>
</tr>
<tr>
<td>Available water supply flow rate</td>
<td></td>
</tr>
<tr>
<td>System design flow rate</td>
<td></td>
</tr>
<tr>
<td># Zones Planned</td>
<td></td>
</tr>
<tr>
<td># Zones irrigated concurrently</td>
<td></td>
</tr>
<tr>
<td>Lateral line material</td>
<td></td>
</tr>
<tr>
<td>Drip tape/line material</td>
<td></td>
</tr>
<tr>
<td>Drip tape/line spacing</td>
<td></td>
</tr>
<tr>
<td>Flushing velocity</td>
<td></td>
</tr>
<tr>
<td>Flushing flow rate</td>
<td></td>
</tr>
<tr>
<td>Describe Emitter</td>
<td></td>
</tr>
<tr>
<td>Type (circle one):</td>
<td></td>
</tr>
<tr>
<td>Emitter path width</td>
<td></td>
</tr>
<tr>
<td>Describe Filter system</td>
<td></td>
</tr>
<tr>
<td>Pressure loss across filter</td>
<td></td>
</tr>
<tr>
<td>Time required for backwash</td>
<td></td>
</tr>
<tr>
<td>Describe Sand Separator</td>
<td></td>
</tr>
<tr>
<td>Describe Chemigation Valve</td>
<td></td>
</tr>
<tr>
<td>Describe Check Valve</td>
<td></td>
</tr>
</tbody>
</table>

Project Owner's Name:
ZONE/BLOCK DATA

Refer to NRCS Standard 441- Irrigation System, Micro Irrigation, for design requirements. If all zones/blocks are identical in all design considerations, including topography, submit only one set of data and indicate “ALL” for zone number. Otherwise, submit a complete data set for each zone/block. Use the following equations to calculate system characteristics for each zone:

\[
\text{Flow Variation}, \% = \frac{q_{\text{max}} - q_{\text{min}}}{q_{\text{ave}}} \times 100;
\]

where:
- \(q_{\text{max}}\) = the maximum emitter discharge in the zone;
- \(q_{\text{min}}\) = the lowest emitter discharge in the zone; and
- \(q_{\text{ave}}\) = the average emitter discharge in the zone.

\[
\text{Emission Uniformity, (EU), } \% = 100 \left[1.0 - \frac{1.27C_v}{\sqrt{n}} \right] \frac{q_{\text{min}}}{q_{\text{ave}}};
\]

where:
- \(C_v\) = the manufacturer’s coefficient of variation for the emitters;
- \(n\) - for point source emitters = the number of emitters per plant; or
- \(n\) - for line source emitters = the lateral plant rooting diameter divided by length of line used to calculate \(C_v\), or 1, whichever is greater.
- \(q_{\text{min}}\) = the lowest emitter discharge in a lateral; and
- \(q_{\text{ave}}\) = the average emitter discharge in a lateral.

Zone Number:
Type of drip tape/line:

Emitter data (model, type, etc.)
Spacing: (inches)

Design manifold inlet pressure downstream of zone control valve: (psi)

Emitter discharge = \(q = K_d H^x\) (gal/hr)
\(K_d = \)
\(x = \)

Manufacturer’s Coefficient of Variation, \((C_v)\):

Average emitter design discharge, \(q_{\text{ave}}\): (gal/hr) @ line pressure of (psi)

Maximum emitter discharge, \(q_{\text{max}}\): (gal/hr) @ line pressure of (psi)

Location of maximum discharge emitter:

Minimum emitter discharge, \(q_{\text{min}}\): (gal/hr) @ line pressure of (psi)

Location of minimum discharge emitter:

Flow Variation = _________ %
Emission Uniformity, (EU), = _________ %
(make additional copies of this page as needed)

Zone Number: __________ Type of drip tape/line: __________

Emitter data (model, type, etc.) __________

Spacing: __________ (inches)

Design manifold inlet pressure downstream of zone control valve: __________ (psi)

Emitter discharge = q = K_d H^x (gal/hr)
K_d = __________ x = __________

Manufacturer’s Coefficient of Variation, (C_v): __________

Average emitter design discharge, q_{ave}: __________ (gal/hr) @ line pressure of __________ (psi)

Maximum emitter discharge, q_{max}: __________ (gal/hr) @ line pressure of __________ (psi)

Location of maximum discharge emitter: __________

Minimum emitter discharge, q_{min}: __________ (gal/hr) @ line pressure of __________ (psi)

Location of minimum discharge emitter: __________

Flow Variation = __________ % Emission Uniformity, (EU), = __________ %

Zone Number: __________ Type of drip tape/line: __________

Emitter data (model, type, etc.) __________

Spacing: __________ (inches)

Design manifold inlet pressure downstream of zone control valve: __________ (psi)

Emitter discharge = q = K_d H^x (gal/hr)
K_d = __________ x = __________

Manufacturer’s Coefficient of Variation, (C_v): __________

Average emitter design discharge, q_{ave}: __________ (gal/hr) @ line pressure of __________ (psi)

Maximum emitter discharge, q_{max}: __________ (gal/hr) @ line pressure of __________ (psi)

Location of maximum discharge emitter: __________

Minimum emitter discharge, q_{min}: __________ (gal/hr) @ line pressure of __________ (psi)

Location of minimum discharge emitter: __________

Flow Variation = __________ % Emission Uniformity, (EU), = __________ %

- Attach justification/explanation pertaining to deficit irrigation
 (When available irrigation flow rate is less than peak water requirement)

- Attach documentation describing supplemental irrigation requirements
 (If supplemental irrigation is necessary for germination, crop protection, or other purposes)

- Attach Operation & Management Plan