INTRODUCTION

• Model development at Temple
 ➢ A long history (1937-present)
 ➢ Many scientists participating in:
 Data collection
 Component construction
 Structural design
 Validation
 Application
TEMPLE MODELING GROUP

<table>
<thead>
<tr>
<th>Name</th>
<th>Role/Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jimmy Williams</td>
<td>Systems modeling & EPIC/APEX dev. (1965)</td>
</tr>
<tr>
<td>Jeff Arnold</td>
<td>SWAT developer (1983)</td>
</tr>
<tr>
<td>Jim Kiniry</td>
<td>ALMANAC developer (1980)</td>
</tr>
<tr>
<td>Paul Dyke</td>
<td>Agricultural Models (1987)</td>
</tr>
<tr>
<td>Cole Rossi</td>
<td>SWAT developer/support (2004)</td>
</tr>
<tr>
<td>Raghavan Srinivasan</td>
<td>GIS Specialist & SWAT interface developer (1992)</td>
</tr>
<tr>
<td>Armen Kemanian</td>
<td>Cropping systems modeling (EPIC/APEX) (2006)</td>
</tr>
<tr>
<td>Ken Potter</td>
<td>Soil Scientist (1989)</td>
</tr>
<tr>
<td>Tim Dybala</td>
<td>NRCS Civil Engineer (WRAT Team) (1992)</td>
</tr>
<tr>
<td>Jay Atwood</td>
<td>NRCS Economist (1991)</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Mike White</td>
<td>SWAT development/support</td>
</tr>
<tr>
<td>Santhi Chinnasamy</td>
<td>Hydrologic modeling/SWAT (1998)</td>
</tr>
<tr>
<td>Mauro Diluzio</td>
<td>Hydrology/GIS modeling (1997)</td>
</tr>
<tr>
<td>Carl Amonett</td>
<td>NRCS Soil Conservationist (WRAT Team) ()</td>
</tr>
<tr>
<td>Todd Marek</td>
<td>NRCS Civil Engineer (WRAT Team) (2005)</td>
</tr>
<tr>
<td>Nancy Sammons</td>
<td>SWAT User support (1973)</td>
</tr>
<tr>
<td>Georgie Mitchell</td>
<td>SWAT User support (1977)</td>
</tr>
<tr>
<td>Evelyn Steglich</td>
<td>EPIC/APEX User support/training (1997)</td>
</tr>
<tr>
<td>Avery Meinardus</td>
<td>Programmer (1994)</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Larry Francis</td>
<td>Program Analyst</td>
</tr>
<tr>
<td>Bill Komar</td>
<td>Database administration</td>
</tr>
<tr>
<td>Paul Duckworth</td>
<td>GIS specialist</td>
</tr>
<tr>
<td>Melanie Magre</td>
<td>Interface manual editor</td>
</tr>
<tr>
<td>Theresa Pitts</td>
<td>Programmer</td>
</tr>
<tr>
<td>Shawn Quisenberry</td>
<td>Program analyst</td>
</tr>
<tr>
<td>Deborah Spanel</td>
<td>Biological Science Tech/ALMANAC</td>
</tr>
<tr>
<td>Jaehak Jeong</td>
<td>Hydrologic modeling</td>
</tr>
</tbody>
</table>
INTRODUCTION

TEMPLE MODELS

• ALMANAC, EPIC, APEX, SWAT
 – Operate on spatial scales ranging from individual fields to river basins
 – Daily time step
 – Continuously updated and improved as a result of user interaction and feedback
PARTICIPATION IN OTHER MODEL DEVELOPMENT

• GLEAMS
• SPUR
• WEPP
• WEPS
• NLEAP
APEX
AGRICULTURAL POLICY / ENVIRONMENTAL EXTENDER MODEL

- Whole farm/watershed scale
- Subarea component (EPIC)
- Routing (water, sediment, nutrients, pesticides)
- Groundwater & reservoir
- Feedlot dust distribution
- Daily time step
- Capable of simulating 100’s of years
- (2000)
The EPIC MODEL

- Weather
- Hydrology
- Erosion (wind & water)
- Carbon
- Nutrients (N, P, & K)
- Pesticides
- Salinity
- Crop Growth
- Tillage
- Grazing
- Manure Management
- Economics
WEATHER

- Measured or Simulated
- Temperature (Max and Min)
- Precipitation
- Radiation
- Relative humidity
- Wind speed and direction
WEATHER SIMULATION

- WXGN
 - Stand alone weather generator built into EPIC

- WXPM
 - Stand alone program for computing monthly input statistics
<table>
<thead>
<tr>
<th>TX1007.INP</th>
<th>STATION = BRACKETT STA ID = 1007 STATE = TX CO = KINNEY</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAT -</td>
<td>29.317 LONG - -100.414 ELEV - 340.7 Y-M-D 2008 528</td>
</tr>
<tr>
<td></td>
<td>17.34 20.23 23.92 28.33 31.04 33.90 35.18 35.18 32.62 27.88 22.39 18.24 TMX</td>
</tr>
<tr>
<td></td>
<td>2.30 4.96 9.21 13.85 18.15 21.14 22.42 22.21 19.54 14.45 0.30 3.94 TMX</td>
</tr>
<tr>
<td></td>
<td>6.30 6.03 5.56 4.58 4.07 3.77 3.07 2.91 2.91 3.58 4.27 5.17 5.70 SDMX</td>
</tr>
<tr>
<td></td>
<td>5.26 4.82 5.13 4.56 3.32 2.54 1.67 1.93 3.44 4.75 5.65 5.31 SDMN</td>
</tr>
<tr>
<td></td>
<td>19.71 29.26 25.80 50.33 63.63 67.98 40.13 54.11 70.20 61.29 32.36 18.97 PRCP</td>
</tr>
<tr>
<td></td>
<td>2.483 2.018 2.087 3.235 1.977 1.952 1.546 2.231 2.816 2.070 1.918 3.321 SKRF</td>
</tr>
<tr>
<td></td>
<td>0.070 0.073 0.065 0.063 0.118 0.092 0.053 0.072 0.117 0.084 0.068 0.070 PWJD</td>
</tr>
<tr>
<td></td>
<td>0.239 0.333 0.279 0.317 0.244 0.329 0.448 0.298 0.282 0.377 0.279 0.218 PWJR</td>
</tr>
<tr>
<td></td>
<td>2.63 2.79 2.58 3.23 3.49 3.60 2.70 2.88 4.21 3.70 2.58 2.56 DAYP</td>
</tr>
<tr>
<td></td>
<td>9.50 16.30 12.40 30.60 32.00 33.00 26.40 32.00 35.60 36.30 24.10 11.90 ALPH</td>
</tr>
<tr>
<td></td>
<td>0.60 0.56 0.45 0.48 0.54 0.56 0.52 0.51 0.56 0.57 0.54 0.58 RHUD</td>
</tr>
</tbody>
</table>
WEATHER SIMULATION

• MODAWTHC
 – Stand alone program for converting monthly precipitation to daily
 • Inputs (for each year of record)
 – Monthly maximum temperature
 – Monthly minimum temperature
 – Monthly precipitation
 – Average number of wet days per month
 • Outputs
 – Daily weather file
 – WPM1 file
EPIC WEATHER GENERATOR (WXGN)

- Precipitation
 - Rainfall
 - Occurrence
 - Generated random number compared with wet-dry probabilities
 - Amount
 - Generated from skewed normal distribution
 - Generated from modified exponential distribution
Root Zone

Shallow (unconfined) Aquifer

Vadose (unsaturated) Zone

Hydrologic Balance

Evaporation and Transpiration

Precipitation

Infiltration/plant uptake

Surface Runoff

Lateral Flow

Percolation to shallow aquifer

Return Flow

Deep percolation
HYDROLOGY

• Surface Runoff

• Volume
 – SCS curve number
 – Green & Ampt

• Peak rate
 – Modified rational
 – SCS TR-55
Curves on this sheet are for the case \(\lambda = 0.2S \), so that
\[
Q = (P - 0.2S)^{0.5}
\]
<table>
<thead>
<tr>
<th>Land use</th>
<th>Cover Treatment or practice</th>
<th>Hydrologic condition</th>
<th>Hydrologic soil group</th>
<th>Land Use Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fallow</td>
<td>Straight row</td>
<td>----</td>
<td>A 77</td>
<td>B 86</td>
</tr>
<tr>
<td>Row crops</td>
<td>Straight row</td>
<td>Poor</td>
<td>72</td>
<td>81</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>67</td>
<td>78</td>
<td>85</td>
</tr>
<tr>
<td>Contoured</td>
<td>Poor</td>
<td>70</td>
<td>79</td>
<td>84</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>65</td>
<td>75</td>
<td>82</td>
</tr>
<tr>
<td>Contoured & terraced</td>
<td>Poor</td>
<td>66</td>
<td>74</td>
<td>80</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>62</td>
<td>71</td>
<td>78</td>
</tr>
<tr>
<td>Small grain</td>
<td>Straight row</td>
<td>Poor</td>
<td>65</td>
<td>76</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>63</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>Contoured</td>
<td>Poor</td>
<td>63</td>
<td>74</td>
<td>82</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>61</td>
<td>73</td>
<td>81</td>
</tr>
<tr>
<td>Contoured & terraced</td>
<td>Poor</td>
<td>61</td>
<td>72</td>
<td>79</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>59</td>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>Close-seeded legumes or</td>
<td>Straight row</td>
<td>Poor</td>
<td>66</td>
<td>77</td>
</tr>
<tr>
<td>rotation meadow</td>
<td>"</td>
<td>Good</td>
<td>58</td>
<td>72</td>
</tr>
<tr>
<td>Contoured</td>
<td>Poor</td>
<td>64</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>55</td>
<td>69</td>
<td>78</td>
</tr>
<tr>
<td>Contoured & terraced</td>
<td>Poor</td>
<td>63</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>51</td>
<td>67</td>
<td>76</td>
</tr>
<tr>
<td>Pasture or range</td>
<td>Poor</td>
<td>68</td>
<td>79</td>
<td>86</td>
</tr>
<tr>
<td>"</td>
<td>Fair</td>
<td>49</td>
<td>69</td>
<td>79</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>39</td>
<td>61</td>
<td>74</td>
</tr>
<tr>
<td>Contoured</td>
<td>Poor</td>
<td>47</td>
<td>67</td>
<td>81</td>
</tr>
<tr>
<td>"</td>
<td>Fair</td>
<td>25</td>
<td>59</td>
<td>75</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>6</td>
<td>35</td>
<td>70</td>
</tr>
<tr>
<td>Meadow</td>
<td></td>
<td>Good</td>
<td>30</td>
<td>58</td>
</tr>
<tr>
<td>Woods</td>
<td></td>
<td>Poor</td>
<td>45</td>
<td>66</td>
</tr>
<tr>
<td>"</td>
<td>Fair</td>
<td>36</td>
<td>60</td>
<td>73</td>
</tr>
<tr>
<td>"</td>
<td>Good</td>
<td>25</td>
<td>55</td>
<td>70</td>
</tr>
<tr>
<td>Farmsteads</td>
<td></td>
<td>----</td>
<td>59</td>
<td>74</td>
</tr>
<tr>
<td>Roads (dirt)</td>
<td></td>
<td>----</td>
<td>72</td>
<td>82</td>
</tr>
<tr>
<td>(hard surface)</td>
<td></td>
<td>----</td>
<td>74</td>
<td>84</td>
</tr>
<tr>
<td>Sugarcane</td>
<td></td>
<td>39</td>
<td>61</td>
<td>74</td>
</tr>
<tr>
<td>Impervious (Pavement, urban area)</td>
<td></td>
<td>----</td>
<td>98</td>
<td>98</td>
</tr>
</tbody>
</table>

1 Close-drilled or broadcast.
2 Including right of way.

Taken from the National Engineering Handbook
HYDROLOGY

Sub Surface Flow

• Root Zone
 - Lateral
 ✓ Flow to down stream subarea
 ✓ Quick return flow
 ✓ Pipe flow
 - Percolation to shallow groundwater

• Ground Water
 - Water table Dynamics
 - Return Flow
 - Deep Percolation
HYDROLOGY

• Evapotranspiration
 – PET Equations
 • Penman
 • Penman-Montieth
 • Priestley-Taylor
 • Hargreaves
 • Baier-Robertson
EROSION

• Water
 – USLE
 – USLE modifications
 ✓ MUSLE
 ✓ Onstad-Foster
 ✓ RUSLE

• Wind
 – Manhattan, KS with Bagnolds energy equation
CARBON-NITROGEN TRANSFORMATIONS

EPIC/CENTURY

- Pools
 - Structural litter (1 year)
 - Has a fixed C/N ratio
 - Metabolic litter (<1 year)
 - Contains all the lignin from plant residues and roots
 - Made up of readily decomposable and water soluble organic matter
 - Biomass (<1 year)
 - Soil microbial biomass
 - Slow humus (5 years)
 - Soil organic matter which decomposes at rates intermediate to the microbial and passive humus components
 - Passive humus (200+ years)
 - Composed of old or stable soil organic matter
CARBON

Potential transformations
• Regulated by
 – Moisture
 – Temperature
 – Tillage/compaction
 – Oxygen
• Actual transformations
 – Regulated by
 – Nitrogen availability
 – Mineralization-Immobilization
• Losses
 – Respiration
 – Erosion
 – Runoff/leaching (soluble)
NUTRIENTS

• Nitrogen
 – Surface runoff
 ▪ soluble and adsorbed
 – Subsurface flow
 ▪ lateral and vertical
 – Mineralization
 – Immobilization
 – Denitrification
 – Volatilization
 – Nitrification
 – Crop uptake
NUTRIENTS

• Phosphorus
 – Surface runoff
 ▪ soluble and adsorbed
 – Leaching
 – Mineralization
 – Immobilization
 – Adsorption-desorption
 – Crop uptake
PESTICIDE FATE
GLEAMS

- Surface runoff
 - soluble and adsorbed

- Leaching

- Degradation
 - from foliage and soil

- Washoff from plants
 - rainfall or irrigation
TILLAGE

Functions

- Mixing
- Surface roughness
- Ridge interval and height
- Conversion from standing to flat residue
PLANT GROWTH

• Simulates about 100 crops

• Potential daily growth
 – based on radiation and leaf-area-index

• Actual daily growth constrained by stresses:
 – Water
 – Temperature
 – Nutrients
 – Aeration

• CO2 affects
 – growth and water use
PLANT COMPETITION

• Developed in ALMANAC model (Kiniry, et al.)
• Up to 10 crops growing in the same space
• Competing for
 – Light-function of LAI and height
 – Water
 – Nutrients
• Any combination of plants, trees, brush, weeds, grasses, or field crops
APEX

- Management capabilities
 - Irrigation
 - Drainage
 - Furrow diking
 - Buffer strips
 - Terracing
 - Waterways
 - Fertilization
 - Manure management
 - Lagoons
 - Reservoirs
 - Crop rotation and selection
 - Pesticide application
 - Grazing
 - Tillage
ECONOMICS

Cost and income accounting
ROUTING COMPONENT

• Water
 – Overland flow
 – Channel
 – Floodplain
 – Sub-surface

• Sediment
 – Modified Bagnolds stream power
 – Deposition – degradation
 ▪ Overland flow
 ▪ Channel
 ▪ Floodplain
ROUTING COMPONENT

- Nutrients and pesticides
 - Soluble materials considered conservative
 - Adsorbed materials sediment transported
 - Enrichment ratio concept
APEX

• Applications
 – Evaluate effects of global climate/CO$_2$ changes
 – Design environmentally safe, economic landfill sites
 – Design biomass production systems for energy
 – Livestock farm and nutrient management (manure and fertilizer)
 – Forest management
 – Evaluate effects of buffer strips nationally
 – Simulate runoff, erosion/sediment yield, nutrient and pesticide losses from cropland
New EPIC/APEX Developments
CENTURY CARBON

- Replaced previous mineralization-immobilization component with CENTURY equations.
- Tested with several data sets and reported by Izaurralde.
- Used in National CASMGS runs by Jay Atwood (NRCS).
- Used in National CEAP runs by Jay Atwood.
GIS EPIC recently developed by Junguo Liu (Switzerland/China).

Used to simulate and map world wide crop yields.
CroPMan and WinEPIC

- Windows interfaces for EPIC developed at Temple (Gerik and Harman)

- CroPMan is most useful for individual farm crop productivity and was designed for use by crop consultants and extension specialists.

- WinEPIC is more general--useful in solving a range of problems. It was designed for use by researchers and individuals with a greater understanding of crop physiology and related processes.
HAIL OCCURRENCE/DAMAGE COMPONENT

- Developed the hail model as a part of EPIC in cooperation with Drs. Wang and Little of Tarleton State University.
- Model simulates hail occurrence based on daily probabilities.
- Simulates hail damage based on long-term means and standard deviations.
- The model was applied to the state of Kansas and produced realistic results for five major crops in all nine districts of the state.
- Developed for use in crop insurance.
SOUTHERN OSCILLATION INDEX WEATHER SIMULATOR

• EPIC weather simulator has the option to consider the five phases of the SOI in generating rainfall.

• The model generates from one of five monthly weather parameter files depending on the phase of the SOI.

• Particularly useful in drought studies and real time simulation.
EPIC DYNAMICS--SOIL, ATMOSPHERIC CO₂, TECHNOLOGY

- Rawls equations use to calculate field capacity and bulk density as carbon changes.
- Soil layer thickness changes as bulk density/carbon change.
- Atmospheric CO₂ changes with time--Izaurralde.
- Developed a linear technology change that affects the crop harvest index.
- All of these relationships can be set static or dynamic.
• Drip irrigation was added as an another irrigation option.
• Water is applied automatically at a specified soil depth.
• Rice paddys--constructed as large furrow dike. Puddling operation added (reduces saturated conductivity of second soil layer).
• Plastic mulch cover added--reduces evaporation; increases runoff.
• Automatic mowing operation added--lawns and golf courses.
THE GRAZING COMPONENT

• Subareas identified by owner.
• Owner may have livestock and poultry (up to ten herds)
• Herd attributes
 – Forage intake rate
 – Grazing efficiency
 – Manure production rate
 – Urine production rate
 – C and soluble and organic N and P fractions in the manure.
CONFINED AREA FEEDING

• Feed area may contain cattle, hogs, poultry, etc.

• Daily manure production is partitioned between liquid and solid.

• Manure applied automatically
 – From lagoons to liquid application fields.
 – From stockpile to solid application fields.
MANURE EROSION

- \(YMNU = 0.25 \times (Q \times q_p)^{0.5} \times PE \times SL \times RSDM^{0.5} \times \exp(-0.15 \times AGPM) \)
APEX FLOOD ROUTING

- Added hydrograph development and flood routing component.
- Uses a storage depletion method for hydrograph development and the variable storage coefficient flood routing method.
- Hydrographs are routed at any user selected time interval.
- Provides for stream flow simulation not just daily water yield. This feature allows operation on much larger watersheds than previous versions.
- Hydrographs provide potential increased accuracy for routing sediment, nutrients, and pesticides.
APEX SPATIAL RAINFALL SIMULATOR

- Generates storm centroid (draws uniform random number on X and Y axis).
- Generates rainfall amount from parameters of station nearest storm centroid.
- Rainfall amounts of other subareas a function of distance from storm centroid, rainfall duration, and N-S and E-W gradients.
- Final rainfall amounts adjusted with stochastic component.

FIG. 7. (b) Annual average predicted precipitation in the period 1960-2001.
SPATIAL RAINFALL GENERATOR

Watershed

- Represent Weather Stations (wp1)
- Storm centroid
APEX PLAYA RESERVIORS

- Worked with researchers at Texas Tech University in developing APEX reservoir component for application to playas.
- Playas have no spillways--losses are from evaporation and seepage.
- Modified model to reduce storage with deposited sediment.
- Used to determine water availability for ducks and geese.
APEX POINT SOURCES

• A point source can be entered in each subarea.

• Inputs are daily flow and soluble N and P.
RUSLE2

- A modified version of RUSLE2 was added to EPIC and APEX.

- The RUSLE2 slope length equation performed well on steep slopes in China.

- The RUSLE2 C factor equations simulate erosion realistically over a range in tillage (no till/conventional till).
FEEDLOT DUST COMPONENT

- Dust emission
 - Stocking rate
 - Moisture content

- Dust distribution
 - Wind speed
 - Wind direction
 - Distance from feedlot
 - Angle relative to wind direction
DUST DISTRIBUTION

Wind Direction

Feedlot

Dust distribution