The State of Smoke Tools

Sim Larkin, Tara Strand, Robert Solomon, Miriam Rorig, Candace Krull
(US Forest Service AirFire Team)

Dana Sullivan, Sean Raffuse, Daniel Pryden, Chris Ovard, Lyle Chinkin (Sonoma Technology)

Susan O'Neill (NRCS), Lawrence Friedl (NASA), Ray Knighton (USDA CSREES)

May 13, 2008
Salt Lake City, Utah
Lots of different applications

Planning a burn
 long-range, need to compare options (what if)

Lighting a burn
 real-time (right now!), need to compare options (what if)

Breathing the air
 real-time (right now!), best guess (just what is going to happen)

Diagnosing what happened
 historical, best guess (just what happened)
The State of Smoke Tools

Current State: HAPHAZARD

Technology Development Progression

Emergent

- few, ‘silos’, confusing
- April 2008

Mature

- user choices, inter-operability, ease of use
- June 2008

Transition from April 2008 to June 2008?
Promising Developments

1. Model Inter-operability
 • BlueSky Framework

2. Nationally Consistent Products

3. New, Advanced Tools
 • for Fire Info (SMARTFIRE)
 • for Planning (AQUIPT)

4. Community Organizing
 • for Scientists (Modeling Intercomparison Project)
 • for Users (this, among others)
Basics of Smoke Application

- **FIRE INFO**
- **WEATHER PREDICTIONS**
- **SMOKE TRAJECTORIES and CONCENTRATIONS**

INPUT SYSTEM
- **MODEL FRAMEWORK**
- **OUTPUT SYSTEM**
The New BlueSky Framework:

enabling interoperability

Currently 1296 different paths!
Modularity = Flexibility leads to user choice

Models can be run locally or remotely (as web-services)

JFSP funded project
Real-Time Smoke-Related Systems

Fire Detection
- Smoke Only
- All Pollutants

Locations / Emissions
- Transport

Domain
- **Global**
 - GEOS-Chem
 - FLAMBE / NAAPS
- **National**
 - NWS Smoke
 - WRF-Chem
 - STI-CMAQ
 - ICS
- **Regional**
 - AIRPACT
 - OK-FIRE
 - FCAMMS
 - ClearSky (Ag)
 - Australian
 - Rx
 - Florida SST

Resolution
- 1°
- 36km
- 12km
- 4km
- 1km

More Desirable

The diagram illustrates various real-time smoke-related systems, categorized by domain and resolution, along with fire detection and emission transport functionalities.
National Smoke Products

National Weather Service
• smoke only (12-km) & aq (36-km)

FCAMMS
• smoke only
• regional hi-res (4-km)
• national 12-km 3-day
 (based on NWS NAM)
• national 36-km 7-day
 (based on NWS GFS)

STI CMAQ
• national emissions inventory + fire
• national 36-km
Lessons Learned

Fire information can be of poor quality

Models differ substantially

Plume rise needs fixing

U.S. Fire Report Locations

Courtesy Tim Brown, DRI
SMARTFIRE: Reconciled fire data

- Ground-based systems
- Satellite fire info (NOAA HMS)
- Expert Users (e.g. Incident Command Teams)

SMARTFIRE

Reconciled fire info including sub-grid fuels and plume information

BLUESKY
HMS detects more burning than is reported by ICS-209

- Rangeland burns
- Smaller burns
- Burns outside U.S.

ICS-209 & HMS
July - August 2005
NEI / SMARTFIRE

comparisons based on 2000-2003
NOAA HMS’s use of GOES
picks up smaller burns in the SE
AQUIPT: Longer-range planning

Example: planning fire this August
Can’t say what impacts will be
But can use history as a guide

![Diagram showing the process of AQUIPT]

- Past Weather + Emissions Modeling + Dispersion Modeling = Probabilistic Future Impacts

Web Interface
Example: Fire this August

air quality impacts planning tool

Can’t say what impacts **will be**
But can use **history as a guide**

\[
\text{Aug 2005} + \text{Emissions Modeling} + \text{Dispersion Modeling} = \text{Impacts for Aug 2005}
\]
Example: Fire this August

air quality impacts planning tool

Can’t say what impacts will be
But can use history as a guide
Example: Fire this August

air quality impacts planning tool

Can’t say what impacts will be
But can use **history as a guide**
AQUIPT: Accessible through web

air quality impacts planning tool
AQUIPT: Summary

Provide basic source info, it does the rest

Not just fire

Uses 1979-2006 climatology

Provides statistical answer to “what would have happened?”

24-hr turnaround

Working on better graphics
Smoke and Emissions Model Inter-comparison Project (SEMIP)

Just funded

Large-scale, Inclusive

Based on other “MIPs”
getBlueSky.org portal

Model Evaluation & Field Observations
- field observations (available in real-time, USFS)
- New! Large-scale model inter-comparison project (SEMIP)

Real-Time Smoke & AQ Forecasts
- embedded in operational NWS Smoke Forecasts
- experimental predictions:
 - regional high-resolution CALPUFF (USFS)
 - regional Northwest only CMAQ (WSU)
 - New! national CMAQ (STI)
 - New! Canada: British Columbia and Alberta (UBC)
 - New! real-time scenario game-playing (soon, USFS)
 - more being added

Longer-Range Planning Tools
- New! probable impacts based on climatology (AQUIPT)
- New! National Emissions Inventory (NEI) assessments

Fire Info
- New! SMARTFIRE reconciled fire info
Next Steps

Linking Regional and National Forecasts
- High res local w/cross-boundary transport.
- Incident response super-res (300m) ?

Model Evaluation
- Model Inter-comparison Project
- Continuing field observations

Plume Rise Studies
- Multiple Cores is Largest Problem

Uncertainty Guides
- Ensembles and scenarios as proxy

Game-Playing (What-if?)
- Expose uncertainty / what-if in real-time

Fire Information Improvements
- Linking Rx, Ag fire w/SMARTFIRE
Thank you

Funding from National Fire Plan, **USDA CSREES NRI**, USFS, Joint Fire Science Program, EPA, DOI, and NASA ROSES DSS.

Our many collaborators and partners, including Ray Knighton. Susan O’Neill.

BlueSky Meeting: May 20-22, Boise.

http://getBlueSky.org

Sim Larkin
206-732-7849
larkin@fs.fed.us

Tara Strand
206-732-7867
tstrand@fs.fed.us
The big picture: not so bad

Bluesky models long-range transport very well, but historically has generally under-predicted.
Which model is best?

Emissions based on using different combinations of fuel loading maps and fuel consumption models

Larkin et al 2008
Plume Rise

• Fires are currently modeled as single plumes, lofting smoke unrealistically high and lowering ground impacts.

• In reality, fires are made of many burning areas lofting smoke to various heights.
Multiple plumes make it look better

Twisp PM2.5 Concentrations
SMARTFIRE FireEvent Development (1 of 2)

Cave Creek Fire
6/22-7/4 2005

- ICS-209
- Satellite Detect
- Daily FirePerimeter
- Burned Area as of 7/6/05
 - Unburned/Very Low
 - Low
 - Moderate
 - High

6/22/05

S. Raffuse, Sonoma Tech
Wildfire Area Burned Estimates

For the largest fires examined, SMARTFIRE final footprints match very well with final ICS-209 area estimates.

SMARTFIRE tends to overestimate area burned for smaller wildfires.

This relationship appears independent of ecosystem or fuel type.

\[y = 16.9x^{0.77} \]

\[R^2 = 0.937 \]
Smaller Fires

ICS-209 report information is not available for many small fires.
- Agricultural burns
- Prescribed fires
- Rangeland fires
- Small wildfires

For these fires, available data sets will be used to validate SMARTFIRE.

The large-scale pattern of satellite detects matches fairly well with this single day of fires from a Florida fire database.

Mismatches may be due to satellite false detects, satellite non-detects, or database errors.
Southern California Fires

- asked by USDA for data
- supplemented other sources (e.g. NWS)
- SMARTFIRE (HMS&ICS) fire info
- CMAQ and CALPUFF model outputs (+NWS HYSPLIT)
- Used:
 - internally by USFS fire resource managers;
 - in Smog Stories and press releases by USDA & AirNow;
 - on White House conf call