

Natural Resources Conservation Service June 2019 USDA is an equal opportunity provider, employer, and lender.

NASIS CVIR Language Manual

Scripting Language for NASIS
Calculations, Validations, Interpretations, and Reports
NASIS 7.4 and
Web Soil Survey Rule and Report Manager

Natural Resources Conservation Service June 2019 USDA is an equal opportunity provider, employer, and lender.

U.S. Department of Agriculture
Natural Resources Conservation Service

Original text by Gary Spivak: February 1, 2011
Updated by Kevin Godsey: March 1, 2018
Issued June, 2019

Nondiscrimination Statement
In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil
rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions
participating in or administering USDA programs are prohibited from discriminating based on
race, color, national origin, religion, sex, gender identity (including gender expression), sexual
orientation, disability, age, marital status, family/parental status, income derived from a public
assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any
program or activity conducted or funded by USDA (not all bases apply to all programs).
Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program
information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact
the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or
contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program
information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination
Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint
and at any USDA office or write a letter addressed to USDA and provide in the letter all of the
information requested in the form. To request a copy of the complaint form, call (866) 632-9992.
Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture,
Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington,
D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: program.intake@usda.gov.

USDA is an equal opportunity provider, employer, and lender.

https://www.ascr.usda.gov/how-file-program-discrimination-complaint
mailto:program.intake@usda.gov

NASIS CVIR Language Manual Page i

Contents
Scripts

Introduction ... 1
Overview of CVIR Scripts .. 1

Query ... 1
Data Manipulation (Informix syntax) ... 2
Output .. 2

Data Flow in CVIR Scripts ... 4
Query Scripts .. 7
Property Scripts ... 8
Calculation and Validation Scripts ... 9
Report Scripts ... 9

Text-Style Reports ... 11
XML-Style Reports ... 12
HTML-Style Reports ... 12
Running Reports Against Local or National Database .. 13

SQL Syntax

SQL Syntax Elements ... 15
Conventions Used in this Guide .. 16
ACCEPT .. 17
BASE TABLE .. 18
DEFINE ... 19

Storing Multiple Values in a Variable .. 20
Expression Syntax ... 22
Explanation of Expression Syntax .. 25
String Expressions ... 25

expression [n1:n2] .. 26
expression || expression ... 26
CLIP (expression) ... 26
UPCASE (expression) .. 26
LOCASE (expression) .. 27
NMCASE (expression) ... 27
SECASE (expression) .. 27
TEXTURENAME (expression).. 27
GEOMORDESC (expression, expression, expression) ... 27
STRUCTPARTS (expression, expression, expression) ... 28
ARRAYCAT (expression, delimiter) ... 28
REPLACE (expression, expression, expression) ... 29
DATEFORMAT (expression, format) .. 29
NAMECAP (expression, expression, type, expression) ... 30

NASIS CVIR Language Manual Page ii

Function Expressions ... 30
NEW (expression) .. 30
CODENAME (expression [, name]) .. 30
CODELABEL (expression [, name]) ... 31
APPEND (expression, expression) ... 31
ARRAYCOUNT (expression).. 31
ARRAYMIN (expression) .. 31
ARRAYMAX (expression) ... 32
ARRAYMEDIAN (expression) .. 32
ARRAYMODE (expression).. 32
ARRAYSHIFT (expression, expression) .. 33
ARRAYPOSITION (expression) ... 33
ARRAYROT (expression, expression) ... 33
LOOKUP ([expression,] expression, expression) ... 33
COUNT (expression) .. 34
MIN (expression) .. 34
MAX (expression) ... 34
SPRINTF (“format”, expression [, expression] …) ... 35
USER .. 36
TODAY ... 36
STUFF function .. 36
ISNULL function ... 36

Numeric Functions ... 37
ARRAYSUM (expression) .. 37
ARRAYAVG (expression) ... 37
ARRAYSTDEV (expression) .. 37
WTAVG (expression, expression) .. 37
SUM (expression) ... 38
AVERAGE (expression) ... 38
LOGN (expression) ... 38
LOG10 (expression) ... 38
EXP (expression) .. 39
COS (expression) ... 39
SIN (expression) ... 39
TAN (expression) .. 39
ACOS (expression) ... 39
ASIN (expression) .. 39
ATAN (expression) ... 39
ATAN2 (expression, expression) .. 40
SQRT (expression) ... 40
ABS (expression) .. 40
POW (expression, expression) ... 40
MOD (expression, expression) ... 40
ROUND (expression [, expression]) ... 40

REGROUP Expression .. 41

NASIS CVIR Language Manual Page iii

Report Syntax

DERIVE ... 44
EXEC SQL .. 45
EXEC SQL: Sort Specification .. 51
EXEC SQL: Aggregation Specification .. 52
CROSSTABS .. 55
FONT 58
HEADER and FOOTER .. 59
INPUT ... 60
INTERPRET .. 61
MARGIN .. 64
PAGE 65
PARAMETER .. 66
PITCH ... 70
SECTION .. 71
SECTION: Conditions ... 73
SECTION: KEEP option .. 75
SECTION: Output Specifications .. 76
AT Statement .. 79
ELEMENT Statement .. 81
Column Specifications ... 86
Column Layout Specifications ... 88
SET 93
TEMPLATE ... 94
WHEN ... 96

Additional Information

Writing an SQL Query ... 97
Operators or Functions .. 97
Data Types and Comparison Operators ... 97

Data Types and Comparison Operators .. 98
Character Strings ... 99
Integers .. 99
Decimal and Numeric ... 99
Approximate Numerics ... 99
Date and Time ... 99
Examples Comparison Operators Used in an SQL Query .. 99

Wildcard Characters .. 102
Queries .. 103
Target Tables .. 107
Joining Tables ... 109

NASIS CVIR Language Manual Page iv

Join Examples ... 114
CASE, WHEN, THEN, ELSE Statement ... 115
Subquery ... 116

Subqueries Using the = Operator ... 117
Subqueries Using the EXISTS Operator .. 117
Subqueries Using the NOT EXISTS Operator .. 117

Correlated Subquery ... 118
Uncorrelated Subquery ... 119

Subqueries Using the IN Operator ... 119
Using Subreports .. 121
Parameters for Web Soil Survey Reports .. 122

Using Parameters in a Report Query ... 123
Script Variables ... 124
NASIS CVIR Script Writing References .. 125

Database Structure Guide .. 125
Table Structure Report ... 125
Database Structure Diagrams .. 126
Suggested Reading .. 126

Web Uniform Resource Locator (URL) Reports .. 127
Overview .. 127
URL Report PARAMETERS ... 129

Example to Demonstrate Differences Based on Data Type ... 130
Calling URL Reports with Python ... 132

Examples and Exercises ... 132

Appendices

Appendix 1: Conventions for HTML Reports and Web Soil Survey Rule and Report
Manager ... 134

DocBook XML .. 134
XML Elements Used in Reports ... 135

Elements Used in Tables .. 138
Elements Used in Non-table Reports ... 138
Attributes Used in All Elements .. 139

SVG Scalar Vector Graphics .. 142
Java Scripts ... 142

Appendix II: How to Optimize the SQL Query ... 146
Writing Best Practices .. 146
Further Scripting Hints ... 146

NASIS CVIR Language Manual Page v

Appendix III: Expanded SQL Capabilities in NASIS .. 149
Aggregate Functions with OVER clause ... 150
Ranking Functions ... 150
Date and Time Functions ... 151
Other Analytic Functions .. 152

Appendix IV: Common Error Messages .. 154
Appendix V: HTML Formatting .. 156
Appendix VI: Default HTML Output Format ... 159
Appendix VII: Color Coding ... 164

NASIS CVIR Language Manual Page 1

Scripts
Introduction
This guide provides the NASIS user an understanding of SQL as it relates to various uses in
NASIS. The Web Soil Survey Report Manager is also based on the NASIS Sequel-Informix
format. However, the DocBook syntax must be followed for reports to be properly formatted.
SQL is used to write queries, reports, properties, calculations, and validations. An understanding
of the NASIS data structure (tables and columns) is required before using SQL.

This document is to be used with the NASIS website References. The following reference
documents are necessary for understanding the Query and Report writing process.

The “Tables and Columns” document, which identifies the NASIS tables and its columns; the
“NASIS CVIR Language Manual, Scripting language for NASIS Calculations, Validations,
Interpretations and Reports;” and NASIS Data Structure Diagrams and Data types and
Comparison Operators chart, which is in this document.

Overview of CVIR Scripts
In NASIS, all Queries, Reports, Calculations, Validations, and Properties contain a script, which
is a set of instructions for reading data from the database and using the data to produce some
result. All these scripts have a common structure but have various options that are specific to
their function. This reference manual contains the complete specifications for CVIR scripts.
NASIS 7.0 and later versions are a combination of Sequel and Informix script writing. Most of
the SQL follows standard SQL syntax in the SELECT, FROM, and WHERE clauses. Informix
syntax is used in the SORT and AGGREGATION section of the SQL.

The major parts of a CVIR script are Query, Data Manipulation, and Output.

Query
Instructions to read data from the database, written in a variant of SQL (Structured Query
Language, an international standard for working with relational databases, often pronounced
“sequel”). A simple CVIR query looks like:

EXEC SQL SELECT musym, muname from mapunit, lmapunit
WHERE JOIN mapunit TO lmapunit;.

The “Query” section uses the SQL KEYWORDS (Sequel syntax)

SELECT columns
FROM tables
WHERE conditions are met

NASIS CVIR Language Manual Page 2

The query can also contain optional sections, such as “sort” and “aggregation” (Informix syntax).

Sort By muiid
Aggregate Rows by Muiid Column nuacres SUM.

Data Manipulation (Informix syntax)
A series of instructions for working with the data to produce new data values, using
mathematical formulas, if-then-else logic, and other operations. The “Data Manipulation”
section includes several tools used to transform the data “output”. These include the following
statements:

CODELABEL/CODENAME
DEFINE
ASSIGN
DERIVE
INTERPRET
PARAMETER

Examples of data manipulation statements
DEFINE complabel IF ISNULL(localphase) THEN compname

ELSE compname || “, ” || localphase.
DEFINE dt TODAY.
DEFINE legend_name areaname || ": " || legenddesc.
DEFINE mu_namemuname.

The Data Manipulation phase of the report allows for data pulled from the SQL to be
transformed to another value or class. The Data Manipulation section requires the use of the
OUTPUT section in a report. If no output sections are in the report, then the default output is
generated. It only displays columns from the first query in the order of selection. The headers
can be altered with an alias in the select clause.

Output
Instructions for producing some result. In a report script, this includes the specifications for
laying out the report; for a calculation script, it specifies which columns of the database record
will be updated; and so forth. Text formatted reports follow Informix syntax, but the HTML
output follows DocBook format; most standard HTML tags are allowed. Typical output
statements for a report are:

TEMPLATE mapunit
AT LEFT FIELD WIDTH 20, FIELD WIDTH 8 SEPARATOR “|”.

SECTION
DATA

USING mapunit muname, musym.
END SECTION.

NASIS CVIR Language Manual Page 3

Examples
PITCH HORIZONTAL 15 VERTICAL 8. PAGE LENGTH 80.

TEMPLATE basic SEPARATOR AT LEFT FIELD WIDTH 10, FIELD
WIDTH 90. TEMPLATE head SEPARATOR AT LEFT FIELD WIDTH 10,
FIELD WIDTH 25.

HEADER INITIAL
AT LEFT areaname WIDTH 75;
AT 80 "Print date: ", dt WIDTH 10. AT LEFT "Soil Map
Legend".
END HEADER.

HEADER
AT LEFT "Soil Map Legend".
END HEADER.

SECTION main HEADING
SKIP 1 LINE.
USING head
"Map \n symbol" ALIGN CENTER, "Soil name" ALIGN RIGHT.
USING basic.
DATA
USING basic
musym INDENT 1,
mu_name INDENT -1.
END SECTION.

SECTION WHEN LAST OF liid DATA
USING basic. NEW PAGE.
END SECTION.

CVIR scripts are stored in tables in the NASIS database and are assigned ownership in the same
way as data in the soils tables. Anyone can run a CVIR script, but to edit a script you must be a
member of the group that owns the script and you must check it out from the server. The scripts
are in the Explorer area (left side) of the NASIS screen. They are organized by the type of script
and the NASIS site. Menu options are provided to run a script or to open it for viewing and
editing.

The CVIR Syntax Reference section of this document describes each CVIR statements in detail.
The section is arranged in alphabetic order and notes what types of scripts each statement can be
used in. This information helps you get the syntax right but doesn’t explain the overall concepts.
The next few sections of this document give guidelines on writing scripts. See the section below
for more information on SQL syntax.

NASIS CVIR Language Manual Page 4

Data Flow in CVIR Scripts
A script specifies a set of actions to be performed but not necessarily the order in which they will
be performed. The CVIR processor collects all the statements of a kind and processes them as a
group at the point in the data flow where they are needed. The sequence is:

1. Configuration statements are processed just once and before anything else happens.
These statements don’t produce any actual data but instead specify conditions for other
statements to work with. They include:

ACCEPT
PARAMETER
BASE TABLE
PAGE, MARGIN, FONT, and PITCH
TEMPLATE

2. Data input statements provide the data that the script works on. Most scripts include the
EXEC SQL statement to get data from the database. The INPUT statement can be used
to read data from a file. There are many rules about the interactions between data input
statements when the script contains more than one input statement. These rules are
described in the Syntax Reference section. Many times, a report consists of a main query
(initial data) and then several subqueries (additional data). These subqueries can be
linked to the main query or can be independent of it.

3. Data from the query can be stored in variable in the NASIS database or in Temporary
Tables.

4. References to other scripts are processed next. The DERIVE statement obtains data from
a Property script, and the INTERPRET statement generates interpretations that can be
displayed in a report.

5. The next step is to get data from derived statements. These are statements that can have
parameters that are passed to subreports. Again, these variables can be stored in the
database or in variables that can be used later.

6. Data manipulation is the next step. This is done with the DEFINE and ASSIGN
statements, which can include mathematical formulas, if-then-else conditions, and other
functions. The result is a set of variables whose values can be used in the next step.

7. The final step is output of data, and this varies depending on the type of script. In a
Report script, the output specifications define how the information will be formatted. In
a Calculation script, the output specifications identify what fields in the database will be
updated. A Validation script specifies the messages to be produced when error
conditions are found. A Property script has no output section at all.

NASIS CVIR Language Manual Page 5

8. In the Output section, other reports can be added using Include statements (discussed
later).

9. After completion of the first 8 steps, the process returns to step 2 and repeats until there is
no more data to process.

10. Header and Footer sections are processed only once, while data sections are repeated for
each cycle of the report. If the component table is the base table, the report will repeat
for each component in the selected set until all components are processed.

Following is a diagram showing the flow of data from the Accept statement through to the
output.

NASIS CVIR Language Manual Page 6

Data Flow Diagram for CVIR Scripts

Local Variables

C DBA E F G H

ACCEPT

EXEC SQL / INPUT
(initial)

EXEC SQL / INPUT
(additional)

DERIVE

DEFINE / ASSIGN

INTERPRET
(reports only)

Temp
Tables

NASIS
Database

HEADER / FOOTER SECTION WHEN / SET

Report:
Initial

Report:
Each Record

Calculation/
Validation

NASIS CVIR Language Manual Page 7

Query Scripts
In NASIS, a Query (with a capital Q) is a script used to find data for use in a NASIS session. A
Query can be run against the national database to identify data to be downloaded to the local
(workstation) database, or it can be run against the local database to identify the data that will
appear in the table editors and reports (known as the selected set).

A Query script is the most minimal of all CVIR scripts. It consists of exactly one, partial SQL
query. It does not even use the EXEC SQL prefix as in other CVIR scripts. The only parts of a
SQL query it uses are the FROM and WHERE clauses. When a Query is run, NASIS produces
the full SQL query using the script plus any run-time options selected by the user, such as target
tables and parameters.

Details on the CVIR variant of SQL are in the Syntax Reference section under EXEC SQL. The
key features of a Query script are:

• All the tables listed in the FROM clause are candidates to be target tables when the
Query is run. For each target table the user picks, a SQL query is constructed to select
rows in that table. Additional rows linked to the target table are then found to fill out the
selected set or download list.

• Query parameters can be specified in the WHERE clause by using a comparison with a
question mark, such as “areasymbol =?”. When the query is run, NASIS creates a field
for the user to enter an area symbol. The query automatically looks up “areasymbol” in
the metadata to determine the data type of the areasymbol and whether the areasymbol
has a fixed choice list (domain).

• When a query is sent to the National database, many more tables and data are
downloaded to make sure that all linked data is included. However, sometimes a query
needs to be run several times with different tables targeted so that all relevant data is in
the local database.

To become adept at writing queries, the user must have knowledge of the Structured Query
Language database language. SQL, as it is commonly referred to, was created by IBM in the
early 1970s as a unified language for defining, querying, modifying, and controlling the data in a
relational database.

Over 75 different flavors of SQL are now in commercial use. NASIS originally used the
Informix database but now uses the Microsoft SQL Server database. Although the basic SQL
structure is standardized between commercial databases, there are dialect differences. This
document focuses on the SQL Server dialect and how it is used with the various soils databases.
SQL is used in NASIS, the Soil Data Mart, the Soil Data Access site, and Web Soil Survey.
Understanding SQL allows the user to query data or write reports from these databases and sites.
DocBook formatting is the best way to ensure that your report looks like a Web Soil Survey
report.

NASIS CVIR Language Manual Page 8

Property Scripts
After the Query, the next simplest type of script is the Property script, which has several uses in
NASIS. As the name suggests, a Property script is primarily used to get soil property data from
the database. It typically contains all the logic needed to select data from the appropriate tables,
aggregate the data to the required level, and perform other needed transformations. Putting all
three parts in a Property script provides consistency in the use of a particular soil property.

Property Scripts are Used:

• In the Evaluation portion of an Interpretation. In the Evaluation Editor, the user picks
exactly one Property to be the source of data for the evaluation function. When used for
this purpose, the Property must define one or more of the variables “low”, “rv”, and
“high” for use by the Evaluation. The type of data and number of these variables must
agree with the Data Type and Modality fields entered on the General page of the Property
editor. The Property cannot use the ACCEPT statement to take parameters.

• In the DERIVE statement of another CVIR script (Report, Calculation, Validation, or
another Property). When used another script, the statement is not limited to the variables
“low”, “rv”, and “high” because the DERIVE statement specifies which Property
variables it is expecting. The DERIVE statement can also pass parameters to the
Property’s ACCEPT statement.

• In the Interpretations Editor with the Run button. This use is just for testing a Property.
The user first highlights a row in the Property’s base table and then clicks Run. A page
of output is displayed. The page lists all the variables defined in the Property script and
the values they take on when the Property is run with the selected row of data.

Key Features of a Property Script:

• Properties used in Interpretations have a BASE TABLE component.
o Important: There must be a BASE TABLE statement to specify for which database

table the queries in the script are run.
• The script can include one or more queries. The queries are run in the context from

which they are called. For example, when called from an Evaluation the queries return
data for the Component record being evaluated; and when called from a CVIR script,
they return data for the row of the Base Table that the caller is operating on. The CVIR
engine adds an extra condition to the query’s WHERE clause to limit the results to the
current row of the base table.

• The script can invoke other Property scripts using the DERIVE statement. For further
information, see the Syntax Reference section.

• The script can include DEFINE and ASSIGN statements to create new variables or
modify the values of variables supplied by the queries.

NASIS CVIR Language Manual Page 9

Calculation and Validation Scripts
Calculations and Validations are scripts that automate complex data-entry or data-checking
procedures. A Calculation is an approved, standard procedure for deriving data values using data
previously entered in the database. A Validation is an approved, standard procedure for
checking that various data in the database are consistent with each other, fully populated, or both.

To Use a Calculation or Validation Script:

• Open the Table Editor to the Base Table defined in the script.
• Select one or more rows in the table.
• Locate the Calculation or Validation in either the Explorer or Editor Window and click

Run.
• If running a Calculation, check the options as needed to allow the calculated results to

replace data that was manually entered (tagged M) or that was entered prior to the time
source tracking was established (tagged P). If these are not checked, a Calculation can
only replace empty fields or fields that have previously calculated values.

Key Features of Calculation and Validations Scripts:

• The script can contain all the parts described above for Property scripts.
• A Validation script has one or more WHEN statements that produce messages when a

specified condition occurs. The messages are displayed in the NASIS message window
along with a link to the row that produced the message.

• A Calculation script has one or more SET statements that identify the fields where
calculated results will be placed. A Calculation script can also use WHEN statements to
produce messages about problems with the calculation.

• Calculations and Validations may be created or edited only by people belonging to an
administrative (NSSC Pangaea) group in NASIS. If the script is marked “Not Ready for
Use,” only a member of the group that owns the script can run it.

Report Scripts
A Report is the most complex type of CVIR script because there are many details that must be
specified to produce the exact desired output format. There are two independent styles of report
generation: text based and XML based. They are discussed separately. Also, there is an option
to run a report on either the local or the national database, which can produce different results.

To Use Reports:

• Open a Report from the Report Explorer to see the script and other details in a Report
Editor window.

NASIS CVIR Language Manual Page 10

• Run an open Report from the Report Editor. To run a Report without opening it, select it
in the Report Explorer and pick a Run option from the Explorer menu. Select either Run
Against Local Database or Run Against National Database. To avoid producing too
much output, see the notes below about running against the national database.

• The output of a Report is placed in a temporary file on your computer and then opened
with the standard application for the type of file. For example, the standard application
for HTML output is a web browser (such as Internet Explorer) and the standard
application for text (TXT) output is commonly Notepad. In Windows 10, you can
configure the application for each file type using Control Panel > Folder Options > File
Types.

Key Features of a Report Script:

• The script can contain all the parts described above for Property scripts, plus output
specifications.

• A script that contains only a query (EXEC SQL statement) produces a standard default
report output consisting of a simple table. The column headers are in order of the select-
clause list. This default formatting is convenient for a quick review of the data listing.
The headers can be altered with an alias. The aliases are displayed in the header only if
the field is altered. The easiest way to alter a field—and thereby display the header—is
to add zero to a number (comppct_r + 0 AS component_Percentage) or
concatenate a blank quote to a text field (muname +”” AS Map_unit_Name).

• The string concatenation operator is the plus sign (+) in SQL. The double pipe (||) is the
concatenation for DEFINE statements. You can combine, or concatenate, two or more
character strings into a single character string.

• If the plus sign is used with two numeric values, then the values will be added together.
• You must cast numeric values into a character string to concatenate numbers to text

strings.

Note: At this time, you cannot concatenate the map unit symbol and the map unit name because
they are set to two different data types.

The INTERPRET statement can be used to generate interpretations for inclusion in the report
output.

• For text-style reports, the default layout is an 8.5- by 11-inch page with ½ inch margins
and 12 point font. Page layout statements can be used to change these specifications. For
XML- or HTML-style reports, page specifications are not used because the browser and
style sheet control the final appearance of the report.

• The TEMPLATE statement can be used to define the layout of a line of report output.
This makes it easy to apply the same layout to many output lines, which produces a
consistent appearance.

NASIS CVIR Language Manual Page 11

• The SECTION statement provides a way to group the report output statements and
specify where they are used. A Section represents a block of report output that can
appear at the beginning or end of the report, at a point where some data changes, or
repeatedly.

Reports can be loaded into the Report “table,” allowing the user to query for and manage reports
in a table format.

Reports can be “Run Against the Local Database,” “Run Against the National Database,” or
“Run Offline Against the National Database,” Using the “offline” option allows lengthy reports
to be run on the server instead of your local machine. The advantage of the offline option is that
it releases the NASIS screen, allowing you to continue working in NASIS while the report is
running on the server. When the report is completed, the server sends you an email with a link to
the completed report.

The metadata reports and CVIR guide are necessary references for report writing. Find these
materials on the NASIS website and keep them available. Links to these files are in the
Documentation folder in NASIS in a report named “NASIS Help.”

NASIS Reports contain 3 major parts:

• QUERY
• DATA MANIPULATION
• OUTPUT

Text-Style Reports
Text-style output is the type of report produced by NASIS 5.x and earlier. It consists of lines of
text in which each line is just a series of characters and each character takes up a fixed amount of
space. When a series of lines with consistent layouts are produced, the characters line up to
produce the appearance of columns in a table. Often a vertical bar symbol (|) is used to separate
report columns. Text-style output generally does not look right when printed with a proportional
font.

Text output does not have to be in tabular format. It can look like paragraphs or lists, because
each line of output can have its own format. The output can also be stored in a file and imported
into another program, such as a spreadsheet, using either a fixed column width or variable width
and delimiters. Existing reports in NASIS can be used as examples for any of these output
formats. Copying and modifying an existing report is much easier than starting from scratch.

The AT command is the key to producing text-style output. It specifies where on the line each
piece of data will be placed and how it will be formatted. The Reference section below describes
numerous options.

NASIS CVIR Language Manual Page 12

XML-Style Reports
XML-style output was developed for Web Soil Survey and is included in NASIS 7. XML
(eXtended Markup Language) is a standard data format. It is called a “markup language”
because it contains markings, or tags, mixed with the text. A tag is a name, and possibly some
other attributes, enclosed in angle brackets; for example, <table>. A tag typically describes
how the text that follows the tag is used, or what type of text it is. XML output can be used in a
variety of ways, including as an import to other programs or as a source for transforming into
formatted reports.

XML output is produced with the ELEMENT command. A report cannot use both ELEMENT
and AT commands. An ELEMENT always has a name and may also have attributes and content.

• An element name must correspond with a standard XML tag for the type of output you
want to produce. For example, a formatted table begins with a <table> tag, which is
specified in a NASIS report as ELEMENT “table”. The standard tags are listed in
Appendix 5: HTML Formatting.

• Many XML tags have standard attributes that modify the output appearance. For
example, a table can have borders drawn between cells with the tag <table
border=“1”>. In a NASIS report, this is written as ELEMENT “table”
ATTRIB(“border”, “1”).

• Almost all XML tags have content, which could be other tags or just data to be output.
The content is preceded by a tag (such as those just described) and followed with a
closing tag. Closing tags include the tag name prefixed with a slash. For example, a
paragraph in XML might be “<para>This is some information to
print.</para>”. The corresponding NASIS statement would be ELEMENT
“para” “This is some information to print.”.

• A plain ELEMENT command produces both the opening and closing tags. Sometimes, it
is not possible to include all the content you want in a single ELEMENT command. In
such cases, you can use ELEMENT OPEN “name” to produce just the opening tag.
Then, later in the report script, you must use ELEMENT CLOSE “name” to produce the
closing tag.

HTML-Style Reports
NASIS allows the report output format to be specified as HTML, which is a variation of XML.
To produce reports that look like Web Soil Survey reports, use the elements and attributes listed
in the DocBook XML section of Appendix I. These elements and attributes are converted
automatically to HTML, which is the standard for displaying in a web browser. If you are
familiar with HTML, you can use regular HTML tags as NASIS elements instead of DocBook

NASIS CVIR Language Manual Page 13

XML. Note, however, that HTML tags do not work in the Web Soil Survey Rule and Report
Manager.

HTML output is like XML but does not show the markup tags. These two types of reports are
created the same way and are discussed only in this section. HTML (HyperText Markup
Language) is another example of a standard “markup” formatting language. It too contains
markings, or tags, mixed with the text. HTML reports can easily be copied and pasted into other
programs, such as Word, Excel, and Access.

Important: HTML tags do not work in the Web Soil Survey Rule and Report Manager.

HTML output is produced with the ELEMENT command. A report cannot use both ELEMENT
and AT commands. An ELEMENT always has a name and may also have attributes and content.

A plain ELEMENT command produces both the opening and closing tags. Sometimes, it is not
possible to include all the content you want into a single ELEMENT command. In such cases,
you can use ELEMENT OPEN “name” to produce just the opening tag. Then, later in the
report script, you must use ELEMENT CLOSE “name” to produce the closing tag. The end
closing tags must be placed in the reverse order of creation; otherwise, you will receive an error
message that the tags do not match.
ELEMENT “p” is a shorter version of “para”.
ELEMENT “pre” will retain blank spaces and formatting in the output.

Examples
ELEMENT “para” “This is some information to print.”.

Example error message:

ERROR
While running Report Script "test error messages"
The “body” start tag on line 2 position 2 does not match the end tag of “html”.
Line 454, position 3.

More errors are discussed in Appendix IV: Common Error Messages.

Running Reports Against Local or National Database
When a report is run against the local database, the report normally uses only data in the selected
set. This is convenient because a report can be designed without parameters and then run with
different selected sets to generate different output. But, it also means that Queries need to be run
to get data into the selected set for every table used in the report. EDIT specifies which data set
the query is run against. The default setting is EDIT and does not have to be in the script.

NASIS CVIR Language Manual Page 14

A report can also be written to use any data in the local database, regardless of whether they are
in the selected set. To run the report against data that is not in the selected set, put the word
REAL before the table name in the FROM clause of the report query. A query can have a mix
of REAL tables and standard tables.

The term REAL in front of the table name links the table in the local database instead of the
selected set. When the query is run against the national database, the term REAL is ignored.
“REAL” needs to be on all the tables that are by default in your local database (e.g. area,
areatype, geomorphic tables, etc.).

When a report is run on the national database, there is no selected set; therefore, all tables act as
if they had the term REAL in front of them. Because the national database is very large, careful
planning is important to avoid excessive run time and output. A report designed to work on the
selected set is typically not appropriate for the national database. The PARAMETER statement
should be used so that the user can specify criteria to limit the report output. The term “NAT” is
added to the end of the query or report to identify it as a national report script.

Reports can be run on the national database either normally or offline. When a report is run
normally, the program waits for the report to complete and then displays the output. When a
report is run offline, you send the request to the national database and continue working in
NASIS. When the report completes, you receive an email with a link to the report output.
Running national reports in the normal way is subject to limitations on time and number of rows
returned. These limitations often cause reports to not finish. Offline reports can run longer.

NASIS CVIR Language Manual Page 15

SQL Syntax
SQL Syntax Elements
A SQL statement contains several elements. SQL has “Keywords” that have special meaning.
Although SQL is not case sensitive, the keywords are typically entered in UPPERCASE. This
capitalization is done for organizational purposes only. SQL statements also contain identifiers
that are the names of the databases, tables, and columns. Typically, identifiers are entirely in
lowercase. Statements also contain operators or functions used for comparisons or mathematical
equations. The operator can be used for arithmetic (+ or -) or comparisons (> or =), or it can be
used for logical (AND, OR, NOT) or aggregate (MAX, MIN, SUM, COUNT, AVG) functions.

Keywords

The basic SQL statement consists of 3 key words:
• SELECT (column)
• FROM (table)
• WHERE (condition)

The SELECT clause:

• Specifies the columns (e.g., musym, muname, mukind) to be retrieved.
• Requires each column to have a unique name.
• Allows for expressions that must follow normal SQL syntax (e.g., sandtotal_r +

silttotal_r + claytotal_r AS particle_size).
• Requires an alias (e.g., “particle_size”) to be used to provide a unique name if

expressions are used in the SELECT statement.

The FROM clause:

• Specifies all the tables used in the query.
• May specify aliases and joins.
• Indexes aliased table names faster.
• May contain predicates (conditions on the data).

The WHERE clause:

• Filters which rows to use in the FROM clause.
• Uses normal SQL conditions.
• Uses the NASIS "JOIN table TO table" syntax to simplify writing join conditions.
• Requires two tables in a JOIN condition to have a relationship.

NASIS CVIR Language Manual Page 16

• Has a best practice in which you join the tables and have conditions in the FROM clause.

Example
SELECT nationalmusym, muname
FROM mapunit
WHERE muname = “Harney silt loam, 0 to 1 percent slopes”;.

Identifiers

The NASIS and SSURGO metadata reports, found on the appropriate websites, describe the
identifiers needed for SQL statements. The document “Tables and Columns.pdf” provides the
list of tables and the columns within each. These documents are designed to provide the user
with information necessary to write SQL statements.

The report named “Scripting Parts” in the Documentation folder has many of the most
commonly used scripts in the proper syntax.

Conventions Used in this Guide
CVIR script statements are arranged alphabetically in this technical guide so you can find them
more easily. The descriptions include sections for Syntax, Used In, and Examples.

Syntax

The syntax is described in a formal notation, using the following conventions:

• Braces { } enclose a set of alternatives, of which one must be chosen.
• Any portion of a definition in brackets [] is optional.
• When an ellipsis (...) follows the brackets, the optional part can be repeated.
• The symbol ⇒ means “is defined as” and defines a term that appears in a previous

statement definition.
• Punctuation in bold print is a required part of the statement.
• Keywords in the CVIR language are shown in sans-serif capital letters (e.g., DEFINE),

but the interpreter is not case sensitive for keywords or variable names.

Used In

The Used In line identifies the type of scripts in which the statement may be used. The types
listed are Report, Subreport, Property, and Calculation. Validation scripts use the same
statements as Calculations.

Examples

The examples show sample code.

NASIS CVIR Language Manual Page 17

ACCEPT

Syntax

ACCEPT variable [, variable]
variable ⇒ name

Used In

Subreport, Property, Calculation

Examples
ACCEPT datamapunit_iid.
ACCEPT top_limit, bottom_limit.

The ACCEPT statement defines variables that are passed into the script. These variables can be
used in expressions to calculate values for other variables. They can also be used in the FROM
and WHERE clause of a query by writing $name, where name is the name of the variable. This
creates a parameterized query and is discussed under EXEC SQL.

The first example of the ACCEPT statement could be used in a subreport. The value of a key
column, such as datamapunit_iid, might be passed by a higher level report. The subreport would
use the value in a query to find data related to the datamapunit being processed in the higher
level report.

The second example might be used in a Property script. In this case, two variables are passed by
some script that calls the property, and they could be used to perform some calculation in the
property script. Any variable names may be used because they do not refer to database columns.

The number of parameters passed by the caller must equal the number of variables in the
ACCEPT list. The type and dimension of these variables are not predefined, so they are
determined by the values passed by the caller. For a Property, the primary key column of the
base table acts as if it were in the ACCEPT list, even if the property script has no ACCEPT
statement. The primary key column is used to ensure that the property is providing data for the
same record as the script that calls it. Consequently, a calling script and it’s called property
scripts must use the same base table.

NASIS CVIR Language Manual Page 18

BASE TABLE

Syntax

BASE TABLE table-name.

Used In

Report, Property, Calculation

Example
BASE TABLE component.

When a CVIR script and its associated properties have several database queries, automatic
coordination is performed between the queries by specifying a BASE TABLE. For example, if
the base table is Component, the automatic coordination ensures that each query provides data
for the same component during a cycle of the script. A report script requires a base table if the
script includes an ACCEPT statement, more than one query, or DERIVE statements.

In a report script, the processing cycle is determined by the aggregation specifications in the first
report query, but the base table provides the key used to synchronize queries and properties. For
example, the first query may include a statement like:

AGGREGATE ROWS muiid, coiid

In this example, the component id (coiid) is the lowest level of aggregation, so the report
performs a cycle for each component. Normally the base table for this report, if needed, would
also be component. Deviation from this norm is an advanced report capability that requires
careful testing to ensure that the report works correctly.

A Calculation or Validation script differs from a report in that it performs one complete
execution for each base table row that has been selected by the user and has been checked out for
editing. It accepts key input values from the current base table row, and it stores the calculated
data elements in the same row.

Important: A Property script requires a BASE TABLE to coordinate its query with those in the
calling script. The Property script does not need a BASE TABLE if it uses a parameterized
query.

The table-name used in the BASE TABLE statement must be one of the tables defined in the
NASIS metadata. Either the logical name or the physical name may be used, but the name must
be spelled the same as in the queries.

NASIS CVIR Language Manual Page 19

DEFINE

Syntax

DEFINE variable [expression] [, expression]… [initialization] .
ASSIGN variable expression [, expression]… .
expression (see next page)
initialization (see next page)

Used In

Report, Property, Calculation

Example
DEFINE status CODENAME (mustatus).
ASSIGN status status || “ mapunit”.

The DEFINE statement defines a variable for use in a CVIR script. Each defined variable name
must be unique within a script, and each must be different from the names of columns in the
input queries.

The ASSIGN statement recalculates the value of a variable that was defined in a previous
DEFINE, DERIVE, or EXEC SQL statement. No alias is used with ASSIGN, the
transformation literally replaces the previous data for the specifically named field.

In the following example, compkind is listed in the SELECT command. The CODENAME for
this field could be created in the SELECT command, as a DEFINE with an alias name, or as an
ASSIGN command in which no alias is necessary.

Example
ASSIGN compkind CODENAME(compkind).

To reassign the map value from metric to English:
ASSIGN map_l map_l/25.4.

To use with the ROUND versus the sprint command:
ASSIGN elev_l ROUND(elev_l * 3.28, -1).

To test for NULL:
ASSIGN fraggt10_l if isnull(fraggt10_l) then 0 else
fraggt10_l.

In all instances, the original variable is recalculated but maintains the original variable name.

Names of variables may be any combination of letters, numbers, and the underscore character
provided that the name starts with a letter and is not the same as one of the reserved words in the

NASIS CVIR Language Manual Page 20

language. In this document, reserved words are printed in sans-serif CAPITALS. Different
scripts may use the same variable names, but the variables are independent, even if one script
calls another via a DERIVE statement. There is one restriction on variable names for Properties
that are used in interpretations. Evaluations take their input data from variables named “low”,
“rv”, and “high” (or just “rv” if the property modality is RV). A Property called by an
Evaluation can use other variables for intermediate results, but the final results must be in
variables with these names.

Each variable is given a value by an expression or by a list of expressions separated by commas.
An expression may be based on literals, columns from the input, or other variables. If a list is
used, the listed values are combined into an array that has as many values as the sum of the
number of values of the items in the list. On each cycle of the input, all variables are
recalculated so that they appear in the DEFINE and ASSIGN statements. Variables are not
explicitly typed, so the data type is determined by the result of the expression.

An initial value for a variable can also be specified in the DEFINE statement. A variable
defined with an initial value and no expression is simply a constant; its value will not be
changed. Only a single initial value can be specified, not a list of values.

An important use for an initial value is with an expression that contains the variable being
defined. Consider the statement: DEFINE list (list || name) INITIAL “Names:
”. This statement takes the column “name” from each input record and concatenates it to the
variable “list”, following the initial string “Names: ”. If no initial value is defined with this
type of expression, the variable starts out with a null value, which could produce undesirable
results.

Storing Multiple Values in a Variable
A variable may hold a single value or multiple values. The number of values is called the
variable’s dimension. Multiple-valued variables are sometimes referred to as arrays. They can
be created in several ways:

• With an AGGREGATE clause in an EXEC SQL statement.
• From a Property called by a DERIVE statement.
• From a list of values or expressions in a DEFINE statement.
• By using the APPEND operator.

Depending on the aggregations and other operations used, the variables in a report can end up
with different dimensions. Some operators, such as LOOKUP and WTAVG, can cause a report
to fail if the dimensions of their arguments are not the same. Therefore, attention must be paid to
the way multiple-valued variables are processed.

NASIS CVIR Language Manual Page 21

Most of the operators used in expressions do not change the dimension of the data. If an
operator uses two or more variables of different dimensions, the result generally has the largest
dimension of the arguments. For example, multiplying a variable with values (1,2,3,4) by the
single value 5 produces the multiple-valued result (5,10,15,20).

A query that finds no rows results in variables with a dimension of 0, which are typically treated
the same way as null values. If all the arguments to an operator have dimension 0, the result also
has dimension 0; but if there is a mixture of zero and non-zero dimensions, the result has the
larger dimension. In the example above, multiplying the array (1,2,3,4) by a variable with no
values would produce an array of four nulls.

Operators that do not follow these rules are noted in the individual descriptions below.
Examples are the array operators like ARRAYSUM that reduce an array of values to a single
value.

NASIS CVIR Language Manual Page 22

Expression Syntax
The following syntax rules define all the types of expressions that may be created.

NASIS CVIR Language Manual Page 23

NASIS CVIR Language Manual Page 24

NASIS CVIR Language Manual Page 25

Explanation of Expression Syntax
An expression can produce either a numeric value or a character-string value, depending on its
contents. Numeric and character data can be mixed in expressions, and the data will be
converted to the appropriate type if possible. If a conversion is not possible (such as trying to
convert “abc” to a number), an error message will be produced.

Expressions are evaluated in order of operator precedence, where higher precedence operations
are performed before lower precedence operations. For example, the arithmetic expression: A +
B * C is evaluated as A + (B * C) because multiplication has higher precedence than
addition. When two operators of equal precedence are next to each other, the one on the left is
performed first. To make the order of evaluation explicit, put parentheses around the part that
should be performed first, such as (A + B) * C.

The operator precedence from highest to lowest is:

• Functions
• Multiplication and exponentiation (*, / or **)
• Addition and concatenation (+, - or ||)
• Comparisons
• Boolean expressions
• Conditional expressions

Most of the expressions that involve arithmetic, Boolean, and comparison operators require little
explanation. They work as expected and produce numeric results. The operator ** denotes
exponentiation; the expression A ** B is equivalent to the function POW(A, B).

Comparisons and Boolean expressions produce a 1 for True and a 0 for false. The MATCHES
comparison works as in Informix (use in DEFINE statements). A variable can be compared with
a pattern string containing wild card characters. The asterisk symbol * matches any string of
characters, a question mark ? matches any single character, and square brackets [] enclose a list
of characters to be matched. The IMATCHES comparison is the same as the MATCHES
comparison but performs a case insensitive match. Use LIKE in the SQL.

If a null value is used in an expression, the result is normally null. However, in comparisons a
null value is treated as less than any non-null value and two nulls are considered equal to each
other. In Boolean expressions, a null is considered False. Invalid computations, such as division
by zero, produce a null result. Special cases involving null values are noted individually.

String Expressions
String expressions allow for substring extraction, string concatenation, and case changes. They
expect to operate on character type input and will convert the input to character if necessary.

NASIS CVIR Language Manual Page 26

Note that when a number is converted to a string, the number is expressed with 6 decimal places.
To produce different formats for numbers, use the SPRINTF function. The results of the string
expressions listed below are always character strings.

The use of the double pipe “||” allows for concatenating of fields, such as the Irrigated capability
class and subclass.

DEFINE ilcCODELABEL(irrcapcl) || CODELABEL(irrcapscl).
DEFINE nilc CODELABEL(nirrcapcl) ||
CODELABEL(nirrcapscl).

expression [n1:n2]

Returns a substring of the string expression, starting at position n1 for a length of n2
characters. The first character of the string is position 0. Note that this differs from the
way substrings are defined in SQL queries.

Example: If variable A has the value “Sample”, the expression A[1:3] returns the
value “amp”.

expression || expression

Concatenates two strings.

Example: The expression “ABC” || “DEF” produces the string “ABCDEF”. If one
expression in a concatenation is null, it is treated as the string “”; therefore, the result is
not a null value unless both expressions are null.

Concatenating two fields with a dash in between:
DEFINE symname musym || "--" || muname.

Or concatenate a text string with a field:
DEFINE compsim "Description of " || compname.

CLIP (expression)

Removes trailing blanks from a string. This is not normally necessary because NASIS
removes trailing blanks when reading data from the database.

Example: The expression CLIP(“ABC ”) produces the string “ABC”.

UPCASE (expression)

Converts a string to uppercase.

Example: The expression UPCASE(“ABc12”) produces the string “ABC12”.

NASIS CVIR Language Manual Page 27

LOCASE (expression)

Converts a string to lowercase.

Example: The expression LOCASE(“ABc12”) produces the string “abc12”.

NMCASE (expression)

Converts a string to “name” case: first letter of each word uppercase and the remainder
lowercase.

Example: The expression NMCASE(“now is the time”) produces the string
“Now Is The Time”.

SECASE (expression)

Converts a string to “sentence” case: the first letter of the string is uppercase and the
remainder is lowercase.

Example: The expression SECASE(“now is the time”) produces the string
“Now is the time”.

TEXTURENAME (expression)

Converts a set of texture codes to a special string format used in reports. The expression
used by TEXTURENAME can have zero or more values, each of which is a string used
as a code value for the NASIS data element “texture”. This element can contain a
mixture of codes for texture classes, modifiers, and terms used in lieu of texture. The
codes are expanded and concatenated together, with commas as necessary, to produce a
texture description as used in manuscript reports.

Example: If the variable T has two values, one of which is “SL”, and the other is “SR-
CL GR-SIL”, the expression TEXTURENAME(T) produces a result with two values, the
string “sandy loam”, and the string “stratified clay loam to gravelly silt loam”.

GEOMORDESC (expression, expression, expression)

Converts data from the component geomorphic description to a standard landform
description string for use in reports. The three expressions used as input can be arrays,
but all must have the same number of values. The first parameter is the feature name or
names for a component, the second has the feature Id for each feature, and the third has
the Exists-On reference for each feature. Where an Exists-On reference matches a
feature ID, the two names are combined with the word “on”. If two features have the
same feature ID, the Exists-On reference is attached to both and they are output as
separate strings. Other features that do not have an Exists-On relationship are output as

NASIS CVIR Language Manual Page 28

separate strings. The number of values in the result can be more or less than the number
of values in the input expressions.

Example: Data for this operation would be obtained by joining the component
geomorphic description table and the geomorphic feature table, such as:

EXEC SQL
SELECT geomorph_feat_name, geomorphic_feat_id,
exists_on_feature
FROM component
INNER JOIN component_geomorph_desc BY default
INNER JOIN REAL geomorph_feature BY default;
AGGREGATE COLUMN geomorph_feat_name NONE,
geomorphic_feat_id NONE, exists_on_feature NONE.

Assume this query produces the data shown in the following table:

geomorph_feat_name geomorphic_feat_id exists_on_feat

alluvial fan
till plain 1
pothole 2 1

The expression GEOMORDESC(geomorph_feat_name,
geomorphic_feat_id, exists_on_feat) would produce a result with two
values: “alluvial fan” and “pothole on till plain”.

STRUCTPARTS (expression, expression, expression)

Converts data from the Pedon Horizon Soil Structure table to a standard structure
description string for use in reports. The parameters are used in the same manner as in
the GEOMORDESC function above. The first parameter would be the type of structure,
which is typically a string concatenated from structure_grade, structure_size, and
structure_type. The second parameter is the row identifier, structure_id, and the third
parameter is the reference column, structure_parts_to. The only difference between
GEOMORDESC and STRUCTPARTS is that the latter uses the words “parting to” to
separate linked structures instead of using “on”.

ARRAYCAT (expression, delimiter)

Concatenates the values in a multiple-valued variable or expression to produce a single-
valued result. The first argument is a multiple-valued expression, and the second
argument is a string to be used as a delimiter between the values. An empty string may
be specified as the delimiter. If any values of the first argument are null, they and their

NASIS CVIR Language Manual Page 29

associated delimiters are skipped. The result has dimension 0 if the first argument has
dimension 0, otherwise it has dimension 1.

Example: If the variable A has four values, “A1”, “A2”, Null, and “A4”, then the
expression ARRAYCAT (A, “-”) would produce a single string: “A1-A2-A4”.

REPLACE (expression, expression, expression)

Modifies character strings by replacing all occurrences of a sequence of characters with a
replacement string. The first expression is the original character string to be modified.
The second expression is a string to search for, and the third expression is a replacement
string. Typically the second and third expressions will be single-valued, but the first
expression can be multiple valued. The third expression can be an empty string, which
causes all occurrences of the second string to be removed.

Example: If the variable A has the value, “This is a new test”, the expression REPLACE
(A, “new”, “good”) would produce: “This is a good test”.

DATEFORMAT (expression, format)

Applies custom formatting to date/time data values in a DEFINE statement. The first
expression is a variable containing dates as retrieved from the database. The format is a
string in quotes that describes the desired date format. It follows the date-format rules for
the Microsoft Net Framework, which is described in detail on their website. In general,
the two kinds of date formats are (1) a single-letter format specifies one of the standard
formats, and (2) a multiple-character string defines a custom format.

Standard formats are listed on the Microsoft help site and can be found by a search
engine using the keywords “Microsoft net framework dateformat.” Examples include:

“d” Short date format 6/5/2009

“D” Long date format Friday, June 5, 2009
“g” General date format (short time) 6/5/2009 1:45 PM

“G” General date format (long time) 6/5/2009 1:45:30 PM

Examples of custom formats include:

“M/d/yy” 6/5/09

“MMMM d, yyyy” June 5, 2009

“MM/dd/yyyy H:mm” 06/05/2009 13:45

NASIS CVIR Language Manual Page 30

Examples:

If the variable A has the value, “10/06/2008 14:10:05.1554”, the expression
DATEFORMAT (A, “d”) would produce: “10/6/2008”.

DATEDIFF (datepart, startdate, enddate)

NAMECAP (expression, expression, type, expression)

Applies standard capitalization rules for map unit names and component names. This is
designed for use with the Calculations for map unit and component name capitalization.
The first parameter is an array of component names that are exceptions to the standard.
Normally, this array comes from the “name_exceptions” file distributed with NASIS.
The second parameter is the array of component or map unit names to be standardized.
The third parameter is “C” for components or “M” for map units. The fourth parameter
is the map unit kind and is only required for map units.

In general, the capitalization standard is that the first letter of each component name is
capitalized and everything else is in lowercase. The names in the exception list don’t
follow this rule. In addition, map unit names are arranged in a standard form depending
on the map unit kind.

Example:

INPUT exceptions FILE “name_exceptions”.
DEFINE stdnames
NAMECAP(exceptions, muname, “M”, mukind).

Function Expressions
The following function expressions can use either character values or numeric values. These
expressions produce results in the same type as the input, unless otherwise specified.

NEW (expression)

Returns True (1) if the value of the expression is different from the value it had in the
previous cycle of the script, or returns False (0) if the value is the same.

Example: The expression NEW (mapunit_symbol) is True each time the mapunit
symbol changes.

CODENAME (expression [, name])

Returns the code name for the code value given by expression, using the data dictionary
domain of the element name. The name must be a data element name or its alias from an
EXEC SQL statement. The value of the expression must be a number representing the

NASIS CVIR Language Manual Page 31

internal identifier for a code. This is the value normally returned by a query. If
expression is the same as name, you do not have to specify it twice.

Example: If the variable compkind were returned from a query, the expression
CODENAME(compkind) would produce a string normally displayed in NASIS for that
data element, such as “series”. Code names are generally in lowercase. The expression
CODENAME(val, compkind), where val is a variable from a DEFINE statement,
would produce the code name for a compkind whose value is in the variable val.

CODELABEL (expression [, name])

Returns the code label for the code value given by expression, using the data dictionary
domain of the element name. This operates the same as CODENAME. The code label is
typically the same as the code name but is capitalized properly for use in reports.

Example: In the example above, the expression CODELABEL(compkind) would
produce “Series”.

APPEND (expression, expression)

Combines the values from two variables or expressions into a single variable. If the first
expression has dimension n and the second expression has dimension m, the result of
APPEND has dimension n+m and contains all the values from the first expression
followed by the values from the second. If an expression has dimension 0, it does not
add anything to the result.

Example: If the variable A has three values, 1, 2, and NULL, and the variable B has the
value 3, the expression APPEND(A,B) would have four values: 1, 2, NULL, 3.

ARRAYCOUNT (expression)

Counts the number of non-null values in a multiple-valued expression. The expression
can operate on either a character or numeric argument, and it returns a single numeric
value of zero or more.

Example: If the variable A has three values, 1, 7, and NULL, the expression
ARRAYCOUNT(A) would produce the result 2.

ARRAYMIN (expression)

Computes the minimum of the values in a multiple-valued expression. The expression
can operate on either a character or numeric argument, and it returns a single value of the
same type as its argument. In this case, a null value is not considered to be smaller than a

NASIS CVIR Language Manual Page 32

non-null value. The result is null only if all values of the array are null. The result has
dimension 0 if the original expression has dimension 0; otherwise, it has dimension 1.

Example: If the variable A has three values, 1, 2, and 3, then the expression
ARRAYMIN(A) would produce the result 1.

ARRAYMAX (expression)

Computes the maximum of the values in a multiple-valued expression. The expression
can operate on either a character or numeric argument, and it returns a single value of the
same type as its argument. The result is null only if all values of the array are null. The
result has dimension 0 if the original expression has dimension 0; otherwise, it has
dimension 1.

Example: If the variable A has three values, “X”, “Y”, and “Z”, the expression
ARRAYMAX(A) would produce the result “Z”.

ARRAYMEDIAN (expression)

Locates the median value in a multiple-valued expression, by sorting the non-null values
and selecting the middle one. The expression can operate on either a character or
numeric argument, but there is a slight difference in operation between the two. When
there is an even number of values, there is no single middle value. The median reported,
therefore, is the average of the two middle values for numeric data and the larger of the
two values for character data. The result is null only if all values of the array are null.
The result has dimension 0 if the original expression has dimension 0; otherwise, it has
dimension 1.

Example: If the variable A has three values, “X”, “Y”, and “Z”, the expression
ARRAYMEDIAN(A) would produce the result “Y”.

ARRAYMODE (expression)

Finds the modal value in a multiple-valued expression by counting the occurrences of
each distinct value and returning the value that occurs most often. In case of a tie, the
smallest value is returned. The expression can operate on either a character or numeric
argument and returns a single value of the same type as its argument. The result is null
only if all values of the array are null. The result has dimension 0 if the original
expression has dimension 0; otherwise, it has dimension 1.

Example: If the variable A has four values, 2, 3, 5, and 3, the expression
ARRAYMODE(A) would produce the result 3.

NASIS CVIR Language Manual Page 33

ARRAYSHIFT (expression, expression)

Shifts the values in the first argument, which is a multiple-valued variable, by the number
of positions specified in the second argument, which has a single value. If the second
argument (call it “n”) is positive, the values are shifted “up”, so that the value that was in
position 1 moves to position n+1, and so on until the last n values are discarded. The first
n array positions are assigned a null value. If the second argument is negative, the values
are shifted in the opposite direction. The result has the same data type and number of
values as the first argument.

Example: If the variable A has three values, 1, 2, and 3, the expression
ARRAYSHIFT(A, -1) would produce a result with values 2, 3, and Null.

ARRAYPOSITION (expression)

Produces a new array of the same dimension as the argument and each position of the
array having a sequential number starting with 1. This can be useful with the LOOKUP
function to pick out a specific item from an array.

Example: If the variable A has three values (“x”, “y”, null), the expression
ARRAYPOSITION(A) would produce a result with three values (1, 2, 3).

The following statement would find the third value (if there is one) in the array A:
DEFINE third LOOKUP(3, ARRAYPOSITION(A), A).

ARRAYROT (expression, expression)

Operates like ARRAYSHIFT but performs a rotation of the values in the first argument.
Values shifted off one end of the array are moved onto the other end. If the number of
positions shifted is greater than the number of values, the effect is to perform more than
one rotation, or a rotation modulo the dimension.

Example: If the variable A has three values, 1, 2, and 3, the expression
ARRAYROT(A, -4) would produce a result with three values, 2, 3, and 1.

LOOKUP ([expression,] expression, expression)

Selects values from an array based on an index or condition. If the LOOKUP has three
parameters, the first expression is the key, which must be a single value, and the second
expression is the index array. The key and the index must have the same type of data. If
the key value is found in the index array, the value from the corresponding array position
in the third expression is returned; otherwise, the result is null. If the LOOKUP has two
parameters, the first expression is evaluated as an array of true or false values. If a value

NASIS CVIR Language Manual Page 34

is true, the corresponding array position in the second expression is returned. The result
has the data type of the last expression.

There is a close relationship between the two forms of LOOKUP. The following two
expressions produce the same result: LOOKUP(a,b,c) and LOOKUP(a==b,c). Use
whichever form is easier to understand.

If there is more than one match or true value, the result has the values from all
matching/true rows. It is therefore possible for the result to have more than one value.
The last two expressions must be arrays of equal dimension. A common error is to
mismatch the dimensions of these two expressions due to differences in the way they are
aggregated.

Example: The variable max_thickness has a single number, the variable
horizon_thickness has 6 numbers, and the variable ph_r has 6 numbers. The expression
LOOKUP (max_thickness, horizon_thickness, ph_r) or LOOKUP
(horizon_thickness==max_thickness, ph_r) would return the value of
ph_r from the horizon whose horizon_thickness value equals the value of max_thickness.

COUNT (expression)

Maintains a running count of the occurrences of the expression. On each cycle of the
script, the value of the expression is tested for a null, and if it’s not null the counter’s
value is increased by one.

Example: A variable defined with the value COUNT(musym) could be printed at the
end of a report to show the number of map units read (because musym can’t be null).

MIN (expression)

Finds the smallest value of the expression. On each cycle of the script, the value of the
expression is compared to an internal counter and replaces the counter’s value if the
expression is smaller. If a null value for the expression is encountered, the result of MIN
becomes and remains null.

Internal counters for the MIN function cannot be reset.

Example: A variable defined with the value MIN(elevation) could be printed at the
end of a report to show the minimum of elevation.

MAX (expression)

Finds the largest value of the expression. On each cycle of the script, the value of the
expression is compared to an internal counter and replaces the counter’s value if the

NASIS CVIR Language Manual Page 35

expression is greater. Null values are smaller than any non-null value, so the result is
only null if all input values are null.

Internal counters for the MAX function cannot be reset.

Example: A variable defined with the value MAX(elevation) could be printed at the
end of a report to show the maximum of elevation.

SPRINTF (“format”, expression [, expression] …)

Formats one or more expression values into a character string using the C function sprintf
(same as the Prelude sprintf). The first argument is a format specification, which must
have a single value, and the remaining arguments are expressions whose values are to be
formatted. If any of the expressions are multiple valued, the result is also multiple valued
and its dimension is that of the expression with the largest dimension.

It is the user’s responsibility to ensure that the number and type of the expressions
correspond to the format; no system checks are performed. Character data should use the
%s formatting code, and numeric data should use the %f or %g formatting code.

Null values in the expressions produce an unusual result. The formatted value plus all
characters of the format string up to the next % sign are skipped.

Examples:
DEFINE clay ISNULL(claytotal_l) OR ISNULL(claytotal_h) ? "
---" : sprintf("%3.f-%-2.f",claytotal_l,claytotal_h).

The variable name has one character value, “Bob”. The variable position has two numeric
values, 10 and 12. The expression SPRINTF (“%s:%.f”, name, position) will produce a
result containing two character values, “Bob:10” and “Bob:12”.

Assigning a fixed number of decimals as in awc will be 4 places with 2 decimal places:

DEFINE awcISNULL(awc_l) OR ISNULL(awc_h) ? " ---"
:sprintf("%4.2f-%-4.2f",awc_l,awc_h).

Some data fields can be NULL within the database, and a decision must be made to
transform the data for use. DEFINE uses IF, THEN, ELSE to test for NULL values. (IF
the unified field is null, THEN assign “NULL VALUE” ELSE code label the unified
class.)

DEFINE un1ISNULL(unifiedcl) ? "NULL VALUE":
CODELABEL(unifiedcl).

NASIS CVIR Language Manual Page 36

USER

The user name from the data dictionary.

Example: If the person running NASIS has the login name “rose”, the expression USER
will return a single character value, “rose”.

TODAY

The current date in mm/dd/yyyy format.

Example: 07/20/2018

STUFF function

The STUFF function inserts a string into another string. It deletes a specified length of
characters in the first string at the start position and then inserts the second string into the
first string at the start position.

STUFF (character_expression , start , length ,
replaceWith_expression)

Example: This example switches the order of the user name in a project.
STUFF (username,1,CHARINDEX(',', username),'') + ' ' +
LEFT (username, CHARINDEX(',', username)-1) AS name

ISNULL function

Changes Null values to something else. Null values can be troublesome with some
programs. The ISNULL function in the SELECT statement can change null values to
zero for numeric fields and to a text value, such as “None”, for text fields.

Examples:
This example changes Null project land category values with a dash
ISNULL (projectlandcategoryacres, '-') AS
projectlandcategoryacres

This example changes the horizon low depth to zero if the depth is null.
ISNULL (hzdept_l, 0) AS hzdept_l

This example changes a flooding frequency class from null to “None”.
ISNULL (floodfreqcl, ‘None’) AS floodfreqcl

NASIS CVIR Language Manual Page 37

Numeric Functions
The following function expressions operate on numeric values and produce numeric
results. If the input values are character strings, they are first converted to numbers.

ARRAYSUM (expression)

Computes the sum of the values in a multiple-valued expression. It expects a numeric
argument and will try to convert character values to numbers. It returns a single numeric
value. If individual values of the array are null, they are treated as zeroes. The result is
null only if the array has no values. The result has dimension 0 if the original expression
has dimension 0; otherwise, it has dimension 1.

Example: If the variable A has three values, 1, 2, and 3, the expression ARRAYSUM(A)
would produce the result 6.

ARRAYAVG (expression)

Computes the average of the values in a multiple-valued expression. It expects a numeric
argument and will try to convert character values to numbers. It returns a single numeric
value. If individual values of the array are null, they are not counted in the average. The
result is null if all values are null. The result has dimension 0 if the original expression
has dimension 0; otherwise, it has dimension 1.

Example: If the variable A has three values, 1, 2, and 3, the expression ARRAYAVG(A)
would produce the result 2.

ARRAYSTDEV (expression)

Computes the standard deviation of the values in a multiple-valued expression. It expects
a numeric argument and will try to convert character values to numbers. It returns a
single numeric value. If individual values of the array are null, they are not included in
the computation. The result is null if all values are null. The result has dimension 0 if
the original expression has dimension 0; otherwise, it has dimension 1.

Example: If the variable A has three values, 1, 2, and 3, the expression
ARRAYSTDEV(A) would produce the result 1.

WTAVG (expression, expression)

Computes the sum of the first expression’s values after multiplying each by a weighting
factor, which is taken from the corresponding value of the second expression, then
divides the result by the sum of the weights. The two expressions must be arrays that
have the same dimension. Individual null values are ignored in computing the average.

NASIS CVIR Language Manual Page 38

The result is null if all the individual values are null. The result has dimension 0 if the
original expressions have dimension 0; otherwise, it has dimension 1.

Example: The variable comppct_r has 3 values (40, 30, 20) and the variable elev_r has
three values (1000, 1200, 900). The expression WTAVG (elevation,
comppct_r) would produce the value 1044.44, which is the average of the elevation
values, weighted by the comp_pct values, or (1000*40 + 1200*30 + 900*20) / (40 + 30 +
20).

SUM (expression)

Computes a running total of the value of the expression. On each cycle of the script, the
value of the expression is added to an internal counter. The result of the function is the
value of that counter at each cycle. If a null value for the expression is encountered, the
result of SUM becomes and remains null.

Internal counters for the SUM function cannot be reset. If you want to compute
subtotals, use the ASSIGN statement to add the value of the expression to a defined
variable rather than an internal counter. If you use the ASSIGN statement, a conditional
expression can be used to reset the variable’s value to 0 at the correct time.

Example: A variable defined with the value SUM(acres) could be printed at the end of
a report to show the total of acres.

AVERAGE (expression)

Computes a running average of the value of the expression. On each cycle of the script,
the value of the expression is added to an internal counter, and the result is divided by the
number of values processed. If a null value for the expression is encountered, the result
of AVERAGE becomes and remains null.

Internal counters for the AVERAGE function cannot be reset.

Example: A variable defined with the value AVERAGE(elev_r) could be printed at
the end of a report to show the average of elevation.

LOGN (expression)

Computes the natural logarithm of the expression.

Example: The expression LOGN(10) produces the value 2.302585.

LOG10 (expression)

Computes the base 10 logarithm of the expression.

NASIS CVIR Language Manual Page 39

Example: The expression LOG10(10) produces the value 1.

EXP (expression)

Computes the exponential (ex) of the expression.

Example: The expression EXP(1) produces the value of e, 2.718282.

COS (expression)

Computes the cosine of the expression interpreted as an angle in radians.

Example: The expression COS(0) produces the value 1.

SIN (expression)

Computes the sine of the expression interpreted as an angle in radians.

Example: The expression SIN(0) produces the value 0.

TAN (expression)

Computes the tangent of the expression interpreted as an angle in radians.

Example: The expression TAN(0) produces the value 0.

ACOS (expression)

Computes the arccosine of the expression, returning an angle in radians.

Example: The expression ACOS(0) produces the value of π/2, 1.570796.

ASIN (expression)

Computes the arcsine of the expression, returning an angle in radians.

Example: The expression ASIN(1) produces the value of π/2, 1.570796.

ATAN (expression)

Computes the arctangent of the expression, returning an angle in radians.

Example: The expression ATAN(1) produces the value of π/4, 0.785398.

NASIS CVIR Language Manual Page 40

ATAN2 (expression, expression)

Computes the angular component θ of the polar coordinates (r, θ) that are equivalent to
the rectangular coordinates (x, y) given by the two expressions. This is the same as
ATAN(y / x).

Example: The expression ATAN2(5, 5) produces the value of π/2, 1.570796.

SQRT (expression)

Computes the square root of the expression. Returns a null value if the expression is
negative.

Example: The expression SQRT(2) produces the value 1.414214.

ABS (expression)

Computes the absolute value of the expression.

Example: The expression ABS(-10) produces the value 10.

POW (expression, expression)

Computes the value of the first expression raised to the power of the second expression.

Example: The expression POW(2, 5) produces the value 32.

MOD (expression, expression)

Computes the remainder after dividing the first expression by the second expression.

Example: The expression MOD(5, 2) produces the value 1.

ROUND (expression [, expression])

Rounds off the value of the first expression to the number of decimal places specified by
the second expression. If the second expression is not specified, it is assumed to be zero,
which means round off to the nearest whole number. When the second expression is a
positive number, it specifies the number of places to the right of the decimal point to be
preserved. If negative, it means round to the specified number of places to the left of the
decimal point, as illustrated in the examples.

Examples

ROUND (15.751, 1) produces 15.8
ROUND (15.751) produces 16
ROUND (15.751, -1) produces 20

NASIS CVIR Language Manual Page 41

REGROUP Expression
The REGROUP expression is used to perform secondary aggregation of data. It operates a little
like the AGGREGATE option in a query and can be used to perform a second level of
aggregation when dealing with a complex data structure. It uses two expressions, which must be
arrays of the same dimension. In the expression “REGROUP array BY array …”, the second
array (the “BY” array) is used as a key for grouping the values from the first array (the data
array). The result is a new array whose dimension is the number of unique values in the “BY”
array. The values in the result are aggregates derived from each group of rows in the data array
that have the same key value.

The REGROUP statement is a secondary aggregation. REGROUP reduces each variable to one
value. REGROUP is part of the aggregation clause and allows for re-aggregation of your data
after the initial aggregation. The unified (all horizon data) is aggregated using NONE so that the
horizon level data is not aggregated to the component name. It is regrouped below to have it
aggregate at the horizon level instead of the component level.

The aggregation function determines how these aggregates are produced. The types of
aggregation are the same as the query AGGREGATE option, except that NONE and UNIQUE
are not applicable in REGROUP because each position of the result array can have only one
value. The valid aggregations types are:

• SUM computes the sum of the values in each group.
• AVERAGE computes the average of the values in each group.
• FIRST selects the value from the first row of the group.
• LAST selects the value from the last row of the group.
• MIN selects the smallest of the values in each group.
• MAX selects the largest of the values in each group.
• LIST concatenates the values (converted to character strings if numeric) into a single

string with a delimiter between each value. If a quoted string is specified after the
word LIST, that string is the delimiter; otherwise, a comma and space are placed
between each value.

o Example: Aggregate column hzname list “,“.
o This produces a single array similar to: A,E,Bt,C

Some additional rules on the REGROUP expression:

The “BY” array does not have to be sorted. REGROUP always collects together all data values
for each unique key value. However, the choice of value for FIRST or LAST is affected by the
order of values in the data array.

NASIS CVIR Language Manual Page 42

Nulls in the data array are ignored during aggregation except for FIRST and LAST, which
preserve a null if it is the first or last value found. If all data values for some key value are null,
the corresponding result value is null.

A null in the “BY” array is a valid key value and produces a corresponding value in the result,
aggregating all null key values together.

Example: These examples use the arrays A and B as inputs:

A B
George 4
Abe 4
Sue 5
Sam 8
Mary 8
William 8

The arrays C and D are produced by the statements:

DEFINE C REGROUP A BY B AGGREGATE FIRST.
DEFINE D REGROUP A BY B AGGREGATE LIST “-“.

C D
George George-Abe
Sue Sue
Sam Sam-Mary-William

Example

BASE TABLE component.

EXEC SQL

SELECT compname, slope_r, hzname, hzdept_r, hzdepb_r,
claytotal_r, unifiedcl, chunified.rvindicator

FROM component

INNER JOIN chorizon BY DEFAULT

INNER JOIN chunified BY DEFAULT

WHERE chunified.rvindicator = 1;

SORT by compname, hzdept_r

NASIS CVIR Language Manual Page 43

AGGREGATE ROWS compname

COLUMN hzname none, hzdept_r none, hzdepb_r none,
claytotal_r none, unifiedcl none.

This query creates the first aggregation on the component name so each component has
all of its various horizons and clays and unified texture. Many components and all of their
data.

ASSIGN unifiedcl REGROUP codename (unifiedcl) by hzname
aggregate list ", ".

ASSIGN hzdept_r REGROUP hzdept_r by hzname aggregate first.

ASSIGN hzdepb_r REGROUP hzdepb_r by hzname aggregate first.

ASSIGN claytotal_r REGROUP claytotal_r by hzname aggregate
first.

ASSIGN hzname REGROUP hzname by hzname aggregate first.

Note: Always regroup hzname last.

NASIS CVIR Language Manual Page 44

Report Syntax
DERIVE

Syntax

Used In

Report, Property, Calculation

Example
DERIVE thickness FROM layer_thickness

USING “NSSC_Pangaea”:“LAYER THICKNESS” (0, bottom).

The DERIVE statement invokes a property script to produce values for one or more variables.
Each name listed after the keyword DERIVE becomes a local variable in the script where it
occurs. It is assigned the value of the variable in the property script whose name follows the
keyword FROM. If the names before and after FROM are the same, the FROM phrase may be
omitted. The property must have the same base table as the calling script, and the scripts are
automatically synchronized to return values for the current row of the base table.

The name of the property must be in quotes and must match the property name in the Property
table exactly, including case and punctuation. The NASIS site name is optional but should be
placed before the property name to ensure that the name is unique.

If the property script has an ACCEPT statement, a list of arguments must be given after the
property name. The order of the arguments in the DERIVE statement must correspond to the
order of the input variables in the ACCEPT statement.

NASIS CVIR Language Manual Page 45

The arguments can be input column names, variables, or numeric or character constants in the
calling script. However, recall that DERIVE statements are always executed before DEFINE
statements. If an argument is a variable that is computed in a DEFINE statement, its value is
whatever is left over from the previous script cycle, even if the DEFINE appears in the script
before the DERIVE. For this reason, arguments for DERIVE should be from an ACCEPT, an
EXEC SQL, or constants.

EXEC SQL

Syntax

NASIS CVIR Language Manual Page 46

Used In

Report, Property, Calculation

Example
EXEC SQL
SELECT musym, muname
FROM Mapunit;.

An EXEC SQL statement defines a database query that supplies input to the report engine. Any
database columns or expressions listed in the SELECT clause of the query may be used as
variables in the rest of the script. A script almost always has a query, the exceptions being
reports that get all their data from files, parameters, or derived properties. The primary purpose
of EXEC SQL is to specify which data elements are necessary for the report.

The EXEC SQL statement is a variation of a standard SQL Select statement. It performs the
same basic function but has additional capabilities to make report writing easier. The additional
capabilities include:

• Use of NASIS logical column names as well as database column names;
• Simplified syntax to specify join conditions;
• Extended sort types, such as case insensitive and symbol sort; and
• More powerful GROUP BY features in the AGGREGATE clause, including independent

aggregation by column and crosstab formatting.

An SQL Select statement begins with a SELECT clause. It has a list of database columns or
expressions, following normal SQL syntax, and each column must have a unique name. If
expressions are used in the select list, an alias must be used with the expression to provide a
unique name. In addition to allowing most standard SQL expressions, NASIS permits the
functions CODENAME, CODELABEL, CODESEQ and CODEVAL with data elements that
are stored as codes. These functions cause the query to return the name, label, sequence, or
internal value for a code. If none of these functions is used, the query returns the internal value.

The word DISTINCT following the word SELECT removes duplicate rows from the query
results. If the combination of the values of all items listed in the SELECT clause is duplicated,
only one occurrence will be produced. (In prior versions of NASIS, the word UNIQUE could be
used instead of DISTINCT, but this is no longer allowed in SQL). DISTINCT finds the unique
values for the total row not just the first field in the list. Use EXISTS in a subquery to find
unique values for specific fields.

The term IS NULL preceding a field and a replacement term in the SELECT clause changes all
null values to the new term.

NASIS CVIR Language Manual Page 47

 Example: SELECT IS NULL(slope_r, 0) AS slope

This will change all null values for slope_r to zero.

The phrase TOP n following the word SELECT is a SQL feature that allows you to specify the
maximum number of records to be returned from a query. The records are sorted on the columns
specified in the ORDER BY clause, then up to "n" of them are used as report input. This is
handy to use while testing a report.

The FROM clause specifies all the tables used in the query and may also specify aliases and
joins. Table names in a FROM clause must be defined in the NASIS data dictionary or in an
INTO TEMP clause of a prior query. Aliases may also be used with table names. They provide
a shorter name or make the name unique. Short one or two letter alias names are indexed faster
than longer names or the original field name.

A CVIR script is designed to search either the selected set or the full local database, depending
on the type of script. Normally, reports search only the selected set, while calculations and
properties search the whole local database. The keyword EDIT or REAL in the FROM clause
overrides the table search behavior on a table-by-table basis. If the keyword EDIT is used, only
the selected set is read; and if REAL is used, the whole local database is read. If a report is run
on the national database, the EDIT or REAL option is ignored and the whole national database is
read. EDIT is the default search behavior.

The FROM clause can also contain specifications for joining tables using current SQL syntax (as
well as the older syntax based on Informix). The newer style of join puts all the join conditions
in the FROM clause, as in the following examples.

FROM datamapunit
INNER JOIN component BY DEFAULT

FROM datamapunit
LEFT OUTER JOIN component ON
datamapunit.dmuiid=component.dmuiidref

For a complete discussion about this kind of join, you’ll need an SQL manual or class. Some of
the key points are:

• When the join conditions begin with ON, standard SQL syntax applies. You must
specify the exact columns to be matched in each of the tables. You can also add more
conditions beyond just the key columns. The report in NASIS “!Join statements” in the
Documentation folder has all of the joins for all the tables in NASIS that can be copied
and pasted into a SQL script.

NASIS CVIR Language Manual Page 48

• When using the BY condition, you specify a relationship name defined in the NASIS data
dictionary. In most cases the relationship name is “default”. If more than one
relationship exists between a pair of tables, you must use the correct name. The Info
page for a table in NASIS lists the relationship names.

Advanced Note

There is an important case in which a condition must be in the WHERE clause. This condition is
related to a difference between Informix and SQL Server. When an outer join is used, you need
to apply additional selection criteria to the outer (not required) table. These criteria operate
differently in the FROM clause than in the WHERE clause.

Here are two examples:

A. FROM component
LEFT OUTER JOIN comonth BY DEFAULT
AND ‘month’ = ‘jan’

B. FROM component
LEFT OUTER JOIN comonth BY DEFAULT
WHERE ‘month’ = ‘jan’

Example query A produces a row for a Component that does not have a January in the
Component Month table, but example query B will not. The reason is that the WHERE
conditions are applied to the result of the join. In query B, each Component will be joined up
with its Component Month rows (if any), and then only those with January will be selected. In
query A, the selection of January records occurs during the join process. If there are none, the
outer join applies and the Component is included in the output even though there is no matching
Component Month.

Following are four more examples showing a LEFT OUTER JOIN in which the conditions are
in different places in the script.

1) When both conditions are in the FROM clause, the query returns 1,483,094 rows of
data.

EXEC SQL
SELECT COUNT(coiid) AS compcount
FROM component
LEFT OUTER JOIN comonth ON
comonth.coiidref=component.coiid AND month='jan' AND
compname='relfe';.

NASIS CVIR Language Manual Page 49

2) When the right table condition is in the FROM clause and the left table condition is in
the WHERE clause, the query returns 92 rows.

EXEC SQL
SELECT COUNT(coiid) AS compcount
FROM component
LEFT OUTER JOIN comonth ON
comonth.coiidref=component.coiid AND month='jan' WHERE
compname='relfe';.

3) When both conditions are in the WHERE clause, the query returns 70 rows of data.

EXEC SQL
SELECT count(coiid) as compcount
FROM component
LEFT OUTER JOIN comonth ON
comonth.coiidref=component.coiid
WHERE month='jan' AND compname='relfe';.

4) When the left table condition is in the FROM clause and the right table condition in
the WHERE clause, the query returns 70 rows.

EXEC SQL
SELECT count(coiid) AS compcount
FROM component
LEFT OUTER JOIN comonth ON
comonth.coiidref=component.coiid AND compname='relfe'
WHERE month='jan';.

If you don’t use the type of join shown above, the WHERE clause may use the “JOIN table TO
table” syntax as in NASIS 5. The two tables in a JOIN condition must have a relationship
recorded in the data dictionary. In this form, the BY phrase can be omitted if only one
relationship exists between the two tables. You can also use the word OUTER in the FROM
clause in combination with this type of join specification. NASIS will internally convert it to the
new style join.

Subqueries are also allowed in the WHERE clause following SQL syntax with the extensions
just described. It is permissible to use a JOIN condition between a table listed in the main query
and a table listed in the subquery, which is a convenient way to create a coordinated subquery.
Refer to SQL references for more information about subqueries. This is an advanced query
topic.

The expressions in the WHERE clause may use variables defined in a PARAMETER statement,
an ACCEPT statement, or a prior query. The CVIR engine plugs in the values of such variables
at the time the query is executed. If the variable is preceded by a dollar sign, such as $name, the

NASIS CVIR Language Manual Page 50

SQL query becomes a “parameterized query.” A parameterized query does not use the automatic
query coordination specified by the BASE TABLE statement. The selection is instead
controlled by the parameter value. With this technique, a report can have a mix of queries that
have different aggregation levels.

Examples can be found in the map unit description reports.

Following the WHERE clause, the GROUP BY, HAVING, and ORDER BY clauses can be
used with the normal SQL syntax. The INTO TEMP clause may also be used (provided that
ORDER BY is not used) to direct the results of the query into a temporary database table.
Subsequent queries in the same script or in subreport scripts can read from the temporary table as
if it were a normal NASIS table. The column names in the temporary table are the column
names (or aliases) from the SELECT clause. A query with an INTO TEMP clause should not
be the only query in a report because it does not return any data that the report can use.

NASIS tables and columns may be called by either the logical name or the physical name, but
they must use the same name wherever referenced. A column name can be used alone if it is
unique; otherwise, the table name must be given also. If an alias is used for a column in a
SELECT clause, that alias must be used everywhere instead of the column name. If the column
is modal, the suffix (such as _l or _h) must be included in the name. The value from each
column is converted into either a character string or a floating-point number for use in later
calculations.

Important: Numeric data elements, such as Integer, Decimal, and Float, and Code elements, are
converted to floating point, and everything else, including dates, is converted to character
strings.

A semicolon is required to end the SQL portion of the EXEC SQL statement. Optional sort and
aggregation clauses may follow the semicolon, and the whole statement is ended with a period.
If neither a sort nor an aggregation clause is used, both a semicolon and a period are still
required.

A script may contain more than one query to collect data from different hierarchic paths in the
database. These types of data commonly cannot be retrieved in a single query without creating
undesirable cross products. By using separate queries and aggregating the results, the data can
be “de-normalized” so that data from separate paths appear as if they were repeating groups in
the base table.

NASIS CVIR Language Manual Page 51

EXEC SQL: Sort Specification

Syntax

Example
EXEC SQL
SELECT muname mname, nationalmusym, dmuiid
FROM mapunit
INNER JOIN correlation BY DEFAULT
INNER JOIN datamapunit BY DEFAULT
WHERE repdmu = 1 AND muiid in ($muiid);
SORT BY mname, dmuiid.

SORT is an optional clause that may be added to a query to direct the CVIR engine to sort the
records. Either ORDER BY (which causes the database engine to do the sorting) or SORT may
be used; the SORT takes precedence. The SORT clause is slower but provides more options
than ORDER BY. The sort key names in the SORT clause must be column or alias names used
in the SELECT clause (column numbers are no longer allowed). The direction of sorting
(ascending or descending) can be specified for each sort key. The default is ascending. The type
of sort can also be specified as lexical (like a dictionary), symbol (used for symbols containing
both letters and numbers), or insensitive (ignore uppercase and lowercase distinctions). The
default sort type is the one specified in the data dictionary for the column. The sort order and
type keywords may be abbreviated as shown.

The difference between SORT and ORDER BY is important when the TOP n condition is used
in the SELECT clause. ORDER BY, because it is performed by the database engine, happens
before the "top n" records are selected and SORT happens after. It could even be useful to
specify different columns in ORDER BY and SORT, because the first controls which records
appear and the second controls the order in which they print.

NASIS CVIR Language Manual Page 52

EXEC SQL: Aggregation Specification

Syntax

Example
EXEC SQL
SELECT musym, muname, areaname, lmuaoverlap.areaovacres
acres
FROM area
INNER JOIN laoverlap BY DEFAULT
INNER JOIN lmuaoverlap BY DEFAULT
INNER JOIN lmapunit BY DEFAULT
INNER JOIN mapunit BY DEFAULT;
SORT BY musym SYMBOL, areaname
AGGREGATE ROWS BY musym

NASIS CVIR Language Manual Page 53

COLUMN muname UNIQUE, acres SUM
CROSSTAB areaname CELLS acres.

The aggregation clause specifies how the input records are to be grouped and what to do with the
data in each group. The first query in a report (the “primary” query) can use the ROWS option
to control how its records are grouped, but the remaining queries (the “secondary” queries)
cannot have a ROWS option and instead use a simple global aggregation. This difference is
significant in the following explanations.

A primary query without a ROWS option uses no aggregation, meaning that data records are
used one at a time exactly as they come from the query. When the ROWS option is used, each
unique combination of values in the ROWS columns starts a new cycle of report processing.
The query must be sorted on the columns listed after ROWS, and it may produce more than one
record for each combination of the ROWS columns. When a group has multiple records, the
input values in each column are combined according to the aggregation rules and produce single
values or arrays that can be used in further calculations or report output.

The behavior of row aggregation is illustrated in the following example. Suppose a query
includes specifications to SORT BY musym AGGREGATE ROWS BY musym. Rows with
the same musym define the report cycle. Each group of rows with the same musym is one cycle;
thus, this example has eight rows but only three cycles.

Musym compname comppct_r
12A Hamerly 80
12A Vallers 15
12A Hamre 5
26B Windsor 90
26B Deerfield 10
130C Dacono 85
130C Satanta 10
130C Altvan 5

Aggregation rules for each column can be specified after the keyword COLUMN. The default
aggregation is UNIQUE for columns that have no aggregation specified. This means that when
the value in a column is the same for every row in a report cycle, only one value is returned for
that column. If more than one value occurs in a cycle, an array is formed to return values for the
column. Each distinct, non-null value is placed in a separate position of the array. The number
of positions in the array (the dimension) can vary from one cycle to the next and from one
column to another within a cycle.

NASIS CVIR Language Manual Page 54

The aggregation function NONE is similar to UNIQUE, except that NONE does not eliminate
duplicate or null values. If there is more than one input row in a cycle, the value from each row
is placed in a separate array position. For each cycle, every column with aggregated by NONE
will have the same dimension, and the values will be in the order of the input records.

The other aggregation functions are used to reduce multiple values for a column to a single
value. The aggregations have no effect when only one record occurs in a cycle. The types of
aggregation are:

• SUM.—Computes the sum of the column’s values.
• AVERAGE.—Computes the average of the column’s values.
• FIRST.—Selects the value from the first record of the group (useful only if the input is

sorted on this column).
• LAST.—Selects the value from the last record of the group.
• MIN.—Selects the smallest value in the column.
• MAX.—Selects the largest value in the column.
• LIST.—Concatenates the values (converted to character strings if numeric) into a single

string that has a delimiter between each value. If a quoted string is specified after the
word LIST, that string is the delimiter; otherwise, a comma and a space are placed
between each value.

Given the example in the table above, suppose the query includes specifications to AGGREGATE
ROWS BY musym COLUMN compname LIST, comppct_r SUM. Because aggregation
for musym is not specified, the default aggregation UNIQUE is applied to that column to
produce the following results. Note that the values in each column have been reduced to a single
value for each cycle.

musym compname comppct_r
12A Hamerly, Vallers, Hamre 100
26B Windsor, Deerfield 100
130C Dacono, Satanta, Altvan 100

Important:

The keyword GLOBAL may be used after the aggregation type for a column. This causes
that column to be aggregated over the entire set of input data rather than over one cycle.
The values for that column remain constant for the whole report. One use for global
aggregation is to find data for report headings. If the first input cycle is missing some
data needed in a heading, a global aggregation can find either the first occurrence or all
unique occurrences of the data before the report processing begins.

NASIS CVIR Language Manual Page 55

The aggregation of secondary queries is like global aggregation. The ROWS option is
not allowed, and the whole set of records that the query produces in each report cycle is
aggregated together. Column aggregation rules can be specified for the columns of a
secondary query if the default option of UNIQUE aggregation is not wanted.

A secondary query normally is automatically coordinated with the primary query via the
Base Table. A hidden WHERE condition is applied to a secondary query so that it
produces only the rows that match the current base table row. If the secondary query is
“parameterized,” meaning that it has references to variables in $name format, the
automatic coordination is not used. Instead the parameter values are inserted into the
query each cycle to control the selection of records.

CROSSTABS
CROSSTAB is a special type of aggregation that assigns values to positions in an array based
on the value of a controlling column. It requires a CROSSTAB column and one or more
CELLS columns. These columns become arrays, but their dimension is not determined by the
number of input rows in a cycle but rather by the number of values for the crosstab. This
dimension is constant for the entire query. The crosstab values are defined by the VALUES list,
the INTERVALS list, or by default. The default is to use all the unique values found in the input
for the crosstab column.

For each cycle of the input, CROSSTAB first sets to nulls the arrays of values for the CELLS
columns. Then, for each input record, the value in the CROSSTAB column is examined. If the
value is in the VALUES list, in default list, or falls within one of the ranges in the INTERVALS
list, the position of the value in the list is noted. For each of the columns in the CELLS list, the
value from the input record is placed in that position of the column’s array.

Within a cycle, the value of the crosstab column may repeat. If so, only one value can be stored
in an array position for a cell; therefore, the cell’s aggregation function is applied. If a cell has
no aggregation, a data row is returned for each unique value. In each such data row, all
aggregated columns have constant values. The operation of crosstab can be illustrated using the
following example data.

NASIS CVIR Language Manual Page 56

musym muname areaname acres

10A Alpha loam, 0 to 3 X 100
10A Alpha loam, 0 to 3 X 200
10A Alpha loam, 0 to 3 Y 300
10A Alpha loam, 0 to 3 Z 400
10A Alpha loam, 0 to 3 Z 500
10B Alpha loam, 3 to 6 X 600
10B Alpha loam, 3 to 6 Y 700
10B Alpha loam, 3 to 6 Y 800

This table shows a small sample of input data from the example query above. The first case
shows the results of a crosstab without aggregation of the crosstab cells:

AGGREGATE ROWS musym COLUMN muname UNIQUE CROSSTAB areaname
CELLS acres

musym muname areaname acres
10A Alpha loam, 0 to 3 X Y Z 100 300 400
10A Alpha loam, 0 to 3 X Y Z 200 500
10B Alpha loam, 3 to 6 X Y Z 600 700
10B Alpha loam, 3 to 6 X Y Z 800

In this example, the column “musym” controls row aggregation. Column “muname” has the
UNIQUE aggregation, so it maintains the values that correspond to each value of “musym”.
Note that if “muname” does not repeat at the same frequency as “musym”, it becomes an array.

The columns “areaname” and “acres” become arrays of three positions each because the crosstab
column (areaname) has three distinct values in the input sample. The values placed in
“areaname” are constant, namely the column grouping values “X”, “Y”, and “Z”. The cell
column (acres) contains the acreage values for the corresponding position of “areaname”.
Because there are multiple acreage values for each area in this example, the result has two rows
for each symbol.

By adding an aggregation function to the “acres” columns, the crosstab produces just one row for
each cycle defined by the ROWS condition, as shown in the following example.

AGGREGATE ROWS musym COLUMN muname UNIQUE, acres SUM
CROSSTAB BY areaname CELLS acres

NASIS CVIR Language Manual Page 57

musym muname areaname acres
10A Alpha loam, 0 to 3 X Y Z 300 300 900
10B Alpha loam, 3 to 6 X Y Z 600 1500

When INTERVALS are used for a crosstab, the list of field values must be numbers in an
increasing order. The number of intervals is one more than the number of values. If the intervals
are specified as CROSSTAB BY x INTERVALS (n1, n2, n3), the crosstab will place the
cell data into one of 4 array positions based on the value of the variable x.

x <= n1 n1 < x <= n2 n2 < x <= n3 n3 < x

The LABELS specification can specify column headings for a report, which would otherwise be
the field values for the CROSSTAB BY column. See the discussion about array specifications
and column specifications under the SECTION statement for more information about formatting
and printing cross tabulated data.

NASIS CVIR Language Manual Page 58

FONT

Syntax

FONT “font name”.

Used In

Report

Example
FONT “Courier”.

This statement has no function in NASIS 7 and is ignored. NASIS does not control the font used
to display a text-style report when the report is opened in an application of the user’s choice. In
an application like Notepad, it is recommended that you use a Courier font so that the output will
look like it did in NASIS 5. For HTML-style reports the font is controlled by the style sheet or
by attributes of the HTML tags.

ELEMENT ‘p’ ATTRIB (‘style’, font=Courier)

ELEMENT ‘p’ ATTRIB ('style', 'text-align:center;font-
family: Arial;font-size: 12')

NASIS CVIR Language Manual Page 59

HEADER and FOOTER

Syntax

HEADER [INITIAL]
line-specification ...

END HEADER .
FOOTER [FINAL]

line-specification ...
END FOOTER .

Used In

Report (text style only)

Example
HEADER
AT CENTER “Sample Report”.
SKIP 2 LINES.
END HEADER.

Defines the headers and footers for the report. There are four types of header and footer
statements, and a report may contain no more than one of each type. All are optional. The
default for HEADER and FOOTER is to print nothing. The default for HEADER INITIAL or
FOOTER FINAL is to print the HEADER or FOOTER, respectively.

The regular header and footer are printed at the top and bottom, respectively, of each report page.
The initial header and final footer are printed only once, at the beginning and end of the report
instead of the regular header and footer. At the end of the report, if there is not enough room for
the final footer (which could happen if the final footer uses more lines than the regular footer),
then the regular footer is printed on the last page of data and the final footer is printed on a
separate page. Each header or footer contains one or more line specifications as defined below
(except for NEW PAGE commands). The text of headers and footers is generated one time, at
the beginning of report execution, and reprinted at the top of each page. Page numbers, if
included in headers and footers, are substituted correctly. Data from the database used in
headers or footers come from the first input record only.

NASIS CVIR Language Manual Page 60

INPUT

Syntax

INPUT input-list FILE filename [DELIMITER “string”] [sort-specification]
[aggregation].
input-list ⇒ input-column [, input-column] ...

input-column ⇒ name [CHARACTER | NUMERIC] [alias]
filename ⇒ “string” [/ “string”] …

Used In

Report, Property, Calculation

The INPUT statement reads data from a file into CVIR variables. Each column name in the
input-list (or alias if used) becomes a variable in the script. If the column name is a NASIS data
element name, the data type for the column is the same as the elements. If not, either
CHARACTER or NUMERIC must be specified.

The file name is entered in quotes. The whole file path can be within one pair of quotes, or there
can be several parts within quotes and separated by a slash. A full path name is required if you
are using a file that you created on your computer. If just the file name part is supplied, the file
must be in the NASIS installation under the “data\input files” folder.

Examples
INPUT col1, col2 FILE ”lookup.data”.

INPUT areaname, areaacres FILE “C:\My Documents\datafile”.

The first example uses just a file name, so it is presumed to be a file distributed with NASIS.
The second example uses a file in the My Documents folder.

Input from a file can be aggregated, as described above for queries, to produce single- or
multiple-valued variables. If the INPUT statement precedes any queries in a script, the report
has a cycle for each input record just as if a query were used. A BASE TABLE declaration
cannot be used in this case. If the INPUT appears after a query, the aggregation for the INPUT
is assumed to be global, similarly to a parameterized query.

The input record must be in ASCII character format. A delimiter follows each data value in the
input record. Any character string can be specified as the delimiter. The default is the “pipe”
character, “|”.

NASIS CVIR Language Manual Page 61

INTERPRET

Syntax

INTERPRET rule [, rule] … [MAX REASONS max_value] [MAX RULEDEPTH
max_value] [sort-specification] [aggregation]

rule ⇒ [“site_name” :]“rule_name”
max_value ⇒ { number | variable }

Used In

Report

Generates interpretations for inclusion in a report. One or more rules can be specified, and the
interpretation values are computed during each cycle of the report. The interpretations are
produced for the report’s BASE TABLE. The same table must be used as the base table for the
properties used in the interpretation.

Note that the process for generating interpretations is not the same as in NASIS 5. Interps were
formerly written to a temporary database table and retrieved with a query. In NASIS 7, the
interp generator works more like a secondary query. During each report cycle, interpretation
data is generated for a single row. If the base table is Component, interps are generated for one
component at a time. The results become report variables as listed below. Sorting and
aggregating are available on the set of interp results for each component. To aggregate above the
base table, the data must be put into a TEMP Table and then you can aggregate.

If the base table is Component and you want to aggregate to the mapunit level, all the data from
the interpretation is placed in a TEMP Table and then reselected in a subquery and reaggregated.

The rule list specifies rules whose values are generated. Each rule name is written as “Site
Name”: “Rule Name”. Site Name is the NASIS site that owns the rule, and Rule Name is the
name of the rule. Each name must be in quotes. This can be written as just “Rule Name” since
rule names areas unique. Any rule in the NASIS database can be used in a report. If a
PARAMETER is defined with the option ELEMENT rule.rulename, the parameter name may
be used as a rule list.

The optional phrase MAX REASONS can be used to limit the number of reasons (subrules)
whose results are returned from the interpretation. All subrules are used to derive the
interpretation results; this only limits how many are returned in report variables. If the number
of reasons is zero or this phrase is omitted, all subrule results are included, even the insignificant
ones. If the number is greater than zero, the highest n significant subrule results are returned.
Significant means non-zero values for limitation type interps or values other than 1 for
suitability-type interps. The subrules are always sorted so the most significant values are first.

NASIS CVIR Language Manual Page 62

Example
INTERPRET “ENG - Shallow Excavations”.

Generates the “Shallow Excavations” interpretation for each component selected by the
report query and returns its results along with all subrule results.

The optional phrase MAX RULEDEPTH can be used to limit the number of levels of subrules
returned. A rule depth of 0 uses only the main interp rating and no reasons. Depth 1 uses the
main interp and its first level of reasons. If MAX RULEDEPTH is omitted, subrules to the
maximum depth are returned.

Example
INTERPRET “NSSC_Pangaea”: “FOR-Harvest Equipment
Operability”, “NSSC_Pangaea”: “FOR-Log Landing Suitability”
MAX REASONS 5.

Generates results for two interpretations and returns up to 5 subrule results for each rule. Only
non-zero subrule results are returned. Notice that the rule names are fully qualified by NASIS
site name.

Using Interpretations in Reports

The results of the INTERPRET command are placed in report variables and aggregated
according to the aggregation rules for secondary queries (see sorting and aggregation). Unless
MAX RULEDEPTH 0 is specified, the interp generator produces more than one value in each
variable. Typically, you will need to specify the NONE aggregation type for each column you
want to use in the report because the default aggregation type is UNIQUE. Crosstab aggregation
is also available for reports that use more than one interpretation.

NASIS CVIR Language Manual Page 63

The report variables produced by the INTERPRET statement are shown in the following table.

Variable name Description

PrimaryRuleInterpRuleID The rule id of the top level rule.
PrimaryRuleInterpRuleName The name of the top level rule.
InterpRuleID Rule id of the rule or subrule that produced the rating values.
InterpRuleName Name of the rule or subrule.

InterpRuleDepth An indicator of the depth of the rating, where 0 is the top
level.

InterpRuleResultSequence The sort sequence of the ratings within a top level rule.

RatingValueLowLow The fuzzy value of the minimum rating for the rule or
subrule.

RatingClassNameLowLow The rating class name of the minimum rating.

RatingValueLowRV The fuzzy value of the minimum of the representative values
of the ratings.

RatingClassNameLowRV The rating class name of the minimum of the representative
values of the ratings.

RatingValueHighRV The fuzzy value of the maximum of the representative
values of the ratings.

RatingClassNameHighRV The rating class name of the maximum of the representative
values of the ratings.

RatingValueHighHigh The fuzzy value of the maximum rating for the rule.
RatingClassNameHighHigh The rating class name of the maximum rating.

NullPropertyData True/false indicator that null data was produced by a
Property

DefaultPropertyData True/false indicator that default values were used to replace
null values from a Property

InconsistentPropertyData True/false indicator that inconsistent data were detected
from a Property.

Rating values can be printed either as fuzzy values (numbers between 0 and 1), as rating class
names, or both. The values of the interp variables are sorted on InterpRuleResultSequence,
which is a number assigned by the interpretation engine such that each subrule comes out after
its parent rule, with the most significant rating values first. InterpRuleDepth can be used with
the NEST option (described in column layout specifications under the SECTION statement) to
print subrules indented below their parent rules.

NASIS CVIR Language Manual Page 64

MARGIN

Syntax

MARGIN [LEFT number [IN]] [RIGHT number [IN]] [TOP number [IN]] [
BOTTOM number [IN]] .

Used In

Report (text style only)

Example
MARGIN TOP 1 inch BOTTOM 1 inch.

Defines margins for the pages of text-style reports. Defaults are one-half inch for all margins. If
margins are specified with IN, INCH, or INCHES, they are measured in inches; otherwise, they
are in lines or characters. The relationship between lines, characters, and inches is defined by the
PITCH specification.

The margin specifications are used to determine how much text can be placed on a page of
output. However, the text file produced by NASIS does not have blank lines for top and bottom
margins, nor does it have blanks spaces for the left and right margins. The user is responsible for
setting appropriate margins in the application used to display the report.

If the page length is UNLIMITED, the top and bottom margins are ignored. If the page width is
UNLIMITED, the left and right margins are ignored.

NASIS CVIR Language Manual Page 65

PAGE

Syntax

PAGE [LENGTH { number [IN] | UNLIMITED }]
[WIDTH { number [IN] | UNLIMITED }] .
PAGE PAD

line-specification ...
END PAGE PAD .

Used In

Report (text style only)

Example
PAGE WIDTH 144 LENGTH 88.
PAGE PAD

USING normal_template.
END PAGE PAD.
PAGE WIDTH UNLIMITED LENGTH UNLIMITED.

The Page Length/Width statement defines the size of the assumed page for report output. The
default size is length 11 inches and width 8.5 inches. If sizes are specified with IN, INCH, or
INCHES, they are measured in inches, otherwise they are in lines or characters. The relationship
between lines, characters and inches is defined by the PITCH specification.

NASIS does not control the final appearance of the report because it is displayed in an
application of the user’s choosing. The user may have to set the page size, margin, and font in
that application in order to produce printed output that matches the desired pagination.

Length can be specified as UNLIMITED, which means that the whole report is treated as a single
page. This is used in reports that are intended for onscreen display or for saving as text; if the
output is sent to a printer, however, there will not be headings on each page.

Width can also be specified as UNLIMITED, which means that report lines are as long as the
data requires. This is useful when the report output is saved as text, but sending the output to a
printer is typically not be desirable.

PAGE PAD is used when lines are used to fill any unused space at the end of a page or when the
FILL command is used. The line specification in the PAGE PAD block is printed instead of the
default padding, which is a blank line. If the block contains more than one line, the whole block
of lines is printed repeatedly to fill the required space.

NASIS CVIR Language Manual Page 66

PARAMETER

Syntax

Used In

Report

Example
PARAMETER asym ELEMENT areasymbol PROMPT “Soil survey area
symbol”.

A PARAMETER allows the user to customize the report script through a dialog. Parameter
names are variables in the report script, such as variables created by the DEFINE statement, and
may have zero or more values. Parameters are commonly used in WHERE clauses, to provide a
rule name in the INTERPRET statement, or for column names in a CROSSTAB.

The PARAMETER definition statement is normally placed at the beginning of the report script.
For compatibility with older report scripts, the statement may begin with a # symbol as was
previously used for comments. The # symbol, however, is no longer required. Following the
parameter name, one or more attributes may be specified to customize the parameter dialog. The
attributes are:

NASIS CVIR Language Manual Page 67

ELEMENT means that the parameter takes the same values as the named data element. If the
element has a choice list, that list appears in the parameter dialog. The element’s data type also
applies to the parameter value(s). The element name should be written as tbl_nm.elm_nm to be
sure that the name is unique.

PROMPT provides a label for the input field in the parameter dialog. This can give the user
hints on how to fill in the parameter value. If no prompt is provided, the Label field from the
ELEMENT definition is used as the prompt. If neither PROMPT nor ELEMENT is provided,
the parameter name is used as the prompt.

MULTIPLE means that more than one value can be entered for the parameter. If a choice list is
used, multiple choices can be selected. The result of the parameter dialog is a multiple-valued
variable.

REQUIRED means that at least one value must be entered for the parameter. This option is
useful if the parameter is intended to be used in a query to select data and you want to ensure that
something is selected.

MAX n implies MULTIPLE and also puts an upper limit on the number of values that can be
selected.

SEARCH means that a choice list is built for use in the parameter dialog by searching the
database for all unique values entered for the specified data element. The ELEMENT attribute
must be used with SEARCH. Note that it can take some time to build a choice list if the element
is in a table with many rows.

SELECTED is like SEARCH but only searches the data in the current selected set. This
presents the user with a list of choices that could actually appear in the report. An example is a
choice list for crop name. Normally, this lists all crop names in the domain, but the choice list if
SELECTED is used includes only crops that actually occur in the selected set.

The value type option allows the type of the parameter to be specified when the ELEMENT
attribute is not used or when code conversions are needed. The type tells the parameter dialog
how to format the parameter value. Only one value type may be specified. The allowed types
are:

CHARACTER means that the value is composed of any printable characters. This is the default
if neither type nor ELEMENT is specified.

NUMERIC means that the user must enter a number.

NASIS CVIR Language Manual Page 68

BOOLEAN means that the parameter dialog displays a toggle button instead of a data entry
field. The parameter’s value is numeric. It contains a 1 or zero indicating whether or not the
user toggled the button.

CODEVAL can be used when the parameter refers to a data element that uses codes. This option
specifies that the parameter value is returned as the code’s value, although the choice list
contains code names. The default for coded elements is CODEVAL.

CODESEQ can be used when the parameter refers to a data element that uses codes. The
parameter value is returned as the code’s sequence number.

CODENAME can be used when the parameter refers to a data element that uses codes. The
parameter value is returned as the code’s name.

OBJECT means that the parameter is an object name, such as a rule or property name. The
parameter dialog displays a choice list for selecting NASIS site and object names. The
parameter must refer to an element in the root table of a NASIS object, typically the name
column. The value returned is in the format used in the DERIVE and INTERPRET statements,
namely “site”:“name”. If OBJECT is used with the MULTIPLE option, the user can select
multiple object names.

OBJECTID produces the same kind of choice list as OBJECT, but the value returned is the
record ID of the selected item(s). This option is used when you want to query for a specific item
or items, as opposed to the OBJECT option which returns a value that is not usable in a query
WHERE clause.

The following fragments of report scripts illustrate the use of parameters:

PARAMETER aname ELEMENT area.areaname PROMPT “Survey
Area”.

EXEC SQL select ... WHERE area.areaname = aname and ...

This asks the user to provide a survey area name, which is then used in a query to get
records for the selected area. The parameter dialog would look like:

NASIS CVIR Language Manual Page 69

PARAMETER crops ELEMENT dmucropyld.cropname MULTIPLE SELECTED.
…
…CROSSTAB BY dmucropyld.cropname VALUES crops

This example allows the user to select one or more crop names from a choice list based
on the contents of the selected set. The names are used as column headings in a crop
yield report. The prompt is the label for the element dmucropyld.cropname, which is
“Crop Name”, as shown:

NASIS CVIR Language Manual Page 70

PITCH

Syntax

PITCH [HORIZONTAL number] [VERTICAL number].

Used In

Report (text style only)

Example
PITCH HORIZONTAL 17 VERTICAL 8.

Defines the character spacing in characters per inch or lines per inch. The default is horizontal
10 characters per inch and vertical 6 lines per inch, which correspond to a 12-point fixed-width
font, such as Courier. The pitch specifications are used to determine how much text will fit on a
page of output. They are used in combination with the width, length, and margins for a page as
specified in the PAGE statement.

NASIS CVIR Language Manual Page 71

SECTION

Syntax

SECTION [section-name] [keep-option] [condition] [HEADING output-
specification ...] [DATA output-specification ...]
END SECTION .
section-name ⇒ name

Used In

Report

Example
SECTION WHEN LAST OF musym KEEP WITH main DATA
AT 40 “----------”.
AT 40 total_acres width 10 decimal 2.
END SECTION.

A report section defines a block of report output that is produced as a unit. A section can be
unconditional, meaning that the section’s data block is printed on each cycle of the report’s main
query, or it can be printed only when certain conditions occur. A report can have any number of
sections. The sections are printed in the order determined by their conditions, as discussed
below under Section Conditions.

For a simple example, imagine a report script having a section “A” that prints the map unit
symbol and map unit name followed by a section “B” that prints the component name. Section B
is unconditional, and section A prints whenever the value of the variable “musym” changes.
This would be defined in the following manner:

SECTION A WHEN FIRST OF musym
DATA
AT LEFT musym, muname.
END SECTION.

SECTION B
DATA
AT LEFT compname.
END SECTION.

The output of the report might be:

12A Hamerly-Vallers complex, 0 to 2 percent slopes
Hamerly
Vallers
Hamre 26A Windsor loamy sand, 0 to 3 percent slopes Windsor

NASIS CVIR Language Manual Page 72

This would be produced from a query returning 4 records for the two map units. The first map
unit has three components, and the second map unit has one component. Because section A has
a “first of” condition, it is printed before unconditional sections when a new value of musym is
encountered. Then section B is printed for each input record until a change in musym occurs.
Then section A is printed again, and finally section B is printed for the last record.

To define a section, specify one or more of the following features, each of which is discussed in
more detail later. Note that XML-output style has no concept of a page, so page layout features,
such as KEEP and HEADING, are ignored.

1. A section can be given a name. Names are used in the KEEP option and can be useful
as documentation.

2. KEEP controls the splitting of the section when the end of a page is reached.
3. A condition specifies when the section is used. If no condition is provided, the section

appears for each report cycle.
4. If a HEADING block is provided, it prints at the top of the report page after the general

header. If the section has no condition, the heading prints on every page; if the
section has a condition, the heading only prints if the condition is true when it is time
to start a page. The heading block contains one or more output specifications. If any
data element values are printed in a heading, they come from the record being
processed at the time the heading prints. (Note that this differs from the use of data in
headers and footers).

5. If a DATA block is provided, it prints on each report cycle for which the condition
holds. The data block contains one or more output specifications, and each of them
can have an IF condition attached. The actual number of lines of output produced by
a section is determined by many factors, including the conditions, the number of
values stored in the variables being printed, and the length of text fields.

NASIS CVIR Language Manual Page 73

SECTION: Conditions

Syntax

Example
SECTION WHEN type == 2

A condition can be an ordinary Boolean expression based on data from the database or report
variables. In this case, the section prints whenever the condition evaluates to True. Boolean
expressions are described under the DEFINE statement.

Another form of the condition detects control breaks in the report data. This type of condition
begins with the keyword FIRST or LAST. At least one of the identifiers in the break condition
should be a data element in the sort key for the main report query. A control break occurs when
the value of any specified element, or of any element higher in the sort key, changes. The choice
of FIRST or LAST in the break condition determines which data are used for the lines printed in
the section. With FIRST, the first record with the new value of the control variable is used.
LAST uses the last record with the old value. The LAST condition would be used for printing
subtotals for a group of records. FIRST would be used for printing a heading line before a group
of records.

The remaining conditions are used for special conditions that occur no more than once in a
report.

The AT START condition means that the section prints before any other sections (but after the
headers); and an AT END section prints after the last data record (but before the footers). The
default for these sections is no printing.

A NO DATA section prints only if there are no input records and could be used print a message
such as “No data found”. If the NO DATA section is not used and there is no input, no report
output is produced. Instead, a warning dialog is displayed to the user.

NASIS CVIR Language Manual Page 74

When a heading block is specified in an unconditional section, the result is easy to visualize: The
heading lines print on each report page following the page header. The headings appear in the
order that the sections are defined. To reduce confusion, it is a good idea to include all
unconditional headings in a single section that is first in the script. In a simple report, both
headings and data can be specified in the same unconditional section.

The operation of headings in conditional sections can produce expected results. These headings
print only if a page break occurs while the conditional section is being printed. It helps to
arrange for a page break to occur just before printing the conditional section. This feature can
require some trial and error to get the desired results.

Heading lines can contain references to data elements or variables, whose values print in the
heading. Note that headings are generated each time a new page begins, so the heading contains
the values in effect at the time it prints. In particular, a LAST OF section uses values from the
last record before the control break and a FIRST OF section uses values from the new record
(the one causing the control break). Note, however, if a LAST OF section (or any other type of
section) causes a page break, all the headings on the new page will use data from the new record.

The order of processing for section conditions is:

1. AT START (only once per report)
2. FIRST OF (per report cycle)
3. Other sections, in the order they appear in the script
4. LAST OF (per report cycle)
5. AT END (only once per report)

NASIS CVIR Language Manual Page 75

SECTION: KEEP option

Syntax

keep-option ⇒ { NO KEEP | KEEP WITH section-name [, section_name] ... }

Example
SECTION B KEEP WITH A

The KEEP option controls what happens when the end of a page is reached while a section is
being printed. Without a KEEP option, the default behavior is to allow a page break to occur
after printing all the lines defined for one section occurrence. If the DATA block contains more
than one line specification, or if continuation lines are needed for long text fields, these output
lines are kept together on a page. The NO KEEP overrides this by allowing page breaks
between lines of a section, although text continuation is kept on a page if possible.

The KEEP WITH option specifies other sections with which this section is linked. This means
that when a section directly follows an occurrence of one of its “keep with” sections, the data
block for the new section occurrence must fit on the same page as the last line of data in the
“keep with” section. If there is not room, a page break is inserted before the last keep block of
the named section.

KEEP options are ignored in HTML-style output. All page layout is controlled by the style
sheet applied to the output of the report generator.

NASIS CVIR Language Manual Page 76

SECTION: Output Specifications

Syntax

Examples
SKIP 2 LINES.

AT LEFT musym WIDTH 8, muname WIDTH 50.

IF comp_pct > 10 USING comp_tmpl compname, slope_l,
slope_h.

ELEMENT “tr” musym TAG “td”, muname TAG “td”.

INCLUDE “MLRA10_Office”:”Flood Subreport” (dmudbsidref,
coiid).

An output specification is used either to control spacing on the page or to produce actual report
output. Output specifications can be either conditional or unconditional. When the IF clause is
used, the IF expression is evaluated each time the section is processed. The expression follows
the same rules as expressions for the DEFINE statement. If it results in a True (non-zero) value,
the output content is produced. If the value of the expression is False (a null, a zero, or an empty
character string) nothing is output. Without the IF clause, the output is always produced when its
section is printed.

NASIS CVIR Language Manual Page 77

The output content is sometimes called a “logical line” because it is a single unit of output, even
though it may include several “physical” lines on the report page. For example, a logical line
containing a text field may require several lines on the page to print all the text. Depending on
the KEEP rules, a whole logical line is normally kept together on one page unless the text
requires more than a full page to print.

The line_content portion of the command describes the output.

1. The SKIP command produces the specified amount of blank space. Either LINES or
INCHES must be specified for the amount to be skipped. When page formatting is in
effect, skip lines are not carried over past the bottom of a page. SKIP has no effect in
XML-style output.

2. The FILL command is like the SKIP command, but it fills the specified space with
repetitions of the PAGE PAD block.

3. NEW PAGE fills out the page with repetitions of the PAGE PAD, then prints the footer,
starts a new page, and prints the header. If NEW PAGE occurs at the very end of a
report, the report generator ignores it and does not print an extra blank page. NEW
PAGE has no effect in XML-style output.

4. The INCLUDE command runs another report and inserts its output as a logical line in the
first report. Parameters may be passed to the subreport, and they must correspond with
variables in the subreport’s ACCEPT statement. Typically, a record key would be
passed as a parameter, which would be used by the subreport to query for information
related to that record. See Using Subreports for more detail.

5. The USING statement specifies a template to serve as a format for the output. The
column specifications in the USING statement are matched to the FIELD keywords in
the template. The element or variable specified in the column spec is printed with the
formatting defined in the template. But any formatting options specified in USING
override the corresponding options in the template. If USING does not have as many
columns as there are FIELDs in the template, the remaining fields are printed as blank.
USING may not have more columns than the template has FIELDs. Columns in the
USING statement may not use the ARRAY or FIELD options.

6. A text-style output line is created with the AT statement as described below.
7. HTML-style output is created with the ELEMENT statement.

Line Specifications

This option controls each line of data with key terms and IF THEN conditions. The most
common specifications are:

• USING (template name)
• SKIP line.—controls spacing
• NEW PAGE.—creates a new page

NASIS CVIR Language Manual Page 78

• INCLUDE (report name).—adds data from a subreport
• AT Statement.—controls the position on the page.

Examples
SKIP 2 LINES.

AT LEFT musym WIDTH 8, muname WIDTH 50.

IF comp_pct > 10 USING comp_tmpl compname, slope_l,
slope_h. INCLUDE “MLRA10_Office”:”Flood Subreport”
(dmudbsidref, coiid).

AT CENTER title WIDTH 20 CENTERED; AT RIGHT date WIDTH 12.

COLUMN SPECIFICATIONS

If the condition is True, the output content is produced. If the value of the expression is False,
nothing is output. Where the IF clause is not used, the output is always produced when its
section is printed.

This option identifies exactly what is printed at a particular spot in a report. These specifications
are added after each column of data. Some of the most common specifications are WIDTH,
DECIMAL, ALIGN, SEPARATOR, NO COMMA and SUPRESS DUPLICATES.

Example
AT LEFT musym width unlimited SEPARATOR “|”, muname width
unlimited.

SEPARATOR is used to separate columns. SEPARTOR precedes the column of stat;
therefore, if you do not want a SEPARTOR at the beginning of the table, you must specify “NO
SEPARATOR” as a column specification and if you want a vertical line at the end of the table
you have to create a null field “” with SEPARTOR.

NASIS CVIR Language Manual Page 79

AT Statement

Syntax

at_statement ⇒ AT position [alignment] column_spec [, column_spec] …
[; AT position [alignment] column_spec [, column_spec] …] … .
position ⇒ { number [IN] | LEFT | RIGHT | CENTER }
alignment ⇒ { TOP | BOTTOM | SAME }

Used In

Reports (Text Only)

Examples
AT LEFT musym WIDTH 8, muname WIDTH 50.

AT CENTER title WIDTH 20 CENTERED; AT RIGHT date WIDTH 12.

The AT statement specifies one or more groups of columns to be placed at specific positions in
an output line. An AT position can be a number, expressed in characters or inches from the left
margin; or it can be the left, right, or center of the line, relative to the margins. The position may
be followed by an alignment option, which defines where this group of columns appears
vertically on the page relative to the previous AT group. See the examples below. If no
alignment is specified, the default is TOP.

Following the position and alignment, one or more columns are specified. These columns print
adjacent to each other in order from left to right. They each occupy the number of characters
specified by its WIDTH. A column that has WIDTH UNLIMITED uses as many characters as
needed to output the data, which may vary from line to line.

If the columns are not supposed to be adjacent, a new AT keyword and position may be used.
The list of columns following the AT begin at the new position. A semicolon must separate AT
groups as shown in the syntax. Note that when more than one column spec follows an AT
RIGHT or AT CENTER, the group of columns is first strung together and then is right justified
or centered as a unit.

Another application for an AT group occurs when printing data from array variables. Within an
AT group that contains array variables, corresponding values in each array variable always come
out on the same line. If a value in an array is text that wraps around to a new line, blanks are
inserted in the other columns as needed to maintain alignment across columns. There is no
alignment across columns for columns in different AT groups. Text wrapping can cause data
from different array positions to appear on the same line (which is desirable in some reports).
The following example illustrates this:

NASIS CVIR Language Manual Page 80

This line specification uses columns “name”, “age”, and “score” from a query with aggregation
type NONE, so each column contains an array of values. The column “text” comes from a
different query and has only one value, which is a long text string.

AT LEFT name width 12, age width 6, score width 7; AT 28 text
width 30.

This might produce the following output. Because it is in a different AT group, “text” wraps
across several lines, and is not associated with any one of the name lines. Where a name wraps,
however, the associated data stays in alignment.

Jones 30 5.9 This group of people has
Abercrombie- 52 5.4 responded to all the
Fitch surveys conducted since

 Smith 27 6.1 1983.
Martinez 41 5.7

The line with the name “Abercrombie-Fitch” requires two lines of output because the name
doesn’t fit in 12 characters. The age and score are printed on the first of these lines, and a blank
appears beneath them due to wrapping in the first column.

In some cases, this might not be the desired output. If you want the age and score to appear lined
up with the end of the name rather than the beginning, use the alignment option. Age and score
would need to be in a separate AT group using BOTTOM alignment, meaning that they line up
with the bottom of the previous AT group. The following example shows this:

AT LEFT name width 12; AT 13 BOTTOM age width 6, score width 7;
AT 28 text width 30.

This version would produce the following output.

Jones
Abercrombie-
Fitch

30

52

5.9

5.4

This group of people has responded to
all the surveys conducted since May,

Smith 27 6.1 1983.
Martinez 41 5.7

There is a third possible alignment option, SAME. This is used in cases where there are three or
more AT groups, the second group has BOTTOM alignment, and both first two groups could
have wrapping of long text. Then there are three possible places for the third AT group to line
up: the original top line of the first group, the bottom of the first group (which is the same as the
second group), or the bottom of the second group. These three positions correspond to the
alignments TOP, SAME, and BOTTOM. For an example in NASIS, see the national
manuscript report Table E2.

NASIS CVIR Language Manual Page 81

ELEMENT Statement

Syntax

output-specification ⇒ ELEMENT [OPEN | CLOSE] element-name
[attribute [attribute] …] [value-tag] [column-spec [, column-spec] …]
element-name ⇒ “string”
attribute ⇒ (“string”, { “string” | variable })
value-tag ⇒ VALUETAG “string” [attribute [attribute] …]

Examples
ELEMENT “para” ATTRIB (“role”, “subhead”) musym, “: “,
muname.

ELEMENT “tr” musym TAG “td”, muname TAG “td” ATTRIB (“role”
“namecol”).

The ELEMENT statement creates output in Extensible Markup Language (XML) format. XML
is an industry standard for exchanging information on the web. An introduction to XML is
available from W3C, the web-standards organization. The element is an individual component
of an HTML document or webpage once it has been parsed into the Document Object Model.

An HTML document is built up out of elements and attributes. The elements are all nested with
the HTML element as the outer level, or root element. Each element may also contain certain
attributes. A <P> element might contain the text node "Hello, World!" and also a style attribute.
Attributes are in key and value pairs, so the style attribute would be set to some value.

HTML, the standard language for webpages, is a subset of XML and can be produced with the
ELEMENT statement. The complete specification for HTML 5.1, 2nd edition is online at the
following link.

NASIS CVIR Language Manual Page 82

http://www.w3.org/TR/html51/

Many references have been written about HTML. An example of a simple online reference is
available at the following link.

http://www.simplehtmlguide.com/

When HTML is specified as the output format for a report, NASIS converts the XML generated
by ELEMENT statements into HTML so that the output can be viewed directly in a browser.
The conversion works best if the report follows the conventions documented in Appendix 1,
which are based on a documentation standard called DocBook.

The ELEMENT statement includes an element name that appears in the opening and closing tags
that surround the content of the element. The first example above uses the element name “para”,
which is the DocBook tag for a paragraph, and a class attribute of “subhead”. The content of the
element is three items: a value of musym, a colon-space, and a value of muname. The output
generated by this element might look like this:

<para role=”subhead”>12: Alpha silt loam, 5 to 8 percent
slopes</para>

Any attributes applicable to an element can be added with the ATTRIB option. Within the
parentheses, you provide an attribute name and the value. In this example, the attribute “role” is
a standard DocBook attribute that links to a style sheet where the formatting for elements of role
“subhead” is defined. An element statement may contain several attributes.

Because XML describes structure as well as data, there is commonly a need to produce elements
within elements. The CVIR language provides some ways to do this. The first way is the TAG
attribute, illustrated in the second example above. When TAG is used in a column-spec, XML
tags are produced around that column’s data. Following TAG, additional ATTRIB options can
be specified. Those attributes go in the column’s tag rather than the outer element tag. The
output might look like this:

<tr><td>12</td><td role=”namecol”>Alpha silt loam, 5 to 8
percent slopes</td></tr>

This output is a typical DocBook specification for a row of a table (abbreviated “tr”) containing
two table data (“td”) columns. A more common use would be to put the element definition in a
TEMPLATE statement, then specify the variables to be output with a USING statement, as in
the following example, which produces the same output as the example above.

http://www.w3.org/TR/html51/
http://www.simplehtmlguide.com/

NASIS CVIR Language Manual Page 83

TEMPLATE row1 ELEMENT “tr” FIELD TAG “td”, FIELD TAG “td”
ATTRIB (“role” “namecol”).
USING row1 musym, muname.

A further level of XML structure can be applied when the variables being printed in the
ELEMENT statement are arrays. The VALUETAG option is similar to the TAG option, except
that it places a tag around each value of the array. TAG would place the tag around the whole
set of values. You can use both TAG and VALUETAG to get a nested tag effect. The following
example uses the hzname variable, which has multiple values:

TEMPLATE row2 ELEMENT “tr” FIELD TAG “td”, FIELD TAG “td”

VALUETAG “para” ATTRIB (“role” “namecol”).

USING row2 compname, hzname.

This example puts each horizon name within a “para” tag so that it appears on a separate line.
The example uses the “namecol” role to get the right formatting for that column. The output
would be like the following (indentation has been added to make it more readable).

<tr>
<td>Alpha</td>
<td><para role=”namecol”>A</para>

<para role=”namecol”>B</para>
<para role=”namecol”>C</para>

</td>
</tr>

The following example has the VALUETAG nested within the TAG option. It is also possible to
nest TAG options within a VALUETAG. In such cases, the outer tag is repeated for each set of
inner tags, as in the following example.

TEMPLATE row3 ELEMENT “table” VALUETAG “tr” FIELD TAG “td”,
FIELD TAG “td” ATTRIB (“role”, “number”).
USING row3 hzname, hzdept_r.

This example produces a complete table that displays a set of horizon names and depths, which
are assumed to be aggregated into multiple-valued variables. Each pair of values for hzname and
hzdept_r becomes a table row enclosed in a “tr” tag. The output might be the following.

<table>
<tr>
<td>A</td>
<td class=”number”>0</td>

</tr>

NASIS CVIR Language Manual Page 84

<tr>
<td>B</td>
<td class=”number”>15</td>

</tr>
<tr>

<td>C</td>
<td class=”number”>45</td>

</tr>
</table>

This type of output works best if all the variables have the same number of values. If they do
not, then the rows don’t all have the same number of columns, which produces a poor looking
page when output to HTML.

The examples so far have shown how to produce XML tags nested up the three levels deep,
using ELEMENT, TAG, and VALUETAG. Commonly, it is necessary to add even more levels
for larger structures. The last example showed a very simple table, but often a table has too
much information to fit in one ELEMENT statement. Also, a <table> element would be inside
the main <section> element of a typical DocBook document. These larger structures
typically encompass most, if not all, the data in a report; so, the opening and closing tags cannot
be produced in a single statement.

For more complex structures, we use conditional sections together with the ELEMENT OPEN
and ELEMENT CLOSE forms of the statement. ELEMENT OPEN produces only the opening
tag, and it might be placed in a section with a condition of WHEN AT START or WHEN
FIRST OF. The ELEMENT CLOSE statement produces the corresponding closing tag. It
would be in a section with condition WHEN LAST OF or WHEN AT END. Following is an
example of a part of a script to produce a DocBook table:

SECTION WHEN AT START
DATA
ELEMENT OPEN "section" ATTRIB ("label", "SoilReport").
ELEMENT "title" reporttitle.
ELEMENT OPEN "table.
ELEMENT OPEN "thead.

elements for table header …

ELEMENT CLOSE "thead.
ELEMENT OPEN "tbody.

END SECTION.

SECTION

DATA
USING row1 compname, hzname, etc.

NASIS CVIR Language Manual Page 85

END SECTION.

SECTION WHEN AT END
DATA
ELEMENT CLOSE “tbody”.
ELEMENT CLOSE “table”.
ELEMENT CLOSE “section”.

END SECTION.

Each ELEMENT OPEN must have a matching ELEMENT CLOSE.

There are no rules about when to use attributes and when to use child elements. Attributes are
handy in HTML, but you should try to avoid using them in XML; otherwise, use child elements.

Tags are used to mark up the start and end of an HTML element.

An attribute defines a property for an element, consists of an attribute/value pair, and appears
within the element’s start tag.

Some of the problems with attributes are:

• Attributes cannot contain multiple values (child elements can),
• Attributes are not easily expandable (for future changes),
• Attributes cannot describe structures (child elements can),
• Attributes are more difficult to manipulate by program code, and
• Attribute values are not easy to test against a Document Type Definition. (Further

information regarding DTD is available online. An example of a site that describes DTD
is at the following link. https://www.w3schools.com/xml/xml_dtd_intro.asp.

If you use attributes as containers for data, you end up with documents that are difficult to read
and maintain. Try to use elements to describe data. Use attributes only to provide information
that is not relevant to the data.

One exception: Sometimes it is effective to assign ID references to elements. These ID
references can be used to access XML elements in much the same way as the NAME or ID
attributes in HTML.

NOTE: Metadata (data about data) should be stored as attributes, and that data itself should be
stored as elements.

https://www.w3schools.com/xml/xml_dtd_intro.asp

NASIS CVIR Language Manual Page 86

Column Specifications

Syntax

array-spec ⇒ ARRAY (column-spec [, column-spec] ...)

The column specification identifies exactly what is printed at a spot in a report. A column can
print data from a literal, variable, data element, or page number. It can also be a compound
column (ARRAY) consisting of one or more subcolumns. In a template definition, the keyword
FIELD is used as a place holder, and the actual element, variable, or literal is supplied later.

If a variable or element is printed, its value at each report cycle prints according to the layout
options. If a literal is used, it prints the same value each time. The keywords PAGE and
PAGES generate page numbering and are normally used in headers or footers. Wherever the
word PAGE occurs, the number of the current page is substituted before column layout options
are applied. The keyword PAGES is replaced by the total number of pages in the report, as in
“Page n of m”.

When the ARRAY specification is used, a group of one or more columns is printed repetitively.
The columns are printed using the same format. Array columns are used only with crosstab
reports. The number of columns printed equals the number of column values in the crosstab,
times the number of column specs in the ARRAY spec. The printing sequence is to print all the
columns listed in the ARRAY spec, then repeat for the number of crosstab values. Any column
layout options listed outside the parentheses of an ARRAY spec apply to all columns within the
parentheses unless overridden by layout options that are inside the parentheses and apply to an
individual column.

In the description of the CROSSTAB Statement, there is an example that produced the data
shown in the following table. The variables areaname and acres are arrays with 3 values each.

NASIS CVIR Language Manual Page 87

musym muname areaname acres
10A Alpha loam, 0 to 3 X Y Z 100 300 400
10A Alpha loam, 0 to 3 X Y Z 200 500
10B Alpha loam, 3 to 6 X Y Z 600 700
10B Alpha loam, 3 to 6 X Y Z 800

The following example shows one way these data could be printed. Ignoring column formatting
details for the moment, these line specifications for heading and data would produce the report
fragment shown.

HEADING
AT 1 musym LABEL, muname LABEL, ARRAY(areaname).

DATA
AT 1 musym, muname, ARRAY(acres, “acres”).

musym muname X Y Z

10A Alpha loam, 0 to 3 100 acres 300 acres 400 acres
10A Alpha loam, 0 to 3 200 acres acres 500 acres
10B Alpha loam, 3 to 6 600 acres 700 acres acres
10B Alpha loam, 3 to 6 acres 800 acres acres

The heading line prints the labels for the data elements musym and muname, which we assume
are just the column names, then the values for areaname, which define the groupings.

The data line prints musym and muname, this time as normal report columns, then acres and the
literal “acres” as an array. The values from acres are paired with the word “acres” and printed in
three columns. In this example, the crosstab was not set up with aggregation, so there are several
blank spaces, but the literal prints anyway. The report could be made to look better by changing
the crosstab or by moving the word “acres” into the heading.

When a multiple-valued variable is printed in a column that does not have an array spec, the
values are printed one beneath the other in the column. It results in a set of parallel report
columns for each query column, as illustrated earlier.

NASIS CVIR Language Manual Page 88

Column Layout Specifications

Syntax

In HTML formatting, COL can be used to vary the size of each column dynamically.

Example
ELEMENT ‘col’ ATTRIB(“width’, “3*”)

Each column in a report can use zero or more of the above layout. Each option can be used only
once per column. The options are generally the same for headings and data, although some are
not useful in headings. The options can be written in any order.

1. The WIDTH option overrides the default width for the data in the column. The default
width is taken from the template in a USING statement, from the data dictionary for data
elements, or from the string length for a literal without the REPEAT option. In text-style
output, there is no default width for a variable. In XML output, the default is WIDTH
UNLIMITED. If the width is followed by IN (or INCH or INCHES), the width is
measured in inches as determined by the horizontal pitch. The default is to measure
width in characters.

NASIS CVIR Language Manual Page 89

2. The WIDTH UNLIMITED option formats the output without fixed column widths. This
overrides the normal word wrap function and the TRUNCATE, ALIGN, INDENT,
NEST and REPEAT formatting options. The data for the column is printed in the
minimum space needed to contain the entire value, preceded by the optional
SEPARATOR string. Numbers are formatted with decimal places defined in the usual
manner with no leading spaces or zeros. This is useful with the PAGE WIDTH
UNLIMITED option for producing text-style exports and is the default for XML-style
output.

3. When LABEL is specified, the value printed is not the data but rather the Column Label
from the data dictionary for the specified element. This could be used in column
headings. If LABEL is used with a literal or variable, the result is a blank.

4. The DIGITS option is used with numeric data to specify the number of digits to be
printed to the left of the decimal point. The default number of digits for data elements is
taken from the data dictionary. This specification is overridden if the WIDTH is given
explicitly. Numeric values over 999 are printed by default with commas between groups
of 3 digits. The commas are not counted as digits but do count in the column width.

5. The DECIMAL option is used with numeric data to specify the number of digits to be
printed to the right of the decimal point. The default number of decimal places is taken
from the data dictionary if a data element is being printed; otherwise, the default is zero.
If the number of decimal digits is zero, the decimal point is not printed.

6. The SIGDIG option is used with numeric data to specify the number of significant digits
in the value to be printed. The value is rounded off so that only the significant digits are
shown, and zeros are added as necessary to fill out the remaining places required by the
DIGITS and DECIMAL specifications. The number of significant digits specified must
be greater than zero. If SIGDIG is not specified, all digits are considered significant.
The following examples show the relationship of the DECIMAL and SIGDIG
specifications:

Original Value DECIMAL SIGDIG Result
527.36 2 3 527.00
0.456 2 1 .50

1384.2 0 2 1400

7. The ALIGN option positions the data within the column. The default is based on the data
dictionary definition for elements. For variables and literals, the defaults are left
alignment for character data and right for numeric.

8. The PAD option provides a character to fill out blank space in the column when the data
is shorter than the column width. Padding occurs on the right if the column is aligned
left, on the left if the column is aligned right, and on both sides if the column is aligned
center. If the text in a column is word wrapped, padding is only applied on the last line
of the text. The default pad character is a space.

NASIS CVIR Language Manual Page 90

9. The INDENT option positions the data a specified number of characters or inches from
its alignment position. A positive indent applies to the first line of a word-wrapped
string. A negative indent applies to lines after the first. In other words, for typical left
aligned data, a positive indent produces first line indentation and a negative indent
produces “hanging” indentation. For right aligned data, it works the same way but
relative to the right edge of the column.

10. The NEST option is provided for printing interpretations. These are traditionally printed
in a “nested” or “outline” format with results of each subrule indented below its parent
rule. The amount of indentation increases with each level of subrule. So a nested format
is really a variable indentation with the amount of indent proportional to the depth of
nesting. The output of the INTERPRET command includes a column InterpRuleDepth
for just this purpose. The NEST format option allows you specify an indentation of n
spaces (or inches) per depth level. This can be combined with normal indentation, such
as a negative indent amount for hanging indents. For example, to print an interpretation
result RatingClassNameHighRV with hanging indent of 1 space for word wrapping plus
nesting of 2 spaces per level, use:

RatingClassNameHighRV INDENT -1 NEST 2 PER InterpRuleDepth

11. The NO COMMA option suppresses the placement of commas in numbers larger than
three digits. This is used for printing a numeric value that should not have commas, such
as a year or an ID number. It is also used to avoid inappropriate commas when exporting
data in a comma delimited format.

12. The TRUNCATE option determines what happens when character type data is too long
to fit in a column. The default is to split the data across multiple lines with word
wrapping. If TRUNCATE is specified, the data is printed on a single line and truncated
to the fit the column width. Numeric type data is never wrapped; if it is too long to fit the
column, asterisks are printed.

13. The REPEAT option means that the column’s value is repeated as often as necessary to
fill the column width. This is typically used with a literal, such as “-”. The REPEAT
option in this case would fill the column with dashes. The column width must be
specified explicitly when REPEAT is used.

14. The SEPARATOR string prints prior to the data for the column. It is placed at the
column’s specified starting position. The actual data for the column starts after the
separator. If this option is not included, no separator is printed. There is no option to
specify a separator to the right of a field. To print a right border on a line, add a field of
width zero at the end of the line and add the desired border character as its separator.

15. The REPLACE options allow the printing of some other value when a zero or null is
found. This does not affect the operation of any calculations based on the value being
replaced. This function can also be achieved using a variable with a conditional
expression, but REPLACE might be more convenient. A value set to null by

NASIS CVIR Language Manual Page 91

SUPPRESS DUPLICATES is not replaced with the substitution value but always prints
blank.

16. The SUPPRESS DUPLICATES option prevents repetitive printing of data. For each
report input record, the value of a column specified with SUPPRESS is compared to its
value in the previous record. If it matches, blanks print instead of the value. If the
column is part of the sort key for the main report query, the duplicate suppression does
not occur on control breaks. In this context, a control break occurs when the column—or
any column higher in the sort key—changes value.

This control break behavior can be obtained for non-sort columns by using the BY
phrase. The identifier after BY is an element or variable to be tested if the value of the
column itself does not change. If there is a change in the value of the BY variable (or
higher sort columns if the BY variable is in the sort key), suppression does not occur.

17. The QUOTE or QUOTED option surrounds the column’s data with quotation marks
and escapes any embedded quotation marks. This is typically used when exporting data
to another program. The quote-string is a single character that is added to the beginning
and end of the data. It defaults to the quotation mark (“). The escape-string is another
single character whose default is the back-slash (\). If the data contains an occurrence of
the quote-string or the escape-string, it is preceded in the output by the escape-string. If
the quote-string and the escape-string are the same, the embedded quotes are doubled
(which is the SQL convention). To specify a quotation mark, surround it by single
quotes: ‘”’.

For example, to use the single quote instead of the double quote, and to double the quote
if it appears in the text, the format option would be written as:

QUOTE “’” ESCAPE “’”

If the original text contained the following:
Elmer said, “That’s all, folks.”

The output using the above format would be:
’Elmer said, “That’’s all, folks.”’

18. The TAG option is available in HTML-style output only. It surrounds the column’s data
with XML opening and closing tags using the “name” string as the tag name. Additional
attributes can be specified with the ATTRIB keyword followed by a name and value in
parentheses. The attribute name must be a quoted string, and the attribute value may be a
quoted string, a number, or a defined variable. The tag name and attributes are output
according to XML standards.

If the variable being printed in the column is an array that has more than one value, the
tag surrounds the full set of values. The result is that the values are concatenated together
unless a VALUETAG option is used to apply a tag to each individual value.

NASIS CVIR Language Manual Page 92

The TAG option must be used within an ELEMENT. Examples are shown in the
description of ELEMENT.

19. The VALUETAG option is available in HTML-style output only. It is similar to the TAG
option, except that it places tags around the individual values in the array of values for
the column. If the column’s variable has just one value, then TAG and VALUETAG
have the same effect. If both are used on a column, the VALUETAG appears inside the
TAG.

NASIS CVIR Language Manual Page 93

SET

Syntax

SET column_name [FROM variable] [, column_name [FROM variable]] … .

Used In

Calculation

Examples
SET aashind_l, aashind_r, aashind_h.

SET dbfifteenbar_r FROM db.

The SET statement is used in calculation scripts to store the results of a calculation back to the
database. The value of the FROM variable is placed in the specified column. If the column and
FROM variable have the same name, the “FROM variable” part may be omitted. You may use
multiple SET statements or multiple columns in a single SET when the calculation script
produces more than one result. The results are stored for each row you choose to be calculated.
Rows can be modified only if they are editable and checked out by you. If the specified column
contains manually entered data (flagged as “M”) or data from prior to the existence of a
calculation (flagged as “P”), it is not changed unless the user chooses to override (in the
Calculation Manager dialog).

Values can be stored in two ways: singly or in groups. If the column_name is a column in the
base table of the calculation, a single value is stored in each calculated row. If the source
variable has more than one value, only the first value is used. If the calculated variable has a null
value, a null is stored in the column.

A group of values can be stored by specifying a column in a table that is a direct child of the base
table. This causes all existing child rows in the selected set to be updated. If necessary, rows are
added or deleted to match the number of values in the source variable. More than one column in
the child table may be given new values by using multiple SET statements or multiple columns
in one SET. Care should be taken to ensure that all source variables have the same dimension;
otherwise, data could be lost.

In case of ambiguity in column names, the form table.column may be used for column_name.
The _r, _l, or _h suffix must be used if the column has modal values.

NASIS CVIR Language Manual Page 94

TEMPLATE

Syntax

TEMPLATE template-name [column-layout] output-specification .
template-name ⇒ name

Used In

Report

Example: Report (text)
TEMPLATE basic SEPARATOR “|”
AT LEFT FIELD WIDTH 8, FIELD WIDTH 50.

Example: Report (HTML)
TEMPLATE head1
ELEMENT "tr" ATTRIB ('style','border: 1px solid grey;')
FIELD TAG 'td' ATTRIB ('style', 'vertical-lign:middle;text-
align:center;background-color:gainsboro;font-
size:12;padding:10px;font-family:VERDANA'),
FIELD TAG 'td' ATTRIB ('style', 'vertical-
align:middle;text-align:center;background-
color:gainsboro;font-size:12;padding:10px;font-
family:VERDANA'),
FIELD TAG 'td' ATTRIB ('style', 'vertical-
align:middle;text-align:center;background-
color:gainsboro;font-size:12;padding:10px;font-
family:VERDANA').

A template describes the format of a report line without the data. Templates are not required but
are useful to avoid repetitive specification of layout options. Putting the statement USING
template-name into an output specification copies all the column layout information from
the template into the output specification.

In a template, a set of column layout options can be given right after the template name. These
options become the default for all columns in the template. There must be one and only one
output specification in a template, which must be either an AT statement or an ELEMENT
statement. This statement can contain additional column layout options, which take precedence
over the template defaults. Finally, when a template is invoked with a USING statement, other
layout options can be given and these options take precedence over the template. Column and
line specifications are described under the SECTION statement.

In the output specification used in a template, it is possible to use a literal, variable, or element
name as a value to be printed in a column. This would print the specified value whenever the

NASIS CVIR Language Manual Page 95

template is used. However, the keyword FIELD can also be used in place of a value. In this
case, the value to be printed is not defined until it is specified in a USING statement. An output
specification in a template definition may not contain USING.

NASIS CVIR Language Manual Page 96

WHEN

Syntax

WHEN expression DISPLAY message [parameter [, parameter] …] .

Used In

Validation

Examples
WHEN sum_pct > 100 DISPLAY “Percents sum to more than 100”.

WHEN error DISPLAY “Error in horizon %s” hzname.

The WHEN statement is used in validation scripts to produce a message if an error condition is
detected. The expression after WHEN is evaluated for each row to be validated, and if a True
(non-zero) value is found, the message is added to the validation message list. If the message
contains substitution markers as used in sprintf (such as %s or %g), values are taken from the list
of parameters and placed into the message. The validation process also records information
about which row generated a message, and this information is included when the message list is
displayed.

In some cases, multiple values are useful for the WHEN expression, for the message, or for its
parameters. This causes multiple messages to be generated for each row validated. If the
validation script extracts data from a child of the base table, individual messages for each child
row can be produced by using parameters that have values collected from the child rows.

NASIS CVIR Language Manual Page 97

Additional Information
Writing an SQL Query

Operators or Functions
Arithmetic operators, comparison operators, logical operators, and aggregate functions are used
to filter the search functions of the WHERE clause. The chart on the following page identifies
the data types and various comparison operators. Further information on the various operators
and functions is provided as they are described in this document.

NASIS 7 uses a national database (server), a local database (client), and a selected set (screen).
Queries and reports run off either the national database or the local database. Queries that are
run against the national database require an Object table (e.g. Legend, Mapunit, Datamapunit).
Queries written for a local database can be written to retrieve data from child tables (e.g.
Correlation, Component, Horizon, etc.).

Data Types and Comparison Operators
The data types (integer, character, etc.) and comparison operators (LIKE, “=”, “>”, “is null”, etc.)
are used to establish query conditions. There is a relationship between the comparison operators
and data types that must be understood. When a query is written to specify a condition in the
FROM and WHERE clause, there must be a comparison operator (such as = or LIKE) that is
compatible with the data element in the query conditions. For example, the data element "area
name" is a "Variable Character" data type and the LIKE operator is valid for this data type.

IMATCHES is case insensitive, except for Area symbols and Map unit symbols. Whereas
equals “=” indicates a full match but is not case sensitive. MATCHES (case sensitive) and
IMATCHES (insensitive) were previously used in the SQL but now only work in DEFINE
statements.

For case-sensitive queries, you must use the collate function. See the following example.

FROM datamapunit
INNER JOIN component BY DEFAULT
AND compname collate Latin1_General_CS_AS="CLARKSVILLE"

LIKE allows a string of characters with wildcards to be entered without regard to the case.
Equals “=” is also insensitive, but the string must be complete without any wildcards.

In Microsoft SQL Server, each column, local variable, expression, and parameter has a related
data type. The data type is an attribute that specifies the type of data (integer, character, money,
etc.) that the object can hold. SQL Server supplies a set of system data types that define all of

NASIS CVIR Language Manual Page 98

the types of data that can be used with SQL Server. The set of system-supplied data types is
shown in the following table.

Data Types and Comparison Operators
[Notes at the bottom of the table discuss the type of comparison.]

Data Type

Comparison Operator

= != > < >= <= IS
NULL

IS
NOT
NULL

LIKE
" "

MATCHES
" "

BETWEEN
AND

IN
()

Character
Variable
Character
(String)

Text (narrative
text) III III III III III III IV III III

Float II II II II II II IV IV
Smallfloat II II II II II II IV IV
Integer IV IV
Smallint IV IV
Datetime IV IV
Bit (Boolean) IV IV
Ordered Code
(choice) IV IV

Unordered
Code (choice) II II II II IV IV II

Property III III III III III III IV III III
Evaluation III III III III III III IV IV III III
Report III III III III III III IV III III
Rule III III III III III III IV IV III III
Query III III III III III III IV III III

Notes: Values for date and date-time must be entered in the correct format or an SQL error will
result. NOT, AND, and OR operators are used to combine two conditions; they are not related
to data type.

Blank.—Allowed.
II.—Allowed by query program, but results may not be meaningful.
III.—Allowed by query program, but will result in SQL error when query is executed.
IV.—Not allowed.

NASIS CVIR Language Manual Page 99

Character Strings
char.—Fixed-length non-Unicode character data with a maximum length of 8,000
characters.
varchar.—Variable-length non-Unicode data with a maximum length of 8,000 characters.
text.—Variable-length non-Unicode data with a maximum length of 2^31 - 1
(2,147,483,647) characters.

Integers
int.—Integer (whole number) data from -2^31 (-2,147,483,648) through 2^31 - 1
(2,147,483,647).
smallint.—Integer data from -2^15 (-32,768) through 2^15 - 1 (32,767).
tinyint.—Integer data from 0 through 255.
bit.— (Boolean) Integer data with value of either a 1 or 0.

Decimal and Numeric
decimal.—Fixed precision and scale numeric data from -10^38 +1 through 10^38 –1.
numeric.—Functionally equivalent to decimal.

Approximate Numerics
float.—Floating double precision number data with the following valid values: -1.79E +
308 through -2.23E - 308; 0; and 2.23E + 308 through 1.79E + 308.
real.— (smallfloat) Floating single precision number data with the following valid values:
-3.40E + 38 through -1.18E - 38; 0; and 1.18E - 38 through 3.40E + 38.

If you want to use a comparison operator on a floating value, multiple by 100, convert to
an integer, and match and then divide by 100 to change it back to a floating value.

Date and Time
datetime.—Date and time data from January 1, 1753, through December 31, 9999, with
an accuracy of three-hundredths of a second, or 3.33 milliseconds.
smalldatetime.—Date and time data from January 1, 1900, through June 6, 2079, with an
accuracy of one minute.

Examples Comparison Operators Used in an SQL Query
LIKE

WHERE muname LIKE "Menfro%"

 Equal to text
legendsuituse = "current wherever mapped"

not equal
mustatus != "additional"

http://msdn.microsoft.com/en-us/library/aa258242(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258242(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa933198(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa933198(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa933198(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa225961(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258832(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258832(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258876(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258876(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258277(v%3Dsql.80).aspx
http://msdn.microsoft.com/en-us/library/aa258277(v%3Dsql.80).aspx

NASIS CVIR Language Manual Page 100

equal to code value
repdmu = 1

Between two values
muacres between ? AND ? muacres between 10 AND 50

greater AND less than
muacres >2000
muacress <5

Below are comparison charts for different operators showing what the operators return.

This table shows the outcome when you compare true and false values with the AND operator.

 TRUE FALSE UNKNOWN
TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE
UNKNOWN UNKNOWN FALSE UNKNOWN

The following table shows the results of the OR operator.

 TRUE FALSE UNKNOWN
TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN UNKNOWN

Arithmetic Operators
Operator Meaning

+ (Add) Addition
- (Subtract) Subtraction
* (Multiply) Multiplication
/ (Divide) Division

% (Modulo)
Returns the integer remainder of a division.
For example, 12 % 5 = 2 because the
remainder of 12 divided by 5 is 2.

https://msdn.microsoft.com/en-us/library/ms178565(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms189518(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms176019(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms175009(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms190279(v=sql.90).aspx

NASIS CVIR Language Manual Page 101

Comparison Operators
Operator Meaning

= (Equals) Equal to
> (Greater Than) Greater than
< (Less Than) Less than
>= (Greater Than or Equal To) Greater than or equal to
<= (Less Than or Equal To) Less than or equal to
<> (Not Equal To) Not equal to
!= (Not Equal To) Not equal to (not SQL-92 standard)
!< (Not Less Than) Not less than (not SQL-92 standard)
!> (Not Greater Than) Not greater than (not SQL-92 standard)

Logical Operators

Operator Meaning
ALL True if all of a set of comparisons are true.
AND True if both Boolean expressions are true.
ANY True if any one of a set of comparisons are true.
BETWEEN True if the operand is within a range.
EXISTS True if a subquery contains any rows.
IN True if the operand is equal to one of a list of expressions.
LIKE True if the operand matches a pattern.
NOT Reverses the value of any other Boolean operator.
OR True if either Boolean expression is true.
SOME True if some of a set of comparisons are true.

Operator Precedence

Level Operators
1 ~ (Bitwise NOT)
2 * (Multiply), / (Division), % (Modulo)

3 + (Positive), - (Negative), + (Add), (+ Concatenate), - (Subtract), &
(Bitwise AND)

4 =, >, <, >=, <=, <>, !=, !>, !< (Comparison operators)
5 ^ (Bitwise Exclusive OR), | (Bitwise OR)
6 NOT
7 AND
8 ALL, ANY, BETWEEN, IN, LIKE, OR, SOME
9 = (Assignment)

https://msdn.microsoft.com/en-us/library/ms175118(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms178590(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms179873(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms181567(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms174978(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms176020(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms190296(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms189808(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms184364(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms178543(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms188372(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms189526(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms187922(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms188336(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms177682(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms179859(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms189455(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms188361(v=sql.90).aspx
https://msdn.microsoft.com/en-us/library/ms175064(v=sql.90).aspx

NASIS CVIR Language Manual Page 102

Wildcard Characters
Wildcard characters that can be used with the operator LIKE in the SQL to search for data. They
are used to substitute one or more characters when searching for data. The standard NASIS
wildcards are the underscore “_” for a single character and the percent sign “%” for multiple
characters.

Other characters that are allowed are shown in the following table.

Wildcard Description
% A substitute for zero or more characters
_ A substitute for exactly one character
[charlist] Any single character in charlist

[^charlist] or [!charlist] Any single character not in charlist

The bracket “[]” wildcard uses a specific set of characters. It can be a continuous list, for
example “[a-d]” (which will select any letter between a and d) or individual characters “[a,c,d]”
(which will select only the three letters identified in the bracket).

The symbols “^” and “!” can be used to negate a set; e.g., [!MO123] or [^TN101] would prevent
MO123 or TN101 from being selected in an area symbol query.

An ESCAPE clause can be used to search for characters that are used as wildcards. Any value
can be used as an ESCAPE value; it is defined by the ESCAPE clause.

Example Mapunit name
All map units with Menfro in the name %menfro%
All map units with 3 to 8 percent slope in the map unit name %3 to 8%
All map units with flooded in the map unit name %flooded*%
All map units with Menfro and the texture silt loam in the map unit
name %menfro % silt loam%

All map units with a slope range of teens on the high end %1_ slope%
All map units with “men” in the name and one letter before and after
the three letters _men_ %

All map units that start with CA in the name [CA]%
All map units except the ones that that start with BC in the map unit
name ![BC]%

All map units with an underscore in the name %!_% ESCAPE !

NASIS CVIR Language Manual Page 103

Avoid using wildcards at the beginning of the search pattern. Search patterns that begin with
wildcards are the slowest to process. Pay careful attention to the placement of the wildcard
symbols because the data returned may not be what was expected.

Details on the CVIR variant of SQL are in the Syntax Reference section under EXEC SQL.

Queries
The key features of a Query script are:

• All the tables listed in the FROM clause are candidates to be target tables when the
Query is run. For each target table picked, an SQL query is constructed to select rows in
that table. Additional rows linked to the target table are then found to fill out the selected
set or download list.

• Query parameters can be specified in the FROM and WHERE clause by using a
comparison with a question mark; for example, “areasymbol = ?”. When the query is
run, NASIS creates a field for the user to enter an area symbol. It automatically looks up
“areasymbol” in the metadata to determine its data type and whether it has a fixed choice
list (domain).

The purpose for a NASIS query is to load the local database and to populate the selected set with
data that is filtered to meet the needs of the user. The NASIS “query” requires knowledge of
SQL and the database structure. The NASIS query uses two Keywords: the FROM clause and
the WHERE clause. The SELECT clause is not used because the NASIS query is designed to
return the data for all the columns within the table(s) identified in the FROM clause. Because
queries are understood to pull all columns, the SELECT * (all columns) has been coded into the
Query editor. (Do not use this syntax in your SQL).

Queries are created to retrieve data from the National Database and used again to populate the
Selected Set.

A query used to “Run against the National Database” requires an Object table. The Object Table
is the Parent table within an object. For example, the legend table is the object table for the
Legend Object.

Queries designed to “Run against the Local Database” do not require an Object Table.

A simple query would be to load all instances of a specific map unit name. Opening the “Tables
and Columns” report allows you to identify the columns, table, and data types necessary to write
the query.

NASIS CVIR Language Manual Page 104

The physical name for the field map unit name is “muname” and appears in the Mapunit table.
The Mapunit table is the Object table. The muname field is a string data type and is compatible
with all comparison operators. An example of a simple query to extract map units from the
National database follows.

Example

Load all instances of a named component into the Selected Set

FROM mapunit
WHERE muname LIKE “Voca sandy loam, 1 to 3 percent slopes”

The process would be:

1. Select the Queries Explorer panel,
2. Choose to Open a new Query,
3. Enter a Query name,
4. Select the Query tab, and
5. Enter the SQL statement.

NASIS 7.3 has added enhancements to the Query function. The Query and Report “tables”
option allows the user to query for and manage Queries and Reports in a table format.

Another enhancement improves how the user decides which objects to download when
populating the Local Database.

The new National Query parameter box appears. The box includes the Description and Query
panels. It also includes a new panel for “Objects to Download”, which allows the user to select
the various objects to be downloaded from the national server.

NASIS CVIR Language Manual Page 105

Assuming a simple local database query to load all instances of a particular component name,
then the first step in writing the query is to review the “Tables and Columns” report.

The component name column (Physical Name is “compname”) is found in the Component table
and the field is a variable character (Varchar).

In NASIS, click on the “Add New Query” icon . The General tab appears. Populate the
query name and the description. Both fields are required.

The Query tab is used to write the SQL. “SELECT *” (SELECT all columns) is understood for
all queries; therefore, the query begins with the keyword FROM.

A Query that has two tables and a JOIN statement with the condition in the FROM clause
returns data faster than a single table with a condition in the WHERE clause. Just make sure
that the second table is one that has to exist, like NASIS site, or you will lose data.

NASIS CVIR Language Manual Page 106

Write:

FROM mapunit
INNER JOIN nasissite BY DEFAULT AND muname LIKE
‘relfe’

Instead of:

 FROM mapunit
WHERE muname LIKE ‘Relfe’

NASIS CVIR Language Manual Page 107

Target Tables
The target table focuses the outcome of a particular query. In this way, the user can control the
query so that it loads only the specific data to be worked on during that editing session. The
target table can greatly restrict or expand the number of records returned by a particular query.
To understand target tables, the user must understand the relationship between objects in the
NASIS database. The following data model diagram helps to visualize this relationship.

A target table restrict the records returned by a query as illustrated in the following example. In
an edit session, if the user wanted to work only with components that are named “Fayette,” the
user would choose a query that loads components by compname and specify Fayette. Because
component name is in the component table, either datamapunit or component could be selected
as the target table.

Note: Whether only the Fayette series is loaded depends on the choice of target table.

• If datamapunit is selected as the target table, all components of all data map units that
have at least one Fayette component are loaded into the component table.

• If component table is selected as the target table, only components named Fayette are
loaded.

The following graphics illustrate a simple query. The query has two tables in the FROM clause
that become “Target Tables” in the parameter box. In the first graphic, the target table is set to
“Data Mapunit.”

The next graphic shows that this choice provides a selected set that contains all components for
data map units in which Fayette is a member.

NASIS CVIR Language Manual Page 108

The next graphic shows the target table changed to Component. The results will contrast with
the previous results.

The next graphic show that, by using Component as the Target Table, the component table is
populated with only the “Fayette” components.

The query was the same except for the target table. Changing the target table changed the
results.

Setting the target table to Data Mapunit resulted in the query requesting all data map units in
which Fayette is a component. A data map unit consists of all the components and their data for
a given map unit.

Setting the target table to Component resulted in the query requesting that the Component table
be populated with only the Fayette components. The Component table contains only a specific
component; therefore, if it is used as the target table, then only the specific named component is
populated within the data map unit for the selected set.

NASIS CVIR Language Manual Page 109

Joining Tables
SQL Express 2016 allows for a new method of joining tables and makes the queries and report
more efficient. If joins are performed in the WHERE clause, the query must make a large
concatenated table of all the tables in the FROM clause and then reduce the data with the joins.
Note that you can put up to 256 tables in one FROM clause. The new syntax makes the first join
and then pass the matching values on to the next join, reducing the size of the file.

Tables can be joined:

• by the relationship, commonly this uses the term “default”;
• by a defined relationship, e.g., “mlra_sso” or “nonmlra_ssa” for area type joins;
• on a specific relationship, e.g., primary key:foreign key; and
• on any two fields with corresponding values.

Use the highest-level table needed for the query and work down by joining the tables. Use this
method because the highest-level table has the smallest number of rows, unless one of the child
tables has a restriction that reduces the number of records.

If you use the BY condition, you specify a relationship name that is defined in the NASIS data
dictionary. In most cases, the relationship name is “BY DEFAULT”. If more than one
relationship exists between a pair of tables, you must use the correct name. The Info page (found
by clicking the Blue circle icon) for a table in NASIS lists the relationship names.

The colored area in the circle diagrams below identifies the data that is selected between the two
tables in the join statement.

• INNER JOIN
o Includes only matching values from both tables.
o Is the most common type of join.
o Allows you to join multiple tables in one query, but it

requires a specific condition.
o Requires that you ensure that the JOIN statement has

two tables with at least one common overlapping field.
o Is the default join type. If the type is omitted from the

join clause of a query, the NASIS SQL server assumes an inner join.

If you understand inner joins, understanding OUTER JOINS is an easy progression. They both
look for and display every match they find between two tables. Both joins require that you
specify the matching field(s) in the ON clause. Outer joins show the records that inner joins
omit.

Mapunit DMU

NASIS CVIR Language Manual Page 110

• LEFT OUTER JOINS
o Includes all values from the left table (the table left of

the word “JOIN”) and only the matching values in the
right table (the table right of the word “JOIN”).

• LEFT OUTER JOIN with null values

o Includes all values from the left table that do not match
the right table.

o Can be used instead of not exists for left table.

• RIGHT OUTER JOIN
o Includes all values from the right table and only the

matching values from the left table.

• RIGHT OUTER JOIN with null values in left table
o Includes all values in the right table that do not

match the left table.
o Can be used instead of not exists for right table.

Facts to remember about OUTER JOINs:

1. Outer joins should be used only when necessary. If it is
possible (i.e., the data model and business data allow), then an INNER JOIN should be
used. INNER JOIN offers greater flexibility for the optimizer and doesn't mislead
people into thinking that some rows of one table cannot be joined to other table.

2. Unlike in an INNER JOIN, it is important if the condition is written as join condition or
in a WHERE clause. See example below.

3. Once an OUTER JOIN is used in a series of JOIN statements, the OUTER JOIN must
be used on all joins below the first OUTER JOIN.

• FULL OUTER JOIN
o Includes all values from both tables regardless of

matching values.
o Has null values in fields that lack a matching row.

• FULL OUTER JOIN with null values
o Includes all values from both tables that do not link

to the other table.
o Is the opposite of an INNER JOIN.
o Can also be used instead of not exists for both tables.

Mapunit DMU

Mapunit DMU

Mapunit DMU

NASIS CVIR Language Manual Page 111

• CROSS JOIN (Cartesian join)

o Creates a concatenated table from both tables. This can be handy for finding
missing data that should be applied to all values in one table.

o Is used quite rarely. Can create large number of rows returned. Relatively small
tables can get quite monstrous. Some of the scenarios in which it could be used
are:
 To find all possible row combinations of some tables. Mostly, this is

useful for reports where one needs to generate all combinations. For
example, all taxonomic great groups by all suborders for a taxonomic soil
order.

 To join a table with just one row. Mostly, this is used to get some
configuration parameters.

o Other facts to remember about cross joins:
 Every other join type can degrade to a cross join if the join condition is

always true for all records. This is true for natural joins, inner joins, outer
joins, and others.

 To make a CROSS JOIN as a SELF JOIN, you must use table aliases so
the data for each table can be identified.

• Not-EQUI-JOIN or (THETA) join
Join conditions can have operators other than equivalence. It is only rarely used in
practice; it is more just like a scientific possibility. One of the reasons it is not used is
because many people cannot imagine such a possibility and therefore overlook cases it
would be possible. There isn't special syntax for these joins, except that the join condition
must be explicitly used. For example, you can query for map unit symbols that are the
same but have different map unit names.

• SELF-JOIN
o This is joining a table to itself.
o When performing a self-join, a table alias must be used to make each table

unique.

The relationship name is identified in the related parent table in the relationship Name column
found with the blue I button in NASIS.

In general:

1. Use subqueries when you need to compare aggregates to other values.
2. Use joins when you are displaying results from multiple tables.

Write:

FROM mapunit
INNER JOIN correlation BY DEFAULT
INNER JOIN datamapunit BY DEFAULT;.

NASIS CVIR Language Manual Page 112

Instead of:

FROM mapunit, correlation, datamapunit
WHERE join mapunit to correlation
AND join correlation to datamapunit;.

Be careful when mixing INNER JOIN and OUTER JOIN; hunting down unintended results and
side effects can be tricky. You can use parenthesis to express your logical order of precedence in
the same way you'd use parenthesis in a math equation or Boolean equation. Parenthesis can
make your code cleaner and more readable, and you can ensure that you get back the exact
results you intended.

Below are three examples that query the same data but change the order of precedence.

1) In this query, an INNER JOIN is used after an OUTER JOIN. The query returns 483,798
records

EXEC SQL
SELECT count(projectiid) as pcount
FROM project
LEFT OUTER JOIN projectmapunit ON
projectmapunit.projectiidref=project.projectiid
INNER JOIN projecttype ON
projecttype.projecttypeiid=project.projecttypeiidref;.

2) Here, the same data is queried using both LEFT OUTER JOINS. This query returns 914,938
records

EXEC SQL
SELECT COUNT(projectiid) AS pcount
FROM project
LEFT OUTER JOIN projectmapunit ON
projectmapunit.projectiidref=project.projectiid
LEFT OUTER JOIN projecttype ON
rojecttype.projecttypeiid=project.projecttypeiidref;.

3) Here, an INNER JOIN is used inside parenthesis after a LEFT OUTER JOIN. This query
returns 475,584 records.

EXEC SQL
SELECT count(projectiid) as pcount
FROM projectmapunit
LEFT OUTER JOIN

(project INNER JOIN projecttype ON
projecttype.projecttypeiid=project.projecttypeiidref)
ON projectmapunit.projectiidref=project.projectiid;.

NASIS CVIR Language Manual Page 113

Data restrictions can be added in the “FROM” clause using the term ON. When the join
conditions begin with ON, standard SQL syntax applies. You must specify the exact columns to
be matched in each of the tables.

Example
FROM datamapunit
INNER JOIN component ON datamapunit.dmuiid=
component.dmuiidref

You can also add more conditions beyond just the key columns with the term AND.

Example
FROM component
INNER JOIN chorizon ON component.coiid=chorizon.coiidref
AND hzname LIKE “%R%” AND hzdept_r !=0

Joining data to a restrictive subquery causes the script to run quicker because the data set is
reduced (subqueries run first, thus reducing the data set size). Join the most restrictive tables
first. By applying the join in the FROM clause, you restrict the data from the start and thus
decrease the amount of data being queried.

Note that other clauses for SQL statements (e.g., GROUP BY, HAVING, ORDER BY) are
usable for SQL statements with joins.

Be cautious when using join conditions with columns without NOT NULL constraint.
Comparing NULL values with different explicit values or even Nulls can be counter-intuitive.

The position of additional conditions is irrelevant for INNER joins for each join. However,
placing the table with the most restrictive condition first in the FROM Clause is faster because it
restricts the number of rows past to the next JOIN.

If the conditions are in the WHERE clause, the entire set of tables must be joined into one overly
large table and then rows are removed by the conditions. If the conditions are in the FROM
clause, the JOIN conditions reduce the number of rows considered with the next JOIN
statement.

Tables cannot be joined directly on ntext, text, or image columns. However, tables can be joined
indirectly on ntext, text, or image columns by using SUBSTRING.

Example
SELECT muname
FROM mapunit AS m1
INNER JOIN mapunit AS m2

NASIS CVIR Language Manual Page 114

ON SUBSTRING(m1.muname, 1, 20) = SUBSTRING(m2. muname, 1,
20)

The example above performs a two-table inner join on the first 20 characters of each text column
in tables m1 and m2.

Another possibility for comparing ntext or text columns from two tables is to compare the
lengths of the columns with a WHERE clause. This option is shown in the example below.

Example
 FROM datamapunit AS dmu1
 INNER JOIN datamapunit AS dmu2

WHERE DATALENGTH(dmu1.desc) = DATALENGTH(dmu2.desc)

Join Examples
The following query retrieves values that match in both tables. If a legend is not linked to an
area, it will not be retrieved.

FROM area
INNER JOIN legend BY DEFAULT

The following query retrieves all values in the left table (correlation table) and only matching
values in the right table (data map unit table). This query retrieves all map units and only data
map units that are linked to the correlation table. Any data map units that are not linked to a map
unit are not retrieved.

FROM mapunit
INNER JOIN correlation
LEFT OUTER JOIN datamapunit BY DEFAULT

The following query retrieves all values in right table (data map unit table) and only matching
values in left table (map unit table). It retrieves all data map units and only those map units
where the map units are linked.

FROM mapunit
INNER JOIN correlation
RIGHT OUTER JOIN datamapunit BY DEFAULT

The following query retrieves all values in both tables. It retrieves all map units and data map
units, even if they are not linked.

FROM mapunit
INNER JOIN correlation
FULL OUTER JOIN datamapunit BY DEFAULT

NASIS CVIR Language Manual Page 115

The following query joins on a specific primary key (legend.areiidref) and foreign key field
(area.areaiid).

FROM area
INNER JOIN legend ON legend.areiidref=area.areaiid

The following query joins a codename comparison (project.stateresponsible) and alias the table
name (st).

FROM legend
INNER JOIN area st on
CODENAME(project.stateresponsible)=Arkansas

The following query performs a double join on two values (atdbiidref and areatypename) with
alias for areatype.

FROM AREA
INNER JOIN areatype stt BY DEFAULT AND stt.atdbiidref=1 AND
stt.areatypename = "State or Territory"

The following query creates a “parameter” for state code and matches it to part of the area
symbol. The Parameter statement is discussed later.

PARAMETER areasym ELEMENT area.areasymbol PROMPT "State
Symbol". SELECT LEFT((areasymbol), 2) imatches areasym
FROM legend
INNER JOIN area on areasymbol on areasymbol=areasym

The following query creates a double self join (dmuiidref=c2.dmuiidref AND
c1.coiid!=c2.coiid). It finds duplicate components that have the same name Captina in the same
data map unit.

FROM datamapunit
INNER JOIN component AS c1 on
c1.dmuiidref=datamapunit.dmuiid
INNER JOIN component AS c2 on
c2.dmuiidref=datamapunit.dmuiid AND c1.coiid!=c2.coiid
WHERE compname IN (“Captina”)

CASE, WHEN, THEN, ELSE Statement
Case, when, then, else statements can be used to further reduce your selected set in reports.

• CASE.—When a condition is met, the value is TRUE.
• THEN.—Selects the output.
• ELSE.—The alternative output is selected when the CASE is FALSE.
• END AS.—Saves the output as an alias.

NASIS CVIR Language Manual Page 116

Example

If the subclass Land category class is empty, then just use the main class; otherwise, concatenate
the class and subclass together and label it Non_irrigated_land_class.

CASE WHEN component.nirrcapscl is null
THEN component.nirrcapcl
ELSE component.nirrcapcl + component.nirrcapscl
END AS Non_irrigated_land_class

Subquery
A Subquery, also called INNER QUERY, INNER SELECT, and SUB-SELECT, can be
written in the SELECT clause, FROM clause, and WHERE clause. Ensure that multiple
subqueries are in the most efficient order. There are 3 types of subqueries: in-line view query,
correlated subquery, and noncorrelated query.

An in-line view query (Derived Table or into temp tables) is a subquery followed by SELECT
and FROM clauses.

A subquery is a query in a query. A subquery is typically added in the WHERE clause of the
SQL statement, but it can also be in the FROM clause. In most cases, a subquery is used when
you know how to search for a value using a SELECT statement but you do not know the exact
value. Subqueries are an alternative method of returning data from multiple tables. A subquery
further restricts the results of the main query. The most common use for subqueries is filtering
data in the WHERE clause of a SQL command. A subquery is set within the query using
parentheses. Four special operators (EXISTS, IN, ALL, ANY) and the conventional operators
(such as =, <, >, >=, and <=) are used to connect the containing command and the subquery.

Use SQL JOINs instead of subqueries if possible.

Use “UNION ALL” between queries. The following example selects the map unit symbols from
the two different legends and combines them into one list.

SELECT musym
From area
Where areasym IN (MO207)

UNION ALL

SELECT musym
From area
Where areasym IN (MO103);.

NASIS CVIR Language Manual Page 117

The mathematical operators that can be used are: scalar_expression { = | <> | != | > | >= | !> | < |
<= | !< } ALL (subquery).

Subqueries Using the = Operator

What if it was necessary to identify all the component(s) with the maximum percentage in a
survey area or to identify the maximum in a data map unit? The subquery using the = operator
returns one result. This subquery, which extracts the maximum component percentage, is set
apart using parentheses and uses that value for comppct_r. What is returned for that value and
used in the main query depends on whether the subquery is “correlated” to the main query. This
introduces the concept of a correlated versus uncorrelated subquery.

Subqueries Using the EXISTS Operator
The EXISTS operator tests for existence of data. The data either does exist (TRUE) or does not
exist (FALSE). Therefore only one column or the asterisk (*) is necessary in the SELECT
statement.

Consider the following example in which a query loads all components that have more than one
texture in the surface horizon. The query prompts for a survey area and it selects the surface
horizon. The subquery begins with EXISTS and tests for the existence of more than one record
ID (chiidref) in the horizon texture group table for the surface layer. Notice the use of the
chorizon table, which links the subquery to the query.

FROM areatype
INNER JOIN area BY DEFAULT
INNER JOIN legend BY DEFAULT
INNER JOIN lmapunit BY DEFAULT
INNER JOIN mapunit BY DEFAULT
INNER JOIN correlation BY DEFAULT
INNER JOIN datamapunit BY DEFAULT
INNER JOIN component BY DEFAULT
INNER JOIN chorizon BY DEFAULT
WHERE areasymbol LIKE ? AND hzdept_r = 0
AND EXISTS (SELECT chorizon_iid_ref FROM chtexturegrp
WHERE JOIN chorizon TO chtexturegrp GROUP BY
chorizon_iid_ref
HAVING COUNT(*) > 1)

Subqueries Using the NOT EXISTS Operator

Contrary to EXISTS, the NOT EXISTS operator identifies the nonexistence of data. For
example, it could identify those components in which no horizon information is entered.
Although OUTER JOIN is helpful, another method is available. A subquery can be helpful in
identifying a child table that has no open rows.

NASIS CVIR Language Manual Page 118

NOT EXISTS is used in the following example. The subquery is in parentheses and selects
everything for the horizon table and joins the component and the horizon table. NOT EXISTS is
a negative or reversal operator. If nothing exists (e.g., a table with no data), then it returns a
TRUE statement and that data is loaded into the selected set.

FROM component
INNER JOIN chorizon BY DEFAULT
WHERE NOT EXISTS (SELECT chiid FROM chorizon
WHERE JOIN component to chorizon)

Correlated Subquery
A correlated subquery depends on the outer query. It uses the data obtained from the outer query
in its WHERE clause. If there are millions of records, the statement with the correlated
subquery is most likely less efficient than an INNER JOIN because the correlated subquery
needs to run millions of times.

A correlated subquery has a more complex method of
execution than single- and multiple-row subqueries and
is potentially much more powerful. If a subquery
references columns in the parent query, then the results
are dependent on the parent query (correlated). The
SQL differences, however, are subtle. Notice the
subquery FROM clause in the following example and
compare the two versions. In the correlated subquery,
the subquery and main query are linked using the
WHERE clause that links the datamapunit in the subquery to the datamapunit in the main query.

FROM area
INNER JOIN legend BY DEFAULT
INNER JOIN lmapunit BY DEFAULT
INNER JOIN mapunit BY DEFAULT
INNER JOIN correlation BY DEFAULT
INNER JOIN datamapunit BY DEFAULT
INNER JOIN component BY DEFAULT
WHERE areasymbol matches ‘KS155’ AND repdmu = 1 AND
mustatus = ‘correlated’ AND comppct_r = (SELECT
max(comppct_r)
FROM component
WHERE JOIN component to datamapunit)

In the correlated subquery, the component with the highest component percentage in each
datamapunit is presented as the value to be used in the main query.

NASIS CVIR Language Manual Page 119

The following example shows joining subquery tables to main query.

FROM area
WHERE areaiid IN (select areaiidref FROM legend WHERE JOIN
legend to area)

Uncorrelated Subquery
A noncorrelated subquery (does not refer to the outer query) is used when dealing with large
tables from which you expect a large return (many rows) and/or if the tables within the subquery
do not have efficient indexes.

The following example subquery loads the component that contains that maximum percentage.
Only 17 components contain the 100 percent found to be the highest comppct_r value in the
survey area.

FROM area
INNER JOIN legend BY DEFAULT
INNER JOIN lmapunit BY DEFAULT
INNER JOIN mapunit BY DEFAULT
INNER JOIN correlation BY DEFAULT
INNER JOIN datamapunit BY DEFAULT
INNER JOIN component BY DEFAULT
WHERE areasymbol matches ‘KS155’ AND repdmu = 1 AND
mustatus = ‘correlated’ AND comppct_r = (SELECT
max(comppct_r) FROM component INNER JOIN datamapunit BY
DEFAULT)

Because a WHERE clause does not exist in the subquery, the extracted comppct_r results come
from the query of the entire component table. A maximum comppct_r value of 100 percent is
returned and presented as the value to be used in the main query.

Subqueries Using the IN Operator
The IN operator does not require that the subquery returns one value. In the following example,
the IN operator identifies the maximum bottom depth of the soil. Note the use of the term MAX
on the horizon bottom depth column. In addition, this query contains a second subquery to

NASIS CVIR Language Manual Page 120

identify those soils in which the parent material is “till”. This example illustrates the use of
multiple subqueries to load data.

FROM area
INNER JOIN legend BY DEFAULT
INNER JOIN lmapunit BY DEFAULT
INNER JOIN mapunit BY DEFAULT
INNER JOIN correlation BY DEFAULT
INNER JOIN datamapunit BY DEFAULT
INNER JOIN component BY DEFAULT
INNER JOIN chorizon BY DEFAULT
WHERE areasymbol matches ? AND repdmu = 1 AND mustatus =
'correlated'
AND ANY(SELECT * FROM copmgrp WHERE JOIN component to
copmgrp AND pmgroupname matches '*till*' AND rvindicator =
1)
AND hzdepb_r IN (SELECT MAX(hzdepb_r)
FROM chorizon WHERE JOIN component to chorizon)

The ANY keyword denotes that the search condition is TRUE if the comparison is TRUE for at
least one of the values that is returned. If the subquery returns no value, the search condition is
FALSE. This keyword is like the IN keyword.

As a rule of thumb, if you look for many or most of the rows, try to avoid using correlated
subqueries. Use a correlated subquery when the return is relatively small or other criteria are
efficient; that is, if the tables within the subquery have efficient indexes.

SELECT DISTINCT munames
FROM mapunit
WHERE EXISTS (SELECT muiidref

FROM correlation WHERE muiidfref is not null)

In the case above, the subquery runs once for each row of the main query, thus causing possible
inefficiency. The case below shows the application of a join.

SELECT DISTINCT munames
FROM mapunit
INNER JOIN correlation on
correlation.muiidref=mapunit.muiid

A subquery is subject to the following restrictions:

• A subquery cannot use DISTINCT key if it includes GROUP-BY.
• A subquery cannot use COMPUTE and INTO clauses.
• A subquery can use ORDER-BY if it also has TOP().

NASIS CVIR Language Manual Page 121

• A subquery generated view cannot be updated.
• If a subquery returns a single value, then you can compare it using a comparison

operator. If the subquery returns multiple values, you can use ANY, SOME, ALL, and
IN.

• If a subquery is used with comparison operator, it must include only one column
name/expression (except that EXISTS and IN operate on SELECT *)

• The COMPUTE, ORDER BY, and INTO clauses cannot be specified in a subquery.

The following example demonstrates three uses of the SELECT statement, showing how to
format them. It shows using a subquery in the first SELECT of the query, assigning the result to
an output column name, and a third SELECT, which assigns the result to another output column.

EXEC SQL
SELECT upedonid, (SELECT MAX(hzdept) FROM REAL phorizon) AS
maxdep,
(SELECT MIN(hzdepb)

FROM REAL phorizon) AS Mindep
FROM REAL pedon;.

The following shows sample output from the example above.

User Pedon ID maxdep Mindep

99KS131001 710 1

2000KS027005 710 1

85KS061532 710 1

85KS061533 710 1

87KS013002 710 1

If you use COUNT in the SQL instead of a DEFINE statement, you need to multiply the count
by a very small number to keep the value as a number; otherwise, the number transforms into a
text value and does not sort correctly.

Example
Select COUNT(muacres) *0.00001 As “Map Unit Acres”

Using Subreports
The purpose of a subreport is to produce some output that is loosely coupled to the primary
report. A subreport has its own set of queries and output specifications, which might not be
related to those of the primary report. A subreport allows for greater flexibility in cases where
complex formatting is required.

NASIS CVIR Language Manual Page 122

A subreport is requested with an INCLUDE statement in the data block of an output section.
The entire output of a subreport is inserted in the data block as a single logical line. If keep
processing is in effect, it attempts to keep the subreport output together on a single page.
Therefore, it is advisable to design subreports that output less than a page. Longer output spills
over onto additional pages of the main report and can produce unwanted results. It is also
possible, however, to have a main report that produces no output of its own and only calls a
series of subreports. In such a case, the main report is a page by page copy of the subreports.

Subreports may not specify page layout, such as the page size, font, headers, or footers. The
page layout of the main report controls all output from subreports.

A report and its subreports do not need to use the same base table, and no automatic
synchronization is done (as with properties in a DERIVE statement). Subreports may call
themselves in a recursive fashion to produce a report on recursively organized data. An example
is a report that lists rules and all their subrules at any depth. It is important to pass the correct
parameters to a subreport so that it will find the correct records to report on; otherwise, the
subreport might generate an endless recursion.

Parameters for Web Soil Survey Reports
A general report script can use any parameters, but reports for Web Soil Survey (WSS) must use
the parameters that WSS supplies. In general, a user in WSS can choose either a full soil survey
area or a set of map units to report on. These choices are passed to the report script. Other
parameters are used in specific reports. The parameter names and types must be defined as
shown in the list below. The report script can also define a prompt for each parameter, which
appears in the user interface for entering parameter values when applicable.

PARAMETER areasym CHAR.
The area symbol for the requested survey area. If selecting by map unit, this is null.

PARAMETER mukeys MULTIPLE CHAR.
The map unit keys for the selected map units. If selecting by survey area, this list is
empty.

PARAMETER includeminor BOOLEAN.
Set to 1 if minor soils are to be included in the report or to 0 if they are to be excluded.

PARAMETER useNationalMapunits BOOLEAN.
Set to 1 if national mapunit symbols (mukey) are to be printed or to 0 if survey based
map unit symbols (musym) are to be used.

PARAMETER crops MULTIPLE CHAR.
The list of crop names selected for inclusion in a crop yield report.

NASIS CVIR Language Manual Page 123

The last example uses what is called a “dynamic choice list,” meaning that the list of choices
depends on the area of interest selected by the user. There is currently a limited set of
parameters that can be used as dynamic choice lists. In place of crops, the following parameter
names can be used:

• cocrops: Crop names from the Component Crop Yield table that have non-null yield
data.

• mucrops: Crop names from the Mapunit Crop Yield table that have non-null yield data.
• interps: Names of interpretations (rules) exported with the selected survey area(s).
• sainterps: Same as interps but allows more than 3 selections.
• cotextkinds: Component text kind and category.
• mutextkinds: Mapunit text kind and category.
• nontechdesccats: Mapunit text categories where text kind is “nontechnical

description”.
• counties: County names found in the Legend Area Overlap table for the area of

interest.

Using Parameters in a Report Query

Most of the parameters listed above are used in the report queries to control the selection of data.
In one case, “useNationalMapunits”, the parameter is also used in the body of the report to alter
parts of the output. In the queries, some unusual SQL features are used. This following example
from a crop yield report shows most of the parameter options.

1) EXEC SQL SELECT areaname, musym, museq, mapunit.mukey
muiid, muname,

2) Nationalmusym, compname, comppct_r, localphase,
component.cokey,

3) cropname, yldunits, irryield_r, nonirryield_r
4) FROM legend
5) INNER JOIN mapunit BY DEFAULT
6) INNER JOIN component BY DEFAULT
7) OUTER JOIN outer cocropyld BY DEFAULT
8) WHERE (areasymbol=$areasym OR mapunit.mukey in

($mukeys))
9) and (majcompflag = "Yes" OR 1 = $includeminor)
10) and cropname in ($crops)
11) ORDER BY case when $useNationalMapunits =0 then

areaname else nationalmusym end,
12) museq,
13) cropname;
14) AGGREGATE ROWS muiid
15) COLUMN yldunits UNIQUE GLOBAL

NASIS CVIR Language Manual Page 124

16) CROSSTAB cropname VALUES (crops)
17) CELLS irryield_r, nonirryield_r, yldunits.

Line 8 uses the “areasym” and “mukeys” parameters to select the map units for the reports. By
using OR, the line selects either by survey area or by map unit, depending on which parameter is
supplied. Note that when testing this report, if you enter values for both parameters, the report
selects map units that meet either criterion, which may be more than you expected.

Line 9 uses the “includeminor” parameter to select minor components. Here OR means, “select
a component if it is a major component OR if the includeminor parameter is set to 1.”

Line 10 uses the “crops” parameter to select crop names. The parameter is used again in line 16
to specify the crosstab values. Doing this forces the report to include a column for each crop,
even if there is no yield data for a crop. It also forces the columns to appear in the order that the
crop names are entered in the parameter.

Line 11 makes use of the “useNationalMapunits” parameter to control the sorting of the report.
This is tricky because when survey area map unit symbols are used, the report is sorted by survey
area; but when national map units are used, the report is not sorted by survey area. The SQL
CASE expression is used here. CASE is similar to the IF expression in a DEFINE statement.
Line 11 says to sort by area name or by national musym depending on whether survey area or
national symbols are used.

Line 12 says to sort on museq. The column museq is the sequence number for map units within
a legend, so it is used to sort when using survey area map units. It has no effect when using
national map unit symbols (and does no harm).

Script Variables
A script variable is a special notation used to obtain information about the report script itself
from the database. An example is the name of the report script, which is stored in the “report”
table in the column “report_name”. To include this name in the output of a report, use a
reference to the script variable SCRIPT_NAME, as in:

DEFINE reportname INITIAL SCRIPT(SCRIPT_NAME).

This places the script variable into a normal report variable, reportname, which can then be
printed as part of the report heading. Using INITIAL in this statement means that the variable
reportname is set at the beginning of report processing and never changes.

The script variables available in NASIS are a little different from the ones in WSS (from the Soil
Data Mart database) due to differences in table structure. The script variables are:

SCRIPT_NAME
The name of the report.

NASIS CVIR Language Manual Page 125

REPORT_TITLE
In NASIS, this is the same as SCRIPT_NAME. In WSS, this is the report title
from the Home tab in the report editor.

REPORT_HEADER
In NASIS, this is blank. In WSS, this is the text used as a headnote in the report
from the Home tab in the report editor.

INTERP_NAME
In NASIS, this is blank. In WSS, this is a list of rule names included in an
interpretation report from the Interpretations tab in the report editor.

INTERP_TITLE
In NASIS, this is blank. In WSS, this is the list of column headings used with the
corresponding rule in the INTERP_NAME list. This is also entered in the
Interpretations tab.

SCRIPT_ID
The internal ID number for the record in the report table. This might be used to
query for data linked to the report in the database.

Using script variables allows a report script to be generalized so that certain features do not have
to be coded into the script. This capability is used for WSS interpretation reports, which use a
completely generic script. All standard interpretation reports in WSS use the same script. That
script uses script variables to pick up the report name, headnote, and list of interpretations from
data stored in the report table. To create a State report using custom interpretations, you can
simply copy an existing interpretation report and change the list of interpretations and titles in
the Interpretations tab. You also specify which states will use the report in the Usage tab.

NASIS CVIR Script Writing References

Database Structure Guide
The NASIS 7.0 Database Structure Guide is a comprehensive reference that describes all aspects
of the NASIS database design. The guide provides information you need to know about the
NASIS template model, naming conventions, and data types. It can be obtained from the NASIS
website:
https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/tools/?cid=nrcs142p2_053547.

Table Structure Report
The Table Structure Report is included in the NASIS 7.0 Database Structure Guide. The report
provides information you need to know about table and column physical names, modality, data
types, and other characteristics necessary for report writing.

NASIS CVIR Language Manual Page 126

Database Structure Diagrams
The Database Structure Diagrams are included in the NASIS 7.0 Database Structure Guide and
the NASIS Online Help. Because of the size of the database, the diagrams each show just one
object hierarchy. They show the table relationships required for completing joins between
tables.

Suggested Reading
http://www.w3schools.com/xml/xml_whatis.asp
http://www.htmlhelp.com/reference/html40/
http://www.htmlgoodies.com/

https://msdn.microsoft.com/en-us/library/ms189826(v=sql.90).aspx

http://www.w3schools.com/xml/xml_whatis.asp
http://www.htmlhelp.com/reference/html40/
http://www.htmlgoodies.com/
https://msdn.microsoft.com/en-us/library/ms189826(v=sql.90).aspx

NASIS CVIR Language Manual Page 127

Web Uniform Resource Locator (URL) Reports

Overview
Any NASIS report, using any report format, can be called via URL as long as it is in the correct
NASIS site. This function allows anyone to run reports outside of the NASIS Client, and the
reports can be run on any device with a browser and network connection. See the screenshots
below as an illustration of a report run in NASIS and also run via a URL.

Project Manager Goals and Progress Report in NASIS

Same Report in a Web Browser

NASIS CVIR Language Manual Page 128

Parameters When Running the Report in NASIS

Parameters When Running the Report in a Web Browser

Following is an example NASIS report script of a URL report. For the sake of conciseness, only
the parameters and initial SQL statements are included. Note how “pm_fy” and “pm_ssoffice”
are passed through to the SQL in the FROM statement.

NASIS CVIR Language Manual Page 129

--
PARAMETER pm_fy NUMERIC PROMPT "Enter Fiscal Year (4 digits)" REQUIRED.
PARAMETER pm_ssoffice CHARACTER PROMPT "Enter MLRA SSO Symbols (e.g. 5-SAL; Use wildcard to load entire region. For
example, enter 5-%.)" REQUIRED.

BASE TABLE project.

EXEC SQL
SELECT

1 as ID, fiscalyear/1 fiscalyear, a.areasymbol ssoffice, Replace(LEFT(a.areasymbol, 2), "-","") AS region, projecttypename, CASE
WHEN projectapprovedflag = 1 THEN 'Yes' ELSE 'No' END approve, projectiid, p.projectname, username, initnrcsacresg,
initcoopacresg, updtnrcsacresg, updtcoopacresg, stateresponsible

FROM REAL area AS a
INNER JOIN project AS p ON a.areaiid = p.mlrassoareaiidref
 AND a.areasymbol LIKE pm_ssoffice
 AND projectapprovedflag=1
INNER JOIN projectmappinggoal pmg ON pmg.projectiidref = projectiid
 AND pmg.fiscalyear = pm_fy
INNER JOIN projectstaff ps ON ps.projectstaffiid = pmg.projectstaffiidref
INNER JOIN nasisuser nu ON nu.useriid = ps.projectstaffuseriidref
INNER JOIN projecttype pt ON pt.projecttypeiid = p.projecttypeiidref;
SORT BY region SYM, ssoffice, approve desc, projecttypename, p.projectname, projectiid
AGGREGATE ROWS ssoffice, projecttypename
COLUMN username LIST "; ", initnrcsacresg SUM, initcoopacresg SUM, updtnrcsacresg SUM, updtcoopacresg SUM.
--

Important: Only NASIS reports owned by the KSSL NASIS Site (those stored in the KSSL
folder) can be called via URL.

The base URL is as follows.

 https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=

To call a KSSL-owned NASIS report, the report name is added to the end after the equal sign.

https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=Goals
_Progress_Sum_by_Project_Type-Region

The URL report always runs against the national NASIS database and does not require the
NASIS Client to be installed on the user’s device. The results of the URL report are identical to
the results of the report run against the national database within the NASIS Client.

The output of the URL report opens in web browsers and can be copied and pasted into other
applications, such as Microsoft Excel and Microsoft Word. The output can also be printed to
hard copy, printed to Adobe PDF, saved as an HTML file, or saved as a TXT file.

URL Report PARAMETERS
Because URL reports always run against the national database, they normally need
PARAMETERS to help filter the results. Without PARAMETERS, the reports could attempt to
retrieve too many records and then fail with a timeout warning. Refer to the Report Syntax
section of this document for more information about PARAMETERS.

NASIS CVIR Language Manual Page 130

PARAMETERS in URL reports function differently for columns that have a “choice” or than for
columns that have a “Boolean” logical data type. Choices, which are also referred to as domains,
have a “smallint” physical data type, and Boolean have a “bit” physical data type. The URL
reports only recognize PARAMETERS of the physical data type. The NASIS client reports,
however, can recognize PARAMETERS using the domain codes and Boolean check boxes.

Example to Demonstrate Differences Based on Data Type

The domain for legend soil survey status is summarize below.

ID (Integer stored in NASIS) Data Entry Text
1 out-of-date
2 published
3 nonproject
4 initial
5 extensive revision
6 update
7 updated needed

When soil survey status is included as an ELEMENT in a PARAMETER, the data entry text
appears as shown below.

NASIS CVIR Language Manual Page 131

The URL reports can only recognize the integers; therefore, the PARAMETER above causes the
URL report to fail. The only way to include a domain as a parameter in a URL report is to use
the NUMERIC value type command, as shown below.

The PARAMETER shown above produces the following in the URL report. The user needs to
know the integer values to enter, which requires a more complete understanding of NASIS
domains.

As shown below, the PROMPT commands can be used to provide users with some knowledge of
the integers that could be entered.

The NUMERIC function must also be used if a Boolean column is used in a PARAMETER;
although, the only possible integers are 0 or 1, which equate to no or yes.

If the URL has the parameter identified with the ampersand (&), the report will run. See
highlighted portion of URL below.

https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=WEB
-Mapunits%20by%20area%20symbol&area_sym=MO123

https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=WEB-Mapunits%20by%20area%20symbol&area_sym=MO123
https://nasis.sc.egov.usda.gov/NasisReportsWebSite/limsreport.aspx?report_name=WEB-Mapunits%20by%20area%20symbol&area_sym=MO123

NASIS CVIR Language Manual Page 132

Calling URL Reports with Python
Web URL reports can be called with python scripts in applications such as ArcMap or ArcPro.
This function allows the connection of NASIS tabular data to spatial data. For example, the
SSURGO_QA_Toolbox contains a script that compares the spatial map unit symbol to the
NASIS map unit symbol.

The python script calls the NASIS report “WEB-MapunitsAreasMustatus&area_sym” and uses
the NASIS report output to complicate the quality assurance check. The following is a screenshot
of python code.

Examples and Exercises
The following text is taken from page 7 of chapter 18 of the NASIS Training Materials. The
materials include numerous examples and exercises and are available online at

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/tools/?cid=nrcs142p2_053545.

The examples in this chapter are a sample of some approaches to writing NASIS reports.
Over time, you will develop your own techniques and style. Exercises in this section build
on concepts demonstrated in the examples. These exercises provide an opportunity for
you to develop your own approaches to creating NASIS reports.

When writing reports from scratch, it helps to have a report writing methodology similar
to that described for writing queries in the NASIS User Guide. You may ask yourself
several questions.

• What data do I want in the report?
• Are the data in the database or do they need to be calculated or decoded?
• In which tables are the data?
• What tables are needed to complete the joins between tables?
• How do I want the data organized?

https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/tools/?cid=nrcs142p2_053545

NASIS CVIR Language Manual Page 133

• How do I want the page layout to look?

After you have defined what you want in your report, write your report using the
statements and guidelines in this technical reference guide. Trial and error is almost
always needed to write a report that runs cleanly. Seldom will a report be written perfect
on the first try. With practice however, moderately complex reports can be written to
meet a wide variety of uses.

In some cases, existing reports can be found that nearly meets the users’ needs. A short-
cut to writing a new report is to simply copy the existing report and modify it to meet the
needs. Scan the existing report to identify parts that need to be modified and make the
changes. Even with this short-cut, trial and error is needed to create a report that runs
cleanly and provides the desired result.

NASIS CVIR Language Manual Page 134

Appendices
Appendix 1: Conventions for HTML Reports and Web Soil Survey Rule
and Report Manager

DocBook XML
The Web Soil Survey Report Manager follows the guidelines in DocBook. Standard HTML
coding does not work.

This appendix describes the conventions for reports used to create HTML reports like those used
in the Web Soil Survey. If you want to produce a report in that style, the report script must
produce XML output that conforms to the DocBook XML standard. A DocBook reference
manual is available at https://tdg.docbook.org/tdg/4.5/docbook.html.

Within the broader world of DocBook applications, we are using just those features needed for
Web Soil Survey reports. Because WSS reports are intended for use within a larger soil survey
document, the outermost element of a report is <section>1. That <section> uses the
attribute label=”Soil Report” to identify it. Furthermore, the DocBook standard requires that
every <section> must include at least a <title> element. All of these requirements can be
met by including a standard AT START section in a report script, such as:

SECTION WHEN AT START
DATA

ELEMENT OPEN "section" ATTRIB ("label", "Soil
Report").
ELEMENT "title" report title.

END SECTION.

In the example above, notice the syntax of the ELEMENT command. If the word ELEMENT is
followed by OPEN or CLOSE, the output contains only the opening or closing tag of the
element. If not, a complete XML element with opening and closing tags is produced. If
ELEMENT OPEN is used, there must be a corresponding ELEMENT CLOSE somewhere in
the report script (with exceptions as noted below).

The first ELEMENT line is the beginning of the outermost section, as described above. The
report language syntax requires quotes around the tag name (“section”), attribute name (“label”),
and value (“Soil Report”). An element can have more than one attribute by simply adding more
ATTRIB () specifications.

Because this line only opens the <section>, there must be a closing tag as well. Normally
this is handled using a SECTION WHEN AT END block in the report script, such as:

https://tdg.docbook.org/tdg/4.5/docbook.html

NASIS CVIR Language Manual Page 135

SECTION WHEN AT END
DATA

ELEMENT CLOSE "section".
END SECTION.

In the narrative, we use the XML convention of angle brackets to designate an element, such as
<section>. In examples of report scripts, the element names are in quotes, using the report
language syntax.

The line beginning ELEMENT “title” is a complete element definition and produces the required
<title> for the <section>. In WSS reports, the title of the outermost section is the name
of the report or table. This example prints the contents of a script variable named report title,
which is explained later.

XML Elements Used in Reports
After the AT START section, the report script contains SECTION blocks to specify the contents
of the report. The ELEMENT command is the main output formatting control and is used either
in a TEMPLATE or directly in a SECTION.

The ELEMENT command can contain a list of data fields, each of which can have a TAG,
VALUETAG, and attributes. Tags and valuetags generate complete XML elements that are
placed between the beginning and ending tags of the main element. This creates a structure
where the outer element can contain data or other elements. The difference between a TAG and
a VALUETAG appears when displaying a report variable that has multiple values. A TAG
surrounds the entire set of values for the variable, while the VALUETAG surrounds each
individual value of the variable.

Some examples illustrate the way ELEMENT can be used.

ELEMENT “title” “Map unit Description”.
This is the simplest case, consisting of an element name and a string of data. It translates to the
following XML:

<title>Map unit Description</title>

ELEMENT “col” ATTRIB (“width”, “3*”).
An element can have attributes as well as data. Attributes become part of the opening tag for the
element. In this case, the element has no data so the opening and closing tags get condensed into
a single tag:

<col width=”3*” />

ELEMENT “tr” ATTRIB (“class”, “heading”) FIELD TAG “td” ATTRIB
(“class”, “begindatagroup”), FIELD TAG “td” ATTRIB (“class”,
“enddatagroup”).

NASIS CVIR Language Manual Page 136

This example shows the use of TAG to create elements within an element. Each of these
elements can have attributes of their own. The first ATTRIB goes with the <tr> element, and
the others go with their adjacent <td> elements.

Notice the syntax for the example. The content of an element follows the element name and
optional ATTRIB. In this case, the content is two FIELDs, so the example would have to be
inside a TEMPLATE. The keyword TAG follows FIELD to indicate that the field will be
surrounded by tags to create a <td> element. The comma separates the two fields in the <tr>
element.

If this example appeared in a TEMPLATE, there would have to be a USING statement to
specify the data to be printed. This looks like a heading, so the data might be “Plant Name” and
“Pct. Composition”. Then the XML would be:

<tr class=”heading”><td class=”begindatagroup”>Plant
Name</td>
<td class=”enddatagaroup”>Pct. Composition</td></tr>

ELEMENT “tr” ATTRIB (“class”, shading)

hzname TAG “td” VALUETAG “para”,
hzdept_r TAG “td” VALUETAG “para” ATTRIB (“role”,
“number”).

This example prints data from variables that have multiple values. We can assume that the query
in this report used AGGREGATE by component and specified NONE as the aggregation type
for the horizon names and depths (hzname and hzdept_r). The TAG “td” places each of these
variables in a <td> element, which represents a table cell. Then each individual value is placed
in a <para>, which stands for paragraph and means that each appears on a separate line of
output. Thus, the horizon names and depths are listed as side by side columns, although each
column is actually within a table cell. This is a common style for soils reports.

Notice the attributes in the example. The <tr> has an attribute value that is not in quotes. It
refers to a variable named shading, which would have been created in a DEFINE statement to
hold some appropriate class attribute, such as “even” or “odd” (see table of attributes below).
Also, hzname has no attribute; therefore, it gets the default format, which is simply text left
justified in the cell.

Assuming some arbitrary data for shading, hzname, and hzdept_r, the example would create the
following XML. The XML has been indented to make it more readable, but the indentation is
not part of the actual report output and has no meaning.

<tr class=”odd”>
<td>

<para>A</para>
<para>B</para>

NASIS CVIR Language Manual Page 137

<para>C</para> </td>
 <td>
<para class=”number”>0</para>
<para class=”number”>15</para>
<para class=”number”>75</para>
</td>

</tr>

ELEMENT “variablelist” VALUETAG “varlistentry” hzname TAG
“term”, hzdept_r TAG “listiem” VALUETAG “para”.
This example shows the same data as the previous example in a semi-tabular format rather than
in a table. It uses the DocBook element <variablelist>, which can be used to create
bullets or numbered lists, depending on the final style choices. In the report script, we do not
need to be concerned with the formatting details, only the structure.

A <variablelist> contains <varlistentry> elements, each of which contains a
<term> and a <listitem>. The <listitem> must contain some other element, in this
case <para>. To accomplish this, a VALUETAG must be at the element level. This means
that the <varlistentry> element is produced for each set of values within the element. An
additional VALUETAG on the hzdept_r produces a <para> around the horizon depth. The
resulting XML is thus four levels deep.

<variablelist>
<varlistentry>

<term>A</term>
<listitem>

<para>0</para>
</listitem>

</varlistentry>

<varlistentry>

<term>B</term>
<listitem>

<para>15</para>
 </listitem>

</varlistentry>

<varlistentry>

<term>C</term>
<listitem>

<para>75</para>
</listitem>

</varlistentry>
</variablelist>

NASIS CVIR Language Manual Page 138

Elements Used in Tables
The DocBook standard includes the HTML standard for creating tables, which is familiar to
most people who have created webpages. The basic elements of a table are listed below. All of
them are needed for a complete WSS report, but many of the elements can be left out of a report
that is not for publication.

• <table> encloses the whole table.
• <title> is for a title that is printed above the table. In WSS reports, this is the name

of the soil survey area. If the report uses national map unit symbols, there is no survey
area and the table title is omitted.

• <col> specifies attributes for a column in the table. If used, there must be one <col>
element for each column. In WSS reports, this is used to specify a relative width for the
column.

• <thead> is for the table header. Rows within a <thead> receive special formatting so
they look like a heading. They are also repeated at the top of each report page when the
report is converted to PDF.

• <tbody> is the body of the table and occurs after the <thead>.
• <tr> is a row of a table. It can be used within a <thead> or a <tbody> and contains

one or more <td> elements for the data in the row.
• <td> is table data, sometimes called a cell of a table. It must be within a <tr>

element.
• <para> is a paragraph that can be included in a <td>. It is not required because data

can be included within a <td> directly. The <para> element is commonly used in
WSS reports to identify the type of data so that standard formatting styles can be applied.

Elements Used in Non-table Reports
Reports that are not formatted as a table include the various Map Unit Description reports, the
Interpretation Description, and similar reports. Although there is no <table> element, there is an
internal structure to these reports and the <section> element is generally used to represent it.
The DocBook standard allows sections to be included within sections. So, for example, a report
organized by survey area can have a <section> for each new area name. A Map Unit
Description report can have a <section> for each map unit within the area and a variety of
<section>s within the map units. Each <section> must have a <title>, which is used
as a heading for the section when it is displayed.

Data in these reports is typically displayed in a list (semi-tabular) format. The DocBook
<variablelist> element is used to create a list structure, which can then be displayed in
various ways. The final example above provides an explanation of the use of
<variablelist>.

NASIS CVIR Language Manual Page 139

Reports that contain large blocks of text use the <para> element to enclose the text. The way
you expect the text to be stored in the database influences the attributes applied to the <para>. If
the text is simply a single paragraph, then no special attributes are needed. If the text contains
line breaks, tabs, or spaces that need to appear in the output, then ATTRIB (“role”,
”preservenewlines”) is needed. If the text contains XML markup that needs to be preserved in
the output, then use the SPECIAL option, as in:

textdata TAG “para” SPECIAL.

Example

This example adds a point as a bullet (special character)

element OPEN "h1" ATTRIB("style",p1)"•" Special.

Attributes Used in All Elements
Attributes describe the type of data or the role played by an element in the overall report
structure. This information is used when formatting the report for display, and it can be used in
different ways depending on the display format. For example, the same report might appear in a
website and in a PDF document meant for printing. This separation of the functional description
of a report and its display formatting allows one report script to serve multiple purposes.
However, only certain attributes are recognized by the formatter, and unrecognized attributes are
ignored. So the conventions listed here must be followed closely to produce reports with a
consistent appearance.

Element Attribute Name Attribute Value Meaning

“section” “label” “SoilReport” Required to identify the outermost
section of a soil report.

 “Survey_Area” Data for one survey area. The title
of the section is the survey area
name. Used in reports that don’t
have tables.

 “Map_Unit_Description” Data for one map unit in a map
unit description report.

 others The Map Unit Description report
has labels to signify the type of
data in each section, but they are
currently ignored by the
formatting program.

NASIS CVIR Language Manual Page 140

Element Attribute Name Attribute Value Meaning

“title” “role” “suppressTitle” Do not display a title for the
current section. Although the
<title> element is required in a
<section>, this will suppress
display of the title.

“table” “orient” “land” Table is wide and should be
displayed in landscape
orientation.

“col” “width” “n*” Relative column width expressed
as a number followed by an
asterisk. A column with width
“3*” is 3 times as wide as a
column with width “1*”. The
exact width of a column depends
on the overall width of the table
and width of the other columns.

“tr” “class” “mapunit” A table row that begins the data
for a map unit.

 “even” A table row that can be shaded in
alternating colors to improve
readability. Alternates with “odd”.

 “odd” A table row that can be shaded in
alternating colors to improve
readability. Alternates with
“even”.

 “interpdata” A table row containing data about
an interpretation in the Survey
Area Data Summary report.

 “units” A table row containing units of
measure. It is a type of
subheading for the table.

“td” “rowspan” a number Number of rows in the heading
occupied by this cell. Part of
standard HTML tables.

 “colspan” a number Number of columns in the
heading occupied by this cell. Part
of standard HTML tables.

NASIS CVIR Language Manual Page 141

Element Attribute Name Attribute Value Meaning

 “class” “begindatagroup” Cell is the first of a group of cells
that are set off visually by a
heavier vertical border on the left
edge.

 “enddatagroup” Cell is the last of a group of cells
that are set off visually by a
heavier vertical border on the
right edge.

 “datetime” Cell contains a date/time field that
should be formatted according to
the date conventions for the
report.

“para” “role” “mu-name” Content is a map unit symbol or
name.

 “comp-name” Content is a component name.

 “number” Numeric data, normally displayed
right justified in a cell.

 “class-name” Non-numeric data, such as a class
name, normally displayed
centered in a cell.

 “hang-list” Multiple values of character type
data which are displayed in a
vertical list with hanging indents

 “preservenewlines” Content is a text field that may
include newlines, tabs, and
significant spaces. Normally this
“white space” is removed. This
attribute will preserve the layout
of the original text.

Examples

The following example creates two view panes side by side.
ELEMENT OPEN "div".
ELEMENT "article" Attrib("style","float:left;margin-
left:0;padding:1em;overflow:hidden").
ELEMENT "article" Attrib("style","float:right;margin-
left:3;padding:1em;overflow:hidden").
ELEMENT CLOSE "div".

The following example creates an area link.

NASIS CVIR Language Manual Page 142

ELEMENT "a" ATTRIB("href", "ftp://ftp-
fc.sc.egov.usda.gov/NSSC/GDS/GDS_v4_11.pdf") "GEOMORPHIC
DESCRIPTION SYSTEM".

The following example places an image.
ELEMENT "img"
ATTRIB("src","https://nrcs.sc.egov.usda.gov/ssra/nssc/Proje
cts/NASIS/triangle.jpg")
ATTRIB ("traget", "_blank") ATTRIB ("alt",""NASIS site link
broken"")
ATTRIB ("width", "600px") ATTRIB ("height", "536px").

The following example creates an email link.
ELEMENT "a"
ATTRIB("href","mailto:kevin.godsey@mo.usda.gov?Subject=Erro
r%20in%20report") "PLEASE SEND ERRORS BY CLICKING HERE".

SVG Scalar Vector Graphics
HTML graphic windows can now be created to display information.

Example

The following example creates a red circle with a black outline with the center located at x=100,
y=50 and a radius of 40 pixels.

SECTION DATA
ELEMENT OPEN 'html'.
ELEMENT OPEN 'body'.
ELEMENT OPEN 'svg' ATTRIB ('xmlns',
'http://www.w3.org/2000/svg" version="1.1').
ELEMENT 'circle' ATTRIB ('cx', '100') ATTRIB ('cy',
'50') ATTRIB ('r', '40') ATTRIB ('stroke',
'black;width;2')ATTRIB ('fill', 'red').
ELEMENT CLOSE 'svg'.
ELEMENT CLOSE 'body'.
ELEMENT CLOSE 'html'.

Java Scripts
Java Scripts can now be used in NASIS to perform many tasks in the HTML window. For
example, Java Scripts can be used to plot points of sand, silt, and clay on textural triangles; plot
point positions on maps; and graph data from NASIS tables.

Each report that includes a java script must contain a reference to the scripting library. Each
script needs a metadata section and a contents section. These elements should be in the Header
section. They only need to be referenced once.

NASIS CVIR Language Manual Page 143

The following example shows header information that references a scripting library.

ELEMENT OPEN 'html'
ATTRIB ('xmlns','http://www.w3.org/1999/xhtml').

ELEMENT 'meta'
ATTRIB ('http-equiv', 'content-type')
ATTRIB ('charset','UTF-8').

ELEMENT 'script'
ATTRIB ('src','https://www.google.com/jsapi')
ATTRIB ('type', 'text/javascript').

In the following example, the header is opened, then the Meta data element is defined, then the
reference java script library is located, and then a few style elements are defined.

ELEMENT OPEN 'head'.
ELEMENT 'meta' ATTRIB ('charset', 'utf-8').
ELEMENT 'script'

ATTRIB ('type', 'text/javascript') ATTRIB ('src',
'https://cdnjs.cloudflare.com/ajax/libs/d3/3.4.13/d3.m
in.js').

ELEMENT 'style'
ATTRIB ('type', 'text/css') 'body {font: 12px sans-
serif;}.axis path,.axis line {fill: none;stroke:
#000;shape-rendering: crispEdges;}.x.axis path
{display: none;}'.

ELEMENT CLOSE 'head'.

The following example opens the d3js library.

ELEMENT 'script'
ATTRIB ('type', 'text/javascript')
ATTRIB ('src', 'http://d3js.org/d3.v3.min.js').

The following example opens a scalable vector graphic (svg) and defines the library and size of
the window.

ELEMENT open'svg'
ATTRIB("xmlns", "http://www.w3.org/2000/svg")
ATTRIB("version","1.1") ATTRIB ("width", "959")
ATTRIB("height","593").

The following example opens two links to the libraries.

NASIS CVIR Language Manual Page 144

ELEMENT 'script'
ATTRIB ('src', 'http://d3js.org/d3.v3.min.js').

ELEMENT 'script'
ATTRIB ('src', 'http://d3js.org/topojson.v1.min.js').

The following example shows the Java Script element that needs to be placed in the data section
of the report.

ELEMENT OPEN "script"
ATTRIB ("type", "text/javascript") "script goes here".

ELEMENT CLOSE "script".

NASIS can now graph data in many ways within an SVG window. Below is a link to an
excellent source for java scripts that create dynamic graphing systems.

https://github.com/d3/d3/wiki/Gallery

The Documentation folder in reports has many examples of charts, graphs, and maps generated
from NASIS data using d3 scripts, google API scripts, and basic Java Scripts.

Examples of SQL Date Formats
scheduledstartdate AS date
10/1/2017 12:00:00 AM

Dateadd(YEAR, +1, scheduledstartdate) AS date
10/1/2018 12:00:00 AM

Dateadd(MONTH, -1, scheduledstartdate) AS date
9/1/2017 12:00:00 AM

LEFT(scheduledstartdate, 11) AS date
Oct 1 2017

CONVERT(varchar(11),scheduledstartdate) AS Date
Oct 1 2017

Datename(MONTH,scheduledstartdate) AS date
October

Datename(YEAR, scheduledstartdate) AS date
2018

Datename(WEEKDAY, scheduledstartdate) AS date
Sunday

https://github.com/d3/d3/wiki/Gallery

NASIS CVIR Language Manual Page 145

Datename(QUARTER, scheduledstartdate) AS date
4

datepart(DAY, scheduledstartdate) AS date
16

DATEDIFF(YEAR, scheduledstartdate, scheduledcompletiondate)
AS date
1

DATEDIFF(YEAR, scheduledstartdate, TODAY) AS Date
1

Find the beginning of the fiscal year.
((YEAR(progrptdate) = fy AND MONTH(progrptdate) < 10)
OR (YEAR(progrptdate) = (fy -1) AND MONTH(progrptdate) >=
10))

assign date dateformat(date, "d").
10/1/2017

NASIS CVIR Language Manual Page 146

Appendix II: How to Optimize the SQL Query

Writing Best Practices
• Code the query as simply as possible.
• Use upper-case for all SQL verbs and begin each on a new line.
• Separate all words with a single space.
• Set and maintain a table alias standard; enable aliases to prefix all columns; and when a

query involves more than one table, prefix all column names with their aliases.
• Whatever you do, be consistent.
• Pick the best "driving" table and the best join order to eliminate rows as early as possible.
• Write separate SQL statements for specific tasks.

Further Scripting Hints
• Apply math to the constant side of equation >, <, >=, <=, is null, is not null
• Avoid Not in, !=, and Like '%pattern', not exists
• Specify the column names instead of using the asterisk.

o Do not use asterisk in subqueries. Pick a primary key value, such as muiid.
• Make the table with the least number of rows the driving table by making it first in the

FROM clause. Use the specific join between the tables with the ON clause instead of
using BY DEFAULT.

• A short alias is parsed more quickly than a long table name or alias.
• Use INNER JOINs as much as possible and put the predicates in the ON clause.
• Left joins are only used when data tables are known to be missing.

o Place predicates (condition statements) in the WHERE clauses if possible.
• Place indexed columns and most limiting conditions first in the predicate clauses.
• Do not select unnecessary columns. Do not include unnecessary GROUP BY or

ORDER BY clauses.
• The ORDER BY clause is mandatory in SQL if the sorted result set is expected. The

ORDER BY keyword is used to sort the result-set by specified columns. The ORDER
BY clause is very costly in terms of computing time.

• Do not use ORDER BY and SORT IN the same query, if possible.
• You cannot use aliases in GROUP BY or ORDER BY.
• Minimize the use of temporary tables. Instead, use table variables and subqueries. In

99% of cases, table variables reside in memory and therefore are a lot faster. Temporary
tables reside in the Temp database. Operating on temporary tables requires inter-
database communication, and therefore is slower.

• Use EXISTS rather than DISTINCT wherever possible.
• Do not use COUNT to determine whether particular data exists.
• DISTINCT and UNION should be used only if necessary.

NASIS CVIR Language Manual Page 147

o DISTINCT and UNION operators cause sorting, which slows down the SQL
execution.

• Use UNION ALL instead of UNION, if possible. It is much more efficient.
• When doing multiple table joins, consider the benefits and costs for each of EXISTS, IN,

and table joins. If the selective predicate is in the subquery, then use IN. If the selective
predicate is in the parent query, then use EXISTS.

Symbol operators such as >,<,=,!=, etc. are very helpful.

Examples

Use:
SELECT compname FROM component WHERE comppct_r>=10

Rather than:
SELECT compname FROM component WHERE comppct_r>11

Try to avoid the NOT operator in SQL. It is much faster to search for an exact match (positive
operator), using LIKE, IN, EXIST, or the = symbol operator than to use a negative operator,
such as NOT LIKE, NOT IN, NOT EXIST, or the != symbol.

Use a function instead of a not equals.

Use:
SELECT compname FROM component WHERE comppct_r > 0;

Rather than:
SELECT compname FROM component WHERE comppct_r !=0;

Use BETWEEN instead of >=.

Use a non-column expression on the left side of the operator because it will be processed earlier
and put math functions on the right side of the operator.

Use:
WHERE comppct_r < 50/100);

Rather than:
WHERE comppct_r *100 < 50;

Limit the number of results by using the TOP() function in the SELECT clause. A table can
have a few million records, and a search query without a limitation will just slow it down.

Minimize the number of subquery blocks in your query. Note, however, that several small
queries can run faster than one big one if there are a lot of joins.

If the data is in only one table, it is still faster to join to another table to create indexing.

NASIS CVIR Language Manual Page 148

Use:
SELECT muname
FROM mapunit
INNER join correlation on
correlation.muiidref=mapunit.muiid AND muname=”Menfro”;

Rather than:
SELECT muname
FROM mapunit
WHERE muname = “Menfro”;

Ensure repeated SQL statements are written absolutely identically to facilitate efficient reuse: re-
parsing can often be avoided for each subsequent use.

Avoid a HAVING clause in SELECT statements. It only filters selected rows after all the rows
have been returned. Use HAVING only when summary operations applied to columns are
restricted by the clause. A WHERE clause may be more efficient.

Use:
SELECT compname FROM component WHERE compname!= 'Vancouver'
AND compname!= 'Toronto'; GROUP BY compname;

Rather than:
SELECT compname FROM component GROUP BY compname HAVING
compname!= 'Vancouver' AND compname!= 'Toronto';

The UNION operator is faster than using OR.

The UNION statement allows you to combine the result sets of 2 or more select queries.

Try to use UNION ALL in place of UNION. UNION eliminates duplicates and takes processing
time to complete.

Use:
SELECT cropname FROM componentcrop WHERE cropname=”corn”
UNION ALL
SELECT cropname FROM componentcrop WHERE cropname =”beans”;

Rather than:
SELECT cropname
FROM componentcrop
WHERE cropname=”corn” or cropname =”beans”

NASIS CVIR Language Manual Page 149

Appendix III: Expanded SQL Capabilities in NASIS
Programmers have added new data manipulation functions in the Newer SQL Server, which will
become available in NASIS in a future release. Some of these functions provide powerful data
aggregation capabilities that could reduce the need to use the AGGREGATE feature in NASIS
reports. These functions could substantially reduce the memory requirements for running reports
and thereby allow bigger reports to be run.

Complete documentation of SQL Server is at the Microsoft site “Transact-SQL Reference” at
http://technet.microsoft.com/en-us/library/bb510741.aspx.

Many of the new features are under the heading “Built-in Functions.” Some of them are
complex. Careful reading and experimenting may be needed to understand how they work.

Following is a brief report script that illustrates several of the new functions.

Script Comments
EXEC SQL SELECT compname, majcompflag,
slope_r

Aggregates functions with
partitioning by component name.
Doesn't require GROUP BY.
Is more efficient than a subquery.

,AVG(slope_r) over(partition by
compname) as avg_slope
,MIN(slope_r) over(partition by
compname) as min_slope
,MAX(slope_r) over(partition by
compname) as max_slope

Applies analytical functions with
partitioning by component name.

,rank() over(partition by
compname, majcompflag order by
slope_r) as slope_rank

Gets ranking of slope values in
partition.

,lag(slope_r) over(partition by
compname, majcompflag order by
slope_r) as prev_slope

Gets slope value from previous
record in partition.

,last_value(tfact) over(partition
by compname order by slope_r

rows between unbounded preceding
and unbounded following) as
last_tfact

Gets value of tfact from
component with the largest slope
in partition.

http://technet.microsoft.com/en-us/library/bb510741.aspx

NASIS CVIR Language Manual Page 150

,percentile_cont (0.75) within
group (order by slope_r)
over(partition by compname) as
slope_75pctile

Gets the 75th percentile slope
value by partition.

,datepart(weekday, recwlupdated)
day
,datename(month, dateadd(month,
1, current_timestamp)) as nextmo
,datediff(day, recwlupdated,
current_timestamp) as age

Applies functions for
manipulating dates.

FROM component WHERE slope_r is
not null
order by compname, slope_r;.

Aggregate Functions with OVER clause
The OVER clause can be used with an aggregate function in a manner that is similar to, but
more efficient than, a subquery. For example, the aggregate function

AVG(slope_r) over(partition by compname)

produces the same results as the subquery

(SELECT AVG(slope_r)FROM component c1 WHERE
c1.compname=component.compname)

A significant difference is that partitioning requires that the query uses ORDER BY for the
partitioning column(s) in a manner similar to the way AGGREGATE works in NASIS.

The OVER clause is also similar to GROUP BY but is less restrictive. GROUP BY requires
everything in the SELECT clause must be either in the GROUP BY list or an aggregate
function. An aggregate function with OVER does not require GROUP BY.

All of the standard SQL aggregate functions are now allowed in NASIS and can be used with
OVER. They are: COUNT, COUNT_BIG, AVG, CHECKSUM_AGG, MAX, MIN, SUM,
STDEV, STDEVP, VAR, and VARP.

Ranking Functions
Ranking functions create a ranking value for each row in a query. They allow the query results
to be divided into sorted partitions before computing the ranking value, but partitioning is not
required. If the ranking is not partitioned, the results are computed over the whole set of data

NASIS CVIR Language Manual Page 151

returned by the query; in other words, there is just one partition. Ranking functions always
require an ORDER BY within the OVER clause.

Four ranking functions are available. Based on the example in the report script above, the four
functions would be:

,rank() over(partition by compname, majcompflag
 order by slope_r) as slope_rank
,dense_rank() over(partition by compname, majcompflag
 order by slope_r) as slope_dense_rank
,row_number() over(partition by compname, majcompflag
 order by slope_r) as slope_row_number
,ntile(4) over(partition by compname, majcompflag
 order by slope_r) as slope_quartile

These functions say that within each group of rows that has the same values for compname and
majcompflag, a ranking is computed based on slope_r. The NTILE function requires a number
to specify how many subgroups are used. For example, NTILE(4) means to compute the quartile
for each row. The following sample of the output is shaded to show how the rows are
partitioned.

compname majcompflag slope_r slope_
rank

slope_dense_
rank

slope_row_
number

slope_
quartile

Aquults 0 1.0 1 1 1 1
Aquults 0 1.0 1 1 2 2
Avilla 1 2.0 1 1 1 1
Avilla 1 4.0 2 2 2 2
Avilla 1 5.0 3 3 3 3
Avilla 1 9.0 4 4 4 4
Bengal 0 12.0 1 1 1 1
Bengal 1 25.0 1 1 1 1
Bengal 1 47.5 2 2 2 2
Bismarck 1 5.0 1 1 1 1
Bismarck 1 5.0 1 1 2 1
Bismarck 1 5.5 3 2 3 2
Bismarck 1 12.0 4 3 4 2
Bismarck 1 12.0 4 3 5 3
Bismarck 1 12.0 4 3 6 3
Bismarck 1 25.0 7 4 7 4
Bismarck 1 52.5 8 5 8 4

Date and Time Functions
Several operations can be performed in SQL on columns that contain date and time data. In
NASIS, the value of a date/time column is always processed as a character string, which means

NASIS CVIR Language Manual Page 152

the column is difficult to manipulate and format. By using these SQL functions in the query, it is
typically not be necessary to further manipulate the data with NASIS DEFINE statements.

• CURRENT_TIMESTAMP and GETDATE() return the current date and time (to the
millisecond) on the server. The values are based on Central time for reports run on the
Kansas City servers and on local time for reports run on the workstation.

• GETUTCDATE() returns the current date and time as UTC time (a.k.a., Greenwich time
zone).

• DATENAME(datepart, date) returns the character typed value of a specified part of a
date value. The date parameter could be something like GETDATE() or the name of a
database column that contains a date value, such as “progrptdate”.

• The datepart is one of the words YEAR, QUARTER, MONTH, DAY, DAYOFYEAR,
WEEK, WEEKDAY, HOUR, MINUTE, SECOND, or TZOFFSET. For example,
DATENAME(MONTH, progrptdate) might return “March” as the month when the
progress item was reported.

• DATEPART(datepart, date) is like DATENAME, but it returns the numeric value of
the specified part of the date. Using the previous example, DATEPART(MONTH,
progrptdate) would return 3. For some date parts, there is no equivalent word; and,
therefore, DATENAME and DATEPART return the same value. DAY is always the
number of the day, but WEEKDAY could be “Monday” or 2.

• YEAR(date), MONTH(date), and DAY(date) are the same as DATEPART(YEAR,
date), DATEPART(MONTH, date), and DATEPART(DAY, date), respectively.

• DATEADD(datepart, number, date) produces a date/time value by adding a specified
amount to a part of the date. For example DATEADD(YEAR, -1, progrptdate)
subtracts one year from the value of “progrptdate” and DATEADD(WEEK, 2,
progrptdate) adds 2 weeks to the date.

• DATEDIFF(datepart, startdate, enddate) computes the amount of the specified date
part that elapsed between the starting and ending dates. For example,
DATEDIFF(MONTH, progrptdate, GETDATE()) gives the number of months
since the progress item was reported.

• Other functions listed in the SQL reference manual are also usable in NASIS in most
cases.

Other Analytic Functions
SQL Server provides additional functions similar to the ranking functions. More details are in
the SQL reference at http://technet.microsoft.com/en-us/library/bb510741.aspx. The following
functions are supported by NASIS.

http://technet.microsoft.com/en-us/library/bb510741.aspx

NASIS CVIR Language Manual Page 153

• FIRST_VALUE and LAST_VALUE provide the value of a specified column from the
first or last row of a partition (similarly to the FIRST and LAST aggregations in NASIS).

• LAG and LEAD provide the value of a specified column from the nth preceding or
following row in the partition (similarly to the functionality of ARRAYSHIFT in
NASIS).

• CUM_DIST and PERCENT_RANK give measures of the relative position of a row
within the partition.

• PERCENTILE_CONT and PERCENTILE_DISC compute the value of the nth
percentile for the values in the partition.

When using these functions, you should note that the default method of calculation uses the rows
starting at the beginning of the partition up to the current row, which may not be what you
expect. By default, the LAST_VALUE function provides the value in the current row, rather
than the last row in the partition as you might expect. The report script example above shows
how to declare a set of rows for the calculation that is different from the default. In the following
case, the LAST_ROW calculation uses all the rows in the partition.

,last_value(tfact) over(partition by compname order by
slope_r rows between unbounded preceding and unbounded
following) as last_tfact

NASIS CVIR Language Manual Page 154

Appendix IV: Common Error Messages
The following error messages appear for the listed conditions.

When text is identified on the general tab and html format on the report tab:

When html is checked on the general tab and the data is text:

When page width and length are not unlimited and output is text:

When the second column is not aggregated to none (REGROUP error):

When a period is missing, the error references the first column of the line below the line that is
missing the period:

When a Right parenthesis is missing:

NASIS CVIR Language Manual Page 155

When the left parenthesis is missing:

When you codelabel a column but forget to give it an alias:

When you have an extra comma at the end of the select list:

If you forget to open the HTML and body:

When you try to concatenate the areasymbol and the musym:

NASIS CVIR Language Manual Page 156

Appendix V: HTML Formatting
The following table provides a description of standard HTML tags.

Tag Description
<!--...--> Defines a comment
<!DOCTYPE> Defines the document type
<a> Defines an anchor
<abbr> Defines an abbreviation
<acronym> Defines an acronym
<address> Defines contact information for the author/owner of a document
<area /> Defines an area inside an image-map
 Defines bold text
<base /> Defines a default address or a default target for all links on a page
<bdo> Defines the text direction
<big> Defines big text
<blockquote> Defines a long quotation
<body> Defines the document's body

 Defines a single line break
<button> Defines a push button
<caption> Defines a table caption
<cite> Defines a citation
<code> Defines computer code text
<col /> Defines attribute values for one or more columns in a table
<colgroup> Defines a group of columns in a table for formatting
<dd> Defines a description of a term in a definition list
 Defines deleted text
<dfn> Defines a definition term
<div> Defines a section in a document
<dl> Defines a definition list
<dt> Defines a term (an item) in a definition list
 Defines emphasized text
<fieldset> Defines a border around elements in a form
<form> Defines an HTML form for user input
<frame /> Defines a window (a frame) in a frameset
<frameset> Defines a set of frames
<h1> to <h6> Defines HTML headings
<head> Defines information about the document
<hr /> Defines a horizontal line
<html> Defines an HTML document

http://www.w3schools.com/tags/tag_comment.asp
http://www.w3schools.com/tags/tag_doctype.asp
http://www.w3schools.com/tags/tag_a.asp
http://www.w3schools.com/tags/tag_abbr.asp
http://www.w3schools.com/tags/tag_acronym.asp
http://www.w3schools.com/tags/tag_address.asp
http://www.w3schools.com/tags/tag_area.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_base.asp
http://www.w3schools.com/tags/tag_bdo.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_blockquote.asp
http://www.w3schools.com/tags/tag_body.asp
http://www.w3schools.com/tags/tag_br.asp
http://www.w3schools.com/tags/tag_button.asp
http://www.w3schools.com/tags/tag_caption.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_col.asp
http://www.w3schools.com/tags/tag_colgroup.asp
http://www.w3schools.com/tags/tag_dd.asp
http://www.w3schools.com/tags/tag_del.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_div.asp
http://www.w3schools.com/tags/tag_dl.asp
http://www.w3schools.com/tags/tag_dt.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_fieldset.asp
http://www.w3schools.com/tags/tag_form.asp
http://www.w3schools.com/tags/tag_frame.asp
http://www.w3schools.com/tags/tag_frameset.asp
http://www.w3schools.com/tags/tag_hn.asp
http://www.w3schools.com/tags/tag_head.asp
http://www.w3schools.com/tags/tag_hr.asp
http://www.w3schools.com/tags/tag_html.asp

NASIS CVIR Language Manual Page 157

Tag Description
<i> Defines italic text
<iframe> Defines an inline frame
 Defines an image
<input /> Defines an input control
<ins> Defines inserted text
<kbd> Defines keyboard text
<label> Defines a label for an input element
<legend> Defines a caption for a fieldset element
 Defines a list item
<link /> Defines the relationship between a document and an external resource
<map> Defines an image-map
<meta /> Defines metadata about an HTML document
<noframes> Defines an alternate content for users that do not support frames
<noscript> Defines an alternate content for users that do not support client-side scripts
<object> Defines an embedded object
 Defines an ordered list
<optgroup> Defines a group of related options in a select list
<option> Defines an option in a select list
<p> Defines a paragraph
<param /> Defines a parameter for an object
<pre> Defines preformatted text
<q> Defines a short quotation
<samp> Defines sample computer code
<script> Defines a client-side script
<select> Defines a select list (drop-down list)
<small> Defines small text
 Defines a section in a document
 Defines strong text
<style> Defines style information for a document
<sub> Defines subscripted text
<sup> Defines superscripted text
<table> Defines a table
<tbody> Groups the body content in a table
<td> Defines a cell in a table
<textarea> Defines a multi-line text input control
<tfoot> Groups the footer content in a table
<th> Defines a header cell in a table
<thead> Groups the header content in a table

http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_iframe.asp
http://www.w3schools.com/tags/tag_img.asp
http://www.w3schools.com/tags/tag_input.asp
http://www.w3schools.com/tags/tag_ins.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_label.asp
http://www.w3schools.com/tags/tag_legend.asp
http://www.w3schools.com/tags/tag_li.asp
http://www.w3schools.com/tags/tag_link.asp
http://www.w3schools.com/tags/tag_map.asp
http://www.w3schools.com/tags/tag_meta.asp
http://www.w3schools.com/tags/tag_noframes.asp
http://www.w3schools.com/tags/tag_noscript.asp
http://www.w3schools.com/tags/tag_object.asp
http://www.w3schools.com/tags/tag_ol.asp
http://www.w3schools.com/tags/tag_optgroup.asp
http://www.w3schools.com/tags/tag_option.asp
http://www.w3schools.com/tags/tag_p.asp
http://www.w3schools.com/tags/tag_param.asp
http://www.w3schools.com/tags/tag_pre.asp
http://www.w3schools.com/tags/tag_q.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_script.asp
http://www.w3schools.com/tags/tag_select.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_span.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp
http://www.w3schools.com/tags/tag_style.asp
http://www.w3schools.com/tags/tag_sup.asp
http://www.w3schools.com/tags/tag_sup.asp
http://www.w3schools.com/tags/tag_table.asp
http://www.w3schools.com/tags/tag_tbody.asp
http://www.w3schools.com/tags/tag_td.asp
http://www.w3schools.com/tags/tag_textarea.asp
http://www.w3schools.com/tags/tag_tfoot.asp
http://www.w3schools.com/tags/tag_th.asp
http://www.w3schools.com/tags/tag_thead.asp

NASIS CVIR Language Manual Page 158

Tag Description
<title> Defines the title of a document
<tr> Defines a row in a table
<tt> Defines teletype text
 Defines an unordered list
<var> Defines a variable part of a text

http://www.w3schools.com/tags/tag_title.asp
http://www.w3schools.com/tags/tag_tr.asp
http://www.w3schools.com/tags/tag_font_style.asp
http://www.w3schools.com/tags/tag_ul.asp
http://www.w3schools.com/tags/tag_phrase_elements.asp

NASIS CVIR Language Manual Page 159

Appendix VI: Default HTML Output Format
The following shows the values from the cascading style sheet used for HTML output
from NASIS.

{font-family:Verdana, Arial, Helv, Sans-Serif;font-size: 10pt;}

Soilprop = {FONT: 10pt Verdana, Helvetica, Arial, sans-serif;
COLOR: #000000;TEXT-ALIGN: left; LINE-HEIGHT: 12pt; MARGIN-LEFT:
12pt;TEXT-INDENT: -12pt; MARGIN-TOP: 0pt;MARGIN-BOTTOM: 0pt;}

div.SoilReport h1 = {font-size: 16px;}

div.SoilReport h2= {font-size: 14px;}

div.SoilReport h3, - h6 = {font-size: 12px;}

div.menu table td = {font-size: 11px;}

ul.noimage li = {list-style-type: none; list-style-image: none;}

ul.noimage li p = {margin-left: 4ex;}

ul.noimage li h1-h6 = {margin-bottom: 0px;}

first = {margin-top: 0px !important;}

numeric.number = {text-align: right;}

bold = {font-weight: bold; margin-right: 1ex;}

super = {vertical-align: super; font-size: smaller;}

sub = {vertical-align: sub; font-size: smaller;}

padded = {padding: 5px !important;}

unpadded = {padding: 0px !important;}

scrollable = {overflow-y: auto !important;}

nowrap = {white-space: nowrap;}

Table = {border-collapse: collapse;}

table.data th-td = {border-width: 1px; border-style: solid;
padding: 4px;}

NASIS CVIR Language Manual Page 160

table.data td.begindatagroup = {border-left-width: 2px;border-
left-style: solid;}

table.data td.enddatagroup = {border-right-width: 2px;border-
right-style: solid;}

table.data td.label = {text-align: right; padding: 5px;}

table.data th = {width: 100%; padding: 2px !important;}

table.data th.title div.title = {font-weight: bold; padding-
left: 1.25em;text-indent: -1em;text-align: left;}

table.data th.control = {vertical-align: middle; text-align:
right;}

table.data td = {text-align: left; vertical-align: top;}

table.data td.columnhead, tr.columnhead td = {padding: 2px;font-
weight: bold; text-align: center;}

table.data tr.units td = {font-style: italic; text-align:
center;}

table.data td p.mu-name = {padding-left: 0.5em; text-indent: -
0.5em;}

table.data td p.comp-name = {padding-left: 1em;text-indent: -
0.5em;}

table.data td p.class-name = {text-align: center;}

table.data td p.reason0 = {text-align: left; padding-left:
0.5em;text-indent: -0.5em;}

table.data td p.reason1 = {text-align: left; padding-left:
1em;text-indent: -0.5em;}

table.data td p.reason2 = {text-align: left; padding-left:
1.5em;text-indent: -0.5em;}

table.data td p.hang-list = {text-align: left; padding-left:
0.5em;text-indent: -0.5em;vertical-align: middle;}

table.data tfoot td = {font-weight: bold; padding-top: 5px;}

table.data tr.even td = {background-color: #FDFDEE;}

NASIS CVIR Language Manual Page 161

table.data tr.odd td = {background-color: #F8F8D8;}

div.menu table = {color: #000000; background-color: #FBFBE8;}

div.menu table td = {border-color: #000000;}

div.menu table td.over = {background-color: #E5DEBC !important;}

title.muname = {FONT: 14pt bold Helvetica, Arial, sans-serif;
COLOR: #000000; TEXT-ALIGN: left; LINE-HEIGHT: 16pt; MARGIN-TOP:
18pt; MARGIN-BOTTOM: 3pt;}

subtitle = {FONT: 12pt bold Helvetica, Arial, sans-serif; COLOR:
#000000; TEXT-ALIGN: left;
LINE-HEIGHT: 14pt; MARGIN-TOP: 6pt; MARGIN-BOTTOM: 3pt;}

headnote = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; TEXT-ALIGN: center;
LINE-HEIGHT: 10pt; MARGIN: 6pt 8pt 6pt 8pt;}

footnote = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; TEXT-ALIGN: left;
 LINE-HEIGHT: 10pt; MARGIN: 6pt 0pt 0pt 0pt;}

reportdesc = {FONT: 10pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 12pt;
 TEXT-ALIGN: left; TEXT-INDENT: 12pt; MARGIN-TOP: 0pt;
MARGIN-BOTTOM: 0pt;}

P = {FONT: 10pt Helvetica, Arial, sans-serif; COLOR: #000000;
TEXT-ALIGN: left; LINE-HEIGHT: 12pt;
 MARGIN-TOP: 0pt; MARGIN-BOTTOM: 0pt;}

TD = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR: #000000;
LINE-HEIGHT: 10pt; MARGIN: 0pt 0pt 0pt 0pt; PADDING: 0pt 2pt 0pt
2pt;}

THEAD TR TD = {FONT: bold 8pt Helvetica, Arial, sans-serif;
COLOR: #000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: center; MARGIN:
0pt 0pt 0pt 0pt; PADDING: 0pt 0pt 0pt 0pt; BACKGROUND-COLOR:
#E8E8E8;}

mu-name = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: left; MARGIN-LEFT: 6pt;
TEXT-INDENT: -6pt; MARGIN-TOP: 0pt; MARGIN-BOTTOM: 0pt;}

NASIS CVIR Language Manual Page 162

comp-name = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: left; MARGIN-LEFT: 12pt;
TEXT-INDENT: -6pt; MARGIN-TOP: 0pt; MARGIN-BOTTOM: 0pt;}

units = {FONT: italic 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: center; MARGIN-LEFT:
0pt; TEXT-INDENT: 0pt; MARGIN-TOP: 0pt; MARGIN-BOTTOM: pt;}

class-name = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: center; MARGIN-LEFT:
0pt; TEXT-INDENT: 0pt; MARGIN-TOP: 0pt; MARGIN-BOTTOM: 0pt;}

hang-list = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: left; MARGIN-LEFT: 6pt;
TEXT-INDENT: -6pt; MARGIN-TOP: 0pt; MARGIN-BOTTOM: 0pt;}

reason0 = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: left; MARGIN-LEFT: 6pt;
TEXT-INDENT: -6pt; MARGIN-TOP: 0pt; MARGIN-BOTTOM: 0pt;}

reason1 = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: left;
MARGIN-LEFT: 12pt; TEXT-INDENT: -6pt; MARGIN-TOP: 0pt; MARGIN-
BOTTOM: 0pt;}

reason2 = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt;
TEXT-ALIGN: left; MARGIN-LEFT: 18pt; TEXT-INDENT: -6pt; MARGIN-
TOP: 0pt; MARGIN-BOTTOM: 0pt;}

reason3 = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt;
TEXT-ALIGN: left; MARGIN-LEFT:24pt; TEXT-INDENT: -6pt; MARGIN-
TOP: 0pt; MARGIN-BOTTOM: 0pt;}

Rating value = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt; TEXT-ALIGN: right; MARGIN-LEFT: 0pt;
MARGIN-TOP: 0pt; MARGIN-BOTTOM: 0pt;}

number = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt;
TEXT-ALIGN: right; MARGIN-LEFT: 0pt; MARGIN-TOP: 0pt; MARGIN-
BOTTOM: 0pt;}

total-line = {FONT: 8pt Helvetica, Arial, sans-serif; COLOR:
#000000; LINE-HEIGHT: 10pt;
PADDING: 6pt 2pt 0pt 2pt; BORDER-TOP: 1px solid black;}

NASIS CVIR Language Manual Page 163

shade0 = {background-color: #FFEEDD;}

shade1 = {background-color: white;}

descrip-mu = {FONT: 10pt Helvetica, Arial, sans-serif; COLOR:
#000000; TEXT-ALIGN: left; LINE-HEIGHT: 12pt; MARGIN-LEFT: 0pt;
MARGIN-TOP: 12pt; MARGIN-BOTTOM: 0pt;}

descrip-text = {FONT: 10pt Helvetica, Arial, sans-serif; COLOR:
#000000; TEXT-ALIGN: left; LINE-HEIGHT: 12pt; MARGIN-LEFT: 18pt;
MARGIN-TOP: 12pt; MARGIN-BOTTOM: 0pt;}

NASIS CVIR Language Manual Page 164

Appendix VII: Color Coding
The following shows the color values used in HTML in RGB and Hex.

Color Name Col R G B Hex
lightpink 255 182 193 #FFB6C1

pink 255 192 203 #FFC0CB

crimson 220 20 60 #DC143C

lavenderblush 255 240 245 #FFF0F5

palevioletred 219 112 147 #DB7093

hotpink 255 105 180 #FF69B4

deeppink 255 20 147 #FF1493

mediumvioletred 199 21 133 #C71585

orchid 218 112 214 #DA70D6

thistle 216 191 216 #D8BFD8

plum 221 160 221 #DDA0DD

violet 238 130 238 #EE82EE

fuchsia* 255 0 255 #FF00FF

fuchsia* 255 0 255 #FF00FF

darkmagenta 139 0 139 #8B008B

purple* 128 0 128 #800080

mediumorchid 186 85 211 #BA55D3

darkviolet 148 0 211 #9400D3

darkorchid 153 50 204 #9932CC

indigo 75 0 130 #4B0082

blueviolet 138 43 226 #8A2BE2

mediumpurple 147 112 219 #9370DB

mediumslateblue 123 104 238 #7B68EE

slateblue 106 90 205 #6A5ACD

darkslateblue 72 61 139 #483D8B

ghostwhite 248 248 255 #F8F8FF

lavender 230 230 250 #E6E6FA

blue* 0 0 255 #0000FF

mediumblue 0 0 205 #0000CD

darkblue 0 0 139 #00008B

navy* 0 0 128 #000080

midnightblue 25 25 112 #191970

royalblue 65 105 225 #4169E1

cornflowerblue 100 149 237 #6495ED

lightsteelblue 176 196 222 #B0C4DE

lightslategray 119 136 153 #778899

slategray 112 128 144 #708090

dodgerblue 30 144 255 #1E90FF

aliceblue 240 248 255 #F0F8FF

steelblue 70 130 180 #4682B4

Color Name Col R G B Hex
lightskyblue 135 206 250 #87CEFA

skyblue 135 206 235 #87CEEB

deepskyblue 0 191 255 #00BFFF

lightblue 173 216 230 #ADD8E6

powderblue 176 224 230 #B0E0E6

cadetblue 95 158 160 #5F9EA0

darkturquoise 0 206 209 #00CED1

azure 240 255 255 #F0FFFF

lightcyan 224 255 255 #E0FFFF

paleturquoise 175 238 238 #AFEEEE

aqua* 0 255 255 #00FFFF

aqua* 0 255 255 #00FFFF

darkcyan 0 139 139 #008B8B

teal* 0 128 128 #008080

darkslategray 47 79 79 #2F4F4F

mediumturquoise 72 209 204 #48D1CC

lightseagreen 32 178 170 #20B2AA

turquoise 64 224 208 #40E0D0

aquamarine 127 255 212 #7FFFD4

mediumaquamarin
e

 102 205 170 #66CDAA

mediumspringgree
n

 0 250 154 #00FA9A

mintcream 245 255 250 #F5FFFA

springgreen 0 255 127 #00FF7F

mediumseagreen 60 179 113 #3CB371

seagreen 46 139 87 #2E8B57

honeydew 240 255 240 #F0FFF0

darkseagreen 143 188 143 #8FBC8F

palegreen 152 251 152 #98FB98

lightgreen 144 238 144 #90EE90

limegreen 50 205 50 #32CD32

lime* 0 255 0 #00FF00

forestgreen 34 139 34 #228B22

green* 0 128 0 #008000

darkgreen 0 100 0 #006400

lawngreen 124 252 0 #7CFC00

chartreuse 127 255 0 #7FFF00

greenyellow 173 255 47 #ADFF2F

darkolivegreen 85 107 47 #556B2F

yellowgreen 154 205 50 #9ACD32

NASIS CVIR Language Manual Page 165

Color Name Col R G B Hex
olivedrab 107 142 35 #6B8E23

ivory 255 255 240 #FFFFF0

beige 245 245 220 #F5F5DC

lightyellow 255 255 224 #FFFFE0

lightgoldenrodyell
ow

 250 250 210 #FAFAD2

yellow* 255 255 0 #FFFF00

olive* 128 128 0 #808000

darkkhaki 189 183 107 #BDB76B

palegoldenrod 238 232 170 #EEE8AA

lemonchiffon 255 250 205 #FFFACD

khaki 240 230 140 #F0E68C

gold 255 215 0 #FFD700

cornsilk 255 248 220 #FFF8DC

goldenrod 218 165 32 #DAA520

darkgoldenrod 184 134 11 #B8860B

floralwhite 255 250 240 #FFFAF0

oldlace 253 245 230 #FDF5E6

wheat 245 222 179 #F5DEB3

orange* 255 165 0 #FFA500

moccasin 255 228 181 #FFE4B5

papayawhip 255 239 213 #FFEFD5

blanchedalmond 255 235 205 #FFEBCD

navajowhite 255 222 173 #FFDEAD

antiquewhite 250 235 215 #FAEBD7

tan 210 180 140 #D2B48C

burlywood 222 184 135 #DEB887

darkorange 255 140 0 #FF8C00

bisque 255 228 196 #FFE4C4

linen 250 240 230 #FAF0E6

peru 205 133 63 #CD853F

peachpuff 255 218 185 #FFDAB9

Color Name Col R G B Hex
sandybrown 244 164 96 #F4A460

chocolate 210 105 30 #D2691E

saddlebrown 139 69 19 #8B4513

seashell 255 245 238 #FFF5EE

sienna 160 82 45 #A0522D

lightsalmon 255 160 122 #FFA07A

coral 255 127 80 #FF7F50

orangered 255 69 0 #FF4500

darksalmon 233 150 122 #E9967A

tomato 255 99 71 #FF6347

salmon 250 128 114 #FA8072

mistyrose 255 228 225 #FFE4E1

lightcoral 240 128 128 #F08080

snow 255 250 250 #FFFAFA

rosybrown 188 143 143 #BC8F8F

indianred 205 92 92 #CD5C5C

red* 255 0 0 #FF0000

brown 165 42 42 #A52A2A

firebrick 178 34 34 #B22222

darkred 139 0 0 #8B0000

maroon* 128 0 0 #800000

white* 255 255 255 #FFFFFF

whitesmoke 245 245 245 #F5F5F5

gainsboro 220 220 220 #DCDCDC

lightgrey 211 211 211 #D3D3D3

silver* 192 192 192 #C0C0C0

darkgray 169 169 169 #A9A9A9

gray* 128 128 128 #808080

dimgray 105 105 105 #696969

black* 0 0 0 #000000

	Cover
	Nondiscrimination Statement
	Contents
	Scripts
	Introduction
	Overview of CVIR Scripts
	Query
	Data Manipulation (Informix syntax)
	Output

	Data Flow in CVIR Scripts
	Query Scripts
	Property Scripts
	Calculation and Validation Scripts
	Report Scripts
	Text-Style Reports
	XML-Style Reports
	HTML-Style Reports
	Running Reports Against Local or National Database

	SQL Syntax
	SQL Syntax Elements
	Conventions Used in this Guide
	ACCEPT
	BASE TABLE
	DEFINE
	Storing Multiple Values in a Variable
	Expression Syntax
	Explanation of Expression Syntax
	String Expressions
	expression [n1:n2]
	expression || expression
	CLIP (expression)
	UPCASE (expression)
	LOCASE (expression)
	NMCASE (expression)
	SECASE (expression)
	TEXTURENAME (expression)
	GEOMORDESC (expression, expression, expression)
	STRUCTPARTS (expression, expression, expression)
	ARRAYCAT (expression, delimiter)
	REPLACE (expression, expression, expression)
	DATEFORMAT (expression, format)
	NAMECAP (expression, expression, type, expression)

	Function Expressions
	NEW (expression)
	CODENAME (expression [, name])
	CODELABEL (expression [, name])
	APPEND (expression, expression)
	ARRAYCOUNT (expression)
	ARRAYMIN (expression)
	ARRAYMAX (expression)
	ARRAYMEDIAN (expression)
	ARRAYMODE (expression)
	ARRAYSHIFT (expression, expression)
	ARRAYPOSITION (expression)
	ARRAYROT (expression, expression)
	LOOKUP ([expression,] expression, expression)
	COUNT (expression)
	MIN (expression)
	MAX (expression)
	SPRINTF (“format”, expression [, expression] …)
	USER
	TODAY
	STUFF function
	ISNULL function

	Numeric Functions
	ARRAYSUM (expression)
	ARRAYAVG (expression)
	ARRAYSTDEV (expression)
	WTAVG (expression, expression)
	SUM (expression)
	AVERAGE (expression)
	LOGN (expression)
	LOG10 (expression)
	EXP (expression)
	COS (expression)
	SIN (expression)
	TAN (expression)
	ACOS (expression)
	ASIN (expression)
	ATAN (expression)
	ATAN2 (expression, expression)
	SQRT (expression)
	ABS (expression)
	POW (expression, expression)
	MOD (expression, expression)
	ROUND (expression [, expression])

	REGROUP Expression

	Report Syntax
	DERIVE
	EXEC SQL
	EXEC SQL: Sort Specification
	EXEC SQL: Aggregation Specification
	CROSSTABS
	FONT
	HEADER and FOOTER
	INPUT
	INTERPRET
	MARGIN
	PAGE
	PARAMETER
	PITCH
	SECTION
	SECTION: Conditions
	SECTION: KEEP option
	SECTION: Output Specifications
	AT Statement
	ELEMENT Statement
	Column Specifications
	Column Layout Specifications
	SET
	TEMPLATE
	WHEN
	Additional Information
	Writing an SQL Query
	Operators or Functions
	Data Types and Comparison Operators

	Data Types and Comparison Operators
	Character Strings
	Integers
	Decimal and Numeric
	Approximate Numerics
	Date and Time
	Examples Comparison Operators Used in an SQL Query

	Wildcard Characters
	Queries
	Target Tables
	Joining Tables
	Join Examples
	CASE, WHEN, THEN, ELSE Statement
	Subquery
	Subqueries Using the = Operator
	Subqueries Using the EXISTS Operator
	Subqueries Using the NOT EXISTS Operator

	Correlated Subquery
	Uncorrelated Subquery
	Subqueries Using the IN Operator

	Using Subreports
	Parameters for Web Soil Survey Reports
	Using Parameters in a Report Query

	Script Variables
	NASIS CVIR Script Writing References
	Database Structure Guide
	Table Structure Report
	Database Structure Diagrams
	Suggested Reading

	Web Uniform Resource Locator (URL) Reports
	Overview
	URL Report PARAMETERS
	Example to Demonstrate Differences Based on Data Type

	Calling URL Reports with Python

	Examples and Exercises
	Appendices
	Appendix 1: Conventions for HTML Reports and Web Soil Survey Rule and Report Manager
	DocBook XML
	XML Elements Used in Reports
	Elements Used in Tables
	Elements Used in Non-table Reports
	Attributes Used in All Elements

	SVG Scalar Vector Graphics
	Java Scripts

	Appendix II: How to Optimize the SQL Query
	Writing Best Practices
	Further Scripting Hints

	Appendix III: Expanded SQL Capabilities in NASIS
	Aggregate Functions with OVER clause
	Ranking Functions
	Date and Time Functions
	Other Analytic Functions

	Appendix IV: Common Error Messages
	Appendix V: HTML Formatting
	Appendix VI: Default HTML Output Format

<<

 /ASCII85EncodePages false

 /AllowTransparency false

 /AutoPositionEPSFiles true

 /AutoRotatePages /PageByPage

 /Binding /Left

 /CalGrayProfile (Dot Gain 20%)

 /CalRGBProfile (sRGB IEC61966-2.1)

 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)

 /sRGBProfile (sRGB IEC61966-2.1)

 /CannotEmbedFontPolicy /Warning

 /CompatibilityLevel 1.7

 /CompressObjects /Tags

 /CompressPages true

 /ConvertImagesToIndexed true

 /PassThroughJPEGImages true

 /CreateJobTicket false

 /DefaultRenderingIntent /Default

 /DetectBlends true

 /DetectCurves 0.0000

 /ColorConversionStrategy /UseDeviceIndependentColor

 /DoThumbnails false

 /EmbedAllFonts true

 /EmbedOpenType true

 /ParseICCProfilesInComments true

 /EmbedJobOptions true

 /DSCReportingLevel 0

 /EmitDSCWarnings false

 /EndPage -1

 /ImageMemory 1048576

 /LockDistillerParams false

 /MaxSubsetPct 0

 /Optimize true

 /OPM 1

 /ParseDSCComments true

 /ParseDSCCommentsForDocInfo true

 /PreserveCopyPage true

 /PreserveDICMYKValues true

 /PreserveEPSInfo true

 /PreserveFlatness false

 /PreserveHalftoneInfo false

 /PreserveOPIComments false

 /PreserveOverprintSettings true

 /StartPage 1

 /SubsetFonts false

 /TransferFunctionInfo /Apply

 /UCRandBGInfo /Preserve

 /UsePrologue false

 /ColorSettingsFile ()

 /AlwaysEmbed [true

 /ArialMT

 /ArialUnicodeMS

]

 /NeverEmbed [true

]

 /AntiAliasColorImages false

 /CropColorImages false

 /ColorImageMinResolution 300

 /ColorImageMinResolutionPolicy /OK

 /DownsampleColorImages true

 /ColorImageDownsampleType /Bicubic

 /ColorImageResolution 600

 /ColorImageDepth -1

 /ColorImageMinDownsampleDepth 1

 /ColorImageDownsampleThreshold 1.00000

 /EncodeColorImages true

 /ColorImageFilter /DCTEncode

 /AutoFilterColorImages false

 /ColorImageAutoFilterStrategy /JPEG

 /ColorACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /ColorImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000ColorACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000ColorImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasGrayImages false

 /CropGrayImages false

 /GrayImageMinResolution 300

 /GrayImageMinResolutionPolicy /OK

 /DownsampleGrayImages true

 /GrayImageDownsampleType /Bicubic

 /GrayImageResolution 600

 /GrayImageDepth -1

 /GrayImageMinDownsampleDepth 2

 /GrayImageDownsampleThreshold 1.00000

 /EncodeGrayImages true

 /GrayImageFilter /DCTEncode

 /AutoFilterGrayImages false

 /GrayImageAutoFilterStrategy /JPEG

 /GrayACSImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /GrayImageDict <<

 /QFactor 0.15

 /HSamples [1 1 1 1] /VSamples [1 1 1 1]

 >>

 /JPEG2000GrayACSImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /JPEG2000GrayImageDict <<

 /TileWidth 256

 /TileHeight 256

 /Quality 30

 >>

 /AntiAliasMonoImages false

 /CropMonoImages false

 /MonoImageMinResolution 1200

 /MonoImageMinResolutionPolicy /OK

 /DownsampleMonoImages true

 /MonoImageDownsampleType /Bicubic

 /MonoImageResolution 600

 /MonoImageDepth -1

 /MonoImageDownsampleThreshold 1.00000

 /EncodeMonoImages true

 /MonoImageFilter /CCITTFaxEncode

 /MonoImageDict <<

 /K -1

 >>

 /AllowPSXObjects false

 /CheckCompliance [

 /None

]

 /PDFX1aCheck false

 /PDFX3Check false

 /PDFXCompliantPDFOnly false

 /PDFXNoTrimBoxError true

 /PDFXTrimBoxToMediaBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXSetBleedBoxToMediaBox true

 /PDFXBleedBoxToTrimBoxOffset [

 0.00000

 0.00000

 0.00000

 0.00000

]

 /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)

 /PDFXOutputConditionIdentifier (CGATS TR 001)

 /PDFXOutputCondition ()

 /PDFXRegistryName (http://www.color.org)

 /PDFXTrapped /False

 /CreateJDFFile false

 /Description <<

 /ENU ([Based on 'HR 2013 600 Max'] [Based on 'HR 2013 300 high'] [Based on 'HR 2013 300 high'] [Based on 'HR 2013 300 high'] [Based on 'HR 2013 300 high'] [Based on 'HR 2013 300 high'] Default for historical replicas.)

 >>

 /ExportLayers /ExportAllLayers

 /Namespace [

 (Adobe)

 (Common)

 (1.0)

]

 /OtherNamespaces [

 <<

 /AsReaderSpreads false

 /CropImagesToFrames true

 /ErrorControl /WarnAndContinue

 /FlattenerIgnoreSpreadOverrides false

 /IncludeGuidesGrids false

 /IncludeNonPrinting false

 /IncludeSlug false

 /Namespace [

 (Adobe)

 (InDesign)

 (4.0)

]

 /OmitPlacedBitmaps false

 /OmitPlacedEPS false

 /OmitPlacedPDF false

 /SimulateOverprint /Legacy

 >>

 <<

 /AddBleedMarks false

 /AddColorBars false

 /AddCropMarks false

 /AddPageInfo false

 /AddRegMarks false

 /BleedOffset [

 0

 0

 0

 0

]

 /ConvertColors /NoConversion

 /DestinationProfileName (sRGB IEC61966-2.1)

 /DestinationProfileSelector /UseName

 /Downsample16BitImages true

 /FlattenerPreset <<

 /PresetSelector /MediumResolution

 >>

 /FormElements false

 /GenerateStructure false

 /IncludeBookmarks true

 /IncludeHyperlinks true

 /IncludeInteractive false

 /IncludeLayers false

 /IncludeProfiles true

 /MarksOffset 6

 /MarksWeight 0.250000

 /MultimediaHandling /UseObjectSettings

 /Namespace [

 (Adobe)

 (CreativeSuite)

 (2.0)

]

 /PDFXOutputIntentProfileSelector /UseName

 /PageMarksFile /RomanDefault

 /PreserveEditing true

 /UntaggedCMYKHandling /UseDocumentProfile

 /UntaggedRGBHandling /UseDocumentProfile

 /UseDocumentBleed false

 >>

 <<

 /AllowImageBreaks true

 /AllowTableBreaks true

 /ExpandPage false

 /HonorBaseURL true

 /HonorRolloverEffect false

 /IgnoreHTMLPageBreaks false

 /IncludeHeaderFooter false

 /MarginOffset [

 0

 0

 0

 0

]

 /MetadataAuthor ()

 /MetadataKeywords ()

 /MetadataSubject ()

 /MetadataTitle ()

 /MetricPageSize [

 0

 0

]

 /MetricUnit /inch

 /MobileCompatible 0

 /Namespace [

 (Adobe)

 (GoLive)

 (8.0)

]

 /OpenZoomToHTMLFontSize false

 /PageOrientation /Portrait

 /RemoveBackground false

 /ShrinkContent true

 /TreatColorsAs /MainMonitorColors

 /UseEmbeddedProfiles false

 /UseHTMLTitleAsMetadata true

 >>

]

>> setdistillerparams

<<

 /HWResolution [600 600]

 /PageSize [612.000 792.000]

>> setpagedevice

