Remote Sensing for Soil Survey Applications

Janis Boettinger
Professor of Pedology
Plants, Soil, and Climate
Utah State University
Landsat 7 ETM+ Bands 3, 2, 1 w/DEM = Visible light RGB

Gypsic Soil

Rock Outcrop
Landsat 7 ETM+
Bands 3, 2, 1 w/DEM
= Visible light RGB

Landsat 7 ETM+
Bands 7, 5, 1 w/DEM
= SWIR (2.02-2.35 µm), Blue

Gypsic Soil
Rock Outcrop
Overview

1. Models of soil formation and distribution
2. Remotely sensed (RS) spectral data on biophysical properties
 - Organisms
 - Parent Material
 - Soil
3. Spectral band ratios
4. RS in digital (predictive) soil mapping
Factors of Soil Formation (Jenny 1941)

• Soils are a function of 5 environmental factors:
 \[S = f (C_l, O, R, P, T) \]
 – **Climate** (Precipitation, Temperature)
 – **Organisms** (Vegetation)
 – **Relief** (Topography)
 – **Parent Material**
 – **Time**

• Conceptual model
 – Traditional soil survey: “tacit knowledge”
Soil Forming Factors

• Often inter-related
 – E.g., Circle Cliffs, UT
 • Arid climate (Cl)
 • Pinyon-juniper community (O)
 • Highly dissected landscape (R)
 • Fe-oxide-rich shale (P)
 • Shallow, rocky soils (S)

• Feedbacks
SCORPAN (McBratney et al., 2003)

- **Soil**, at a specific point in **space** and time,
 - Soil classes, **Sc**
 - Soil attributes, **Sa**
- Empirical **quantitative** function of **environmental** covariates:
 - Soil (class, directly or remotely sensed property, data from old maps)
 - Climate
 - Organisms
 - Relief
 - Parent Material
 - **Age**
 - **N** = Spatial Position
Organisms: Vegetation

- Plants primary producers of organic carbon
- Healthy green vegetation
 - Reflects NIR (0.7-1.1 µm)
 - Chlorophyll absorbs visible (0.4-0.7 µm), especially red
- Dead/senescent vegetation
 - Reflects more in visible
Organisms: Vegetation

Absorbs Red

Reflects Near Infrared (NIR)

Organisms: Vegetation

- Relative abundance
 - Normalized Difference Vegetation Index (NDVI)
 - \((\text{NIR}-\text{Red})/(\text{NIR}+\text{Red})\)
 - Landsat: \((4-3)/(4+3)\)

- E.g., Powder River, WY: NDVI
 - **Black** = no vegetation
 - **White** = high vegetation density
 - **Gray** shades = intermediate vegetation density
 - Darker, lower density
 - Lighter, higher density
Organisms: Biological Soil Crusts

- Community of organisms in upper few cm of soil
 - Cyanobacteria
 - Lichen
 - Mosses
 - Algae
 - Other
 - Species, relative composition depends on parent materials, climate

- Cyanobacteria
 - Phycobilin pigments increase reflectance in blue region (Karnieli et al., 1999)
Organisms: Biological Soil Crusts

Cyanobacterial Crust Index = (Red-Blue)/(Red+Blue) [left]
vs. NDVI [right]

Canyonlands National Park
Parent Material

- Spectral response of mineralogy varies

- E.g. San Francisco Mts., Great Basin, UT:
 - Sedimentary rocks
 - Igneous intrusions
 - Mixed basin fill

- Principle component analysis (PCA) of Landsat bands 1-5, 7:
 - Igneous intrusion (andesite)
 - Andesite influence on alluvium composition
Parent Material and/or c) Soil

- Spectral properties of different minerals vary

http://ldcm.usgs.gov/tools_viewer.php

Short-wave Infrared (SWIR)
Explore Spectral Libraries

- **ASTER and USGS Spectral Libraries**
 - View plots
 - Qualitatively compare spectra to band profiles
 - Download spectral data files
 - X = Wavelength (micrometers)
 - Y = Reflectance (percent)
 - Plot spectra vs. wavelength band intervals of sensors
 - Excel, etc.
Parent Material

• Simple or normalized band difference ratios
 – Customized

• E.g., Great Basin, UT: Landsat: \((5-2)/(5+2)\)
 – Darker = Igneous Rocks (Andesite)
 – Lighter = Sedimentary Rocks (Dolomite, Quartzite)
 – Fill sources varies, indicated by tone
Soil

- Chemical, physical soil properties
- Surface, very near-surface
 - Silicate clays
 - Iron oxides
 - Salts
 - Gypsum
 - Carbonates
- E.g., San Rafael Swell, UT
 - Gypsum near soil surface
 - Diagnostic spectrum in SWIR
 - Landsat (5-7)/(5+7)
Landsat 7 ETM+
Bands 3, 2, 1 w/DEM
= Visible light RGB

Landsat 7 ETM+
Bands 7, 5, 1 w/DEM
= SWIR (2.02-2.35 µm), Blue

Gypsic Soil
Rock Outcrop
Thematic Output for Gypsic Index

Surficially gypsiferous

Rock outcrop
Relief

- Elevation
 - E.g., Photogrammetric, IFSAR, LiDAR sources
- Ancillary data derived from elevation (many possible)
 - Slope
 - Curvature
 - Wetness Index
 - Ruggedness Index
 - Aspect
 - Landform
 - Relative Elevation, etc.
- E.g., Powder River Basin, WY
 - Elevation vs. Slope

Elevation:
Blue = 1109m
White = 1141m

Slope:
Blue = 0%
White = 128%
Climate

• Elevation
 – E.g., Photogrammetric, IFSAR, LiDAR sources
• Regional climate models (ancillary data)
 – E.g., PRISM Data
 • http://www.prism.oregonstate.edu/
• Solar radiation models (ancillary data)
 – Several available
 • E.g., ArcGIS used to calculate annual, monthly solar radiation
Human Factors

• Humans alter landscape and landcover
 – E.g., Las Vegas, NV
 • Destroy petrocalcic horizon
 • Irrigation alters
 – Soil properties
 – Hydrology

• Image sequence
 – Age

• Landuse
 – Soil properties
 • E.g., Desirable soil properties in agricultural areas
Remote Sensing in Soil Survey

- Powder River Basin, Wyoming, USA
 - 60,000 ha east of Big Horn Mountains
 - Energy development on public lands
Identify soil-landscape units
Environmental Covariate Data Layers

• Relief
 – DEM-derived data
 • Slope, aspect, relative elevation, compound topographic index (CTI), Landform Index

• Organisms
 – Landsat
 • Fractional Vegetation Index (FVI) - %
 – Uses Normalized Differenced Vegetation Index (NDVI)

• Parent Material
 – Landsat: Simple Band Ratios
 • Soil Enhancement Ratio
 – Band 3/ Band 2: Carbonate radical
 – Band 3 / Band 7: Ferrous iron
 – Band 5 / Band 7: Hydroxyl radical
Knowledge Engineer in Imagine
Final Map and Rules Defining Map Units

Rules used in knowledge-based decision tree classification for generalized soil associations and the eight specific map unit classes evaluated in the accuracy assessment.

<table>
<thead>
<tr>
<th>Map Unit Number</th>
<th>Class Name</th>
<th>Classification Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>NA</td>
<td>Fluvial Soils</td>
<td>Relative elevation to Powder River <= 6m and slope < 2%, or <= 3m from Powder River, or <= 5m in height and <= 50m distance of small streams.</td>
</tr>
<tr>
<td>NA</td>
<td>Badland soils</td>
<td>Soil enhancement band 2 (iron) >= 67 and slope >= 8% and not Fluvial Soils</td>
</tr>
<tr>
<td>NA</td>
<td>Uplands</td>
<td>Relative elevation to >= 60m and not Fluvial and not Badland Soils</td>
</tr>
<tr>
<td>NA</td>
<td>Alluvial fans</td>
<td>Not Fluvial and not Badland and Not Upland Soils</td>
</tr>
<tr>
<td>938</td>
<td>Water</td>
<td>Ten meter buffer of Powder River Line Coverage.</td>
</tr>
<tr>
<td>611</td>
<td>Draknab sandy loam, 0-3% slopes</td>
<td>Fluvial soils = true and soil enhancement band 2 > 113 and relative elevation to Powder River <= 5m, or, fluvial soils = true and relative elevation to <= 1 and orthophoto value > 150 in blue band, does not meet the requirements of any previous decision.</td>
</tr>
<tr>
<td>613</td>
<td>Haverdad-Kishona loams, 0-3% slopes</td>
<td>Fluvial soils = true and relative elevation to the river >= 10m, or fluvial soils = true and slopes > 6%, does not meet the requirements of any previous decision.</td>
</tr>
<tr>
<td>616</td>
<td>Clarkelen-Draknab complex, 0-10% slopes</td>
<td>Fluvial soil = true and Near infrared Landsat > 60 and Fractional vegetation > 38, or, Fluvial soils with CTI < 1, does not meet the requirements of any previous decision.</td>
</tr>
<tr>
<td>612</td>
<td>Clarkelen fine sandy loam, 0-3% slopes</td>
<td>Fluvial soils = true and fractional vegetation > 34, does not meet the requirements of any previous decision.</td>
</tr>
<tr>
<td>649</td>
<td>Haverdad-Clarkelen complex, 0-3% slopes</td>
<td>Other fluvial soils dominated (dominated by sage and grass community), does not meet the requirements of any previous decision.</td>
</tr>
<tr>
<td>684</td>
<td>Samday-Shingle-Badland complex, 10-45% slopes</td>
<td>Badland soils with slopes >= 15 and mean slope length factor > 1.85, or, badlands having slopes > 50 %, does not meet the requirements of any previous decision.</td>
</tr>
<tr>
<td>709</td>
<td>Theedle-Shingle loams, 3 to 30% slopes</td>
<td>Badland soils = true and mean slope length factor > .8 and < 1.75, does not meet the requirements of any previous decision.</td>
</tr>
</tbody>
</table>
Digital (Predictive) Soil Mapping

- Objective field sampling methods
 - Conditioned Latin Hypercube Sampling
- Environmental covariates
 - Remote sensing of biophysical properties
- Models for predicting soil distribution
 - Objective
 - Quantitative
 - Estimate uncertainty of predictions
- Developing products
 - Derive maps to meet client needs