Evaluation of Saturated Hydraulic Conductivity in Southern Piedmont Landscapes

J. Bishop, M. Abreu, and L.T. West
Department of Crop and Soil Sciences
University of Georgia
Southern Piedmont Soils

Clay, %

Depth, cm
K_s Estimates

![Diagram showing clay content and permeability estimates.](https://example.com/diagram)

- **Clay, %**
 - 0
 - 10
 - 20
 - 30
 - 40
 - 50
 - 60

- **Depth, cm**
 - 0
 - 10
 - 20
 - 30
 - 40
 - 50
 - 60
 - 70
 - 80
 - 90
 - 100
 - 110
 - 120
 - 130
 - 140
 - 150
 - 160
 - 170
 - 180
 - 190

- **Permeability Estimates**
 - low: 77 cm/d
 - moderate: 77 cm/d
 - moderate/high: 77 cm/d

The diagram illustrates the relationship between clay content and depth, indicating permeability estimates.
Water Movement Rate in Piedmont Soils

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Depth (ft)</th>
<th>Structure</th>
<th>Texture</th>
<th>K_s (cm/hr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bt</td>
<td>2</td>
<td>Strong</td>
<td>Clay</td>
<td>8</td>
</tr>
<tr>
<td>BC</td>
<td>5</td>
<td>Weak</td>
<td>Sandy clay loam</td>
<td>3</td>
</tr>
<tr>
<td>C</td>
<td>13</td>
<td>Massive</td>
<td>Sandy loam</td>
<td>6</td>
</tr>
</tbody>
</table>
Objectives

- Evaluate K_s for major horizons in soils on Piedmont landscapes
- Evaluate landscape effects on K_s
- Suggest morphological/landscape features that indicate exception to trend in data
Methods

- K_s measured in field with constant head permeameter
 - 10 hillslopes
 - 3 transects per hillslope
 - Summit or upper backslope to footslope
 - 7 equally spaced measurement sites per transect
 - 21 locations/hillslope
 - 3 depths - upper Bt, mid to lower Bt, and lower Bt, BC, or C (140 cm)

- Soil described from bucket auger
 - NRCS soil scientists
Hillslope Locations

- Blue Ridge Mountains
- Ridge and Valley
- Piedmont
- Sand Hills
- Coastal Plain
- Atlantic Coast Flatwoods
- Site 1
- Site 2
- Site 3
- Site 4
- Site 5
- Site 6
- Site 7
- Site 8
- Site 9
- Site 10

Distance: 100 km
Methods 2

► 3 pedons described and sampled from pit
 ▪ Range in K_s and landscape position

► Laboratory characterization
 ▪ PSD, bulk density, CEC, porosity
Results
Mean K_s by Site (all depths)
Mean K_s with Depth (all sites)

- Upper
- Middle Depth
- Lower

Mean K_s, cm/d
Mean K_s with Depth by Site

- Upper depth (Bt1)
- Middle depth
- Lowest depth (140 cm)
Why?
K_s and Clay

K_s, cm/d

Clay, %
Structure?

► Bt1 horizons – moderate (strong) subangular blocky
 - Tendency for low K_s if firm consistence
► Bt2 and Bt3 horizons – moderate subangular blocky
 - Very weak platy?
► BC horizons – weak subangular blocky structure (mostly)
► Horizons with highest K_s
 - Bt horizons in more deeply weathered soils
 - 10R hue
 - Sandy loam C horizons
Summary of Field Results

- Upper depth (Bt1 horizon) had highest K_s at 7 of 10 sites
 - 2 sites had uniformly low K_s in all horizons
- Mid and lower depths generally had similar K_s
- No difference in K_s with hillslope position
Bt1 horizon $K_s \geq$ subjacent horizons
No difference in K_s with hillslope position
Clay and bulk density ineffective in explaining K_s variation
Structure and/or consistence influencing K_s but not reliable predictors
Bioturbation of upper Bt?
 - Relatively old landscapes
 - Observed in similar soils
Comparison with K_s Estimates for Piedmont Soils

<table>
<thead>
<tr>
<th>Horizon</th>
<th>Tabular Data</th>
<th>Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K_s (cm/d)</td>
<td></td>
</tr>
<tr>
<td>Bt1</td>
<td>77</td>
<td>7.2</td>
</tr>
<tr>
<td>Bt2, Bt3</td>
<td>77</td>
<td>1.7</td>
</tr>
<tr>
<td>BC</td>
<td>77</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Tabular data from WSS
≥ 35 percent clay, soft, slightly hard, very friable or friable, no stress surfaces or slickensides and the clay is subactive after subtracting the quantity $(2 \times (OC \times 1.7)) - 1 - 10 \, \mu m/s \ (8.6 - 86 \, cm/d)$
Is one system applicable to estimate K_s for all soils?

- Probably not
- Local estimates can be incorporated into the database
- With limited data, is this a viable option?
Is There an Alternative?

► 144 MLRA Soil Survey Offices
 - Intelligent, energetic, and interested staff
► Field evaluation of K_s for 1 pedon per month (12 days/year)
 - 1,600+ evaluations per year
 - 8,000 evaluations after 5 years
 - 5 reps per series/map unit = reliable data for 1,500+ series
► Data to populate database
► Data to test/develop pedotransfer functions
► Good use of time?