Economic Benefits of Soil Survey Information

Presentation to the National State Soil Scientists' Workshop (via Teleconference)
March 20, 2008
Hilton Cincinnati Airport, Florence, KY

Jerald J. Fletcher¹, Jonathan Hempel², and Archana Pradhan³

1 Professor and Director, Natural Resource Analysis Center, West Virginia University
2 Co-Director, National Geospatial Development Center, USDA-NRCS, Morgantown, WV
3 PhD Candidate, Agricultural and Resource Economics, West Virginia University
Project Summary

- **Overall Objective:** Develop a comprehensive, defensible assessment of the benefits that accrue to the National Cooperative Soil Survey (NCSS) Program
 - Historical values attributable to the soil survey of the United States
 - Value of continuing to update and maintain the soil survey to support future use
- **Funding through USDA/NRCS/NGDC – National Geospatial Development Center**
Soil Information

- The NCSS - primary source for collecting and providing soils data for the United States

- Used in diverse fields
 - Agriculture and ranching
 - Forestry and recreation
 - Urban planning and zoning,
 - Site selection for buildings, roads, airports
 - Other purposes
What Is Information?

- Information can be defined as reduction of uncertainty (better understanding of the true distribution)
- Data (factual and numeric)
- Examples:
 - Research results
 - Technology evaluations and new methodology
 - Primary and secondary information
Value of Information (VOI)

- **Difference between the value of a project or decision with the information and without the information less the cost of information**
- **Determined by importance to the decision maker(s) or the outcome of the decision**
 - Direct method – ask the decision maker(s)
 - Indirect method – infer value from the results of decisions made with and without the information
Factors Affecting VOI

- **Degree of uncertainty of the decision maker**
 - How much will more information help?

- **What is at stake (value of output)**
 - How much could final value be affected?

- **Cost of information**

- **Price of substitutes for the information**
 - Are there alternatives?
 - At what cost?
How to Value: Alternative Approaches

- **Direct Methods**
 - Survey based approaches to valuation
 - Approach accepted in regulation and by the courts for damage assessment and environmental valuation
 - Only approach to develop values for many uses

- **Indirect Methods**
 - Rely on statistical procedures to capture the impacts on decisions and related outcomes
Does Soil Survey Information affect County-level Corn Yield?

- Implementation of the NCSS provides a natural experiment to test whether soil survey information affects county level corn yield.
 - County soil surveys are spatially and temporally dispersed.
 - Ongoing in all states in the cornbelt
 - Done at the county level over many years
 - Available to users for a county when completed
Hypothesis

- Yield trends are not affected by availability of soil survey information
- Initial results reject the hypothesis – yield effects appear to very strong – but results are not fully validated
Corn Yield Change

- Study area
- Corn yields increase
Available Data

- USDA/NASS county-level corn yield data from 1935 to 2007
- Soil survey status data from NRCS publications
- Weather data
- Soil productivity estimates from NRCS simulations models
- Other desired data (but not consistently available)
 - Fertilizer data
 - Hybrid data
 - Technical change
Soil Survey Published Date
Proportion Crop Acres in Corn

Map representing ratio of corn planted to total crop land

Ratio (%)
- >10
- 10 - 19
- 20 - 29
- 30 - 39
- 40 - 49
- 50 - 60

State

20Mar2008 Economic Benefits of Soil Information 13
Empirical Model

- General form of model
 \[\text{Corn Yield} = f(\text{soil info, weather, trend}) \]

- Preliminary statistical model (panel data)

\[Y_{it} = dD_i + \sum_j \beta_j T_{ij} + \sum_k \beta_k W_{kii} + e_{it} \]

where
- \(Y_{it} \) = crop yield for county \(i \) in year \(t \)
- \(D_i \) = dummy variable for soil survey for county \(i \)
- \(T = \) Time trend (estimate of Taylor series expansion)
- \(W = \) Weather measure
- \(e_{it} = a \) random component for county \(i \) in year \(t \)
Regression Results – Fixed Effects Model (using soil survey correlation date)

Dependent Variable: YIELD
Method: Panel Least Squares
Date: 11/04/07
Sample: 1935 2006
Cross-sections included: 868
Total panel (unbalanced) observations: 60472

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>t-Statistic</th>
<th>Prob.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>222.7</td>
<td>75.1</td>
<td>0</td>
</tr>
<tr>
<td>D_SSCORR1</td>
<td>2.5</td>
<td>11.2</td>
<td>0</td>
</tr>
<tr>
<td>TREND1</td>
<td>-2.4</td>
<td>-35.8</td>
<td>0</td>
</tr>
<tr>
<td>TREND2</td>
<td>0.18</td>
<td>48.6</td>
<td>0</td>
</tr>
<tr>
<td>TREND3</td>
<td>-0.0032</td>
<td>-42.9</td>
<td>0</td>
</tr>
<tr>
<td>TREND4</td>
<td>2.00E-05</td>
<td>39.5</td>
<td>0</td>
</tr>
<tr>
<td>D_1993</td>
<td>-28.7</td>
<td>-52.7</td>
<td>0</td>
</tr>
<tr>
<td>JUNE_MNT</td>
<td>0.418</td>
<td>9.5</td>
<td>0</td>
</tr>
<tr>
<td>JUNE_MXT</td>
<td>0.00241</td>
<td>0.06</td>
<td>0.9498</td>
</tr>
<tr>
<td>JUNE_PPT</td>
<td>-0.383</td>
<td>-3.2</td>
<td>0.001</td>
</tr>
<tr>
<td>JULY_MNT</td>
<td>1.38</td>
<td>27.9</td>
<td>0</td>
</tr>
<tr>
<td>JULY_MXT</td>
<td>-2.02</td>
<td>-47.3</td>
<td>0</td>
</tr>
<tr>
<td>JULY_PPT</td>
<td>3.22</td>
<td>25.1</td>
<td>0</td>
</tr>
<tr>
<td>AUG_MNT</td>
<td>-0.187</td>
<td>-4.2</td>
<td>0</td>
</tr>
<tr>
<td>AUG_MXT</td>
<td>-1.24</td>
<td>-30.4</td>
<td>0</td>
</tr>
<tr>
<td>AUG_PPT</td>
<td>0.459</td>
<td>3.5</td>
<td>0.0005</td>
</tr>
</tbody>
</table>
Next Steps

- Verify the information on dates of county soil surveys (checking available publications – 2700+)
 - Completion date (field work completed)
 - Correlation date (mapping units approved)
 - In a few cases, precedes the completion date
 - Publication date (gap varies from months to years)

- Include soil productivity measures as an explanatory variable to capture spatial correlations
Next Steps (continued)

- Test alternative specifications of the time information becomes available based on the overall explanatory power of the statistical model
 - Completion/Correlation/Publication
 - May include a consistent time shift
- Consider alternative specifications of time to capture temporal trends
 - Technical change, hybrids, fertilizer use, etc.
- Consider alternative functional forms
Initial Conclusions

- Results are promising given the current state of the analysis and data.
- The implications for the value of the NCSS for agricultural productivity gains provides information to assist policy makers in assessing the overall value of the NCSS program.
Future Plans

- Continue to develop benefit estimates as appropriate
- Work to develop a more comprehensive approach
- Apply method to soybeans, wheat, cotton
Future Plans

- Apply method to soybeans, wheat, cotton
- Continue to develop benefit estimates as appropriate
- Work to develop a more comprehensive approach that captures the values of other uses of soil information