
Using VNIR Spectroscopy to Rapidly Quantify the 
Coefficient of Linear Extensibility in Texas Soils  
 
Katrina M. Hutchison1, Cristine L. Morgan, and C. Tom Hallmark 
1Soil and Crop Sciences, Texas A&M University, College Station, Texas, USA 

 

INTRODUCTION 
Shrinking and swelling soils cause extensive infrastructure and economic damage 

worldwide. Shrink-swell soils are of great concern in Texas for two reasons, 1) Texas 

has the most acreage of shrink-swell soils in the United States, and 2) yearly 

evapotranspiration rates exceed those of precipitation creating optimal conditions for 

soil wetting and drying cycles. This study was conducted to determine if visible near 

infrared diffuse reflectance spectroscopy (VNIR-DRS) can be used to predict the 

coefficient of linear extensibility (COLE) of soils. If successful, VNIR-DRS would 

provide a means to rapidly and inexpensively quantify a soil’s shrink-swell potential 

real-time. Using soils that have been previously analyzed and archived in the Texas 

Agrilife Research Soil Characterization Laboratory, our objectives were to: 1) predict 

the coefficient of linear extractability (COLE) using spectroscopy, 2) predict COLE 

using measurements of total clay and cation exchange capacity (CEC), and 3) 

compare the two models. 

 

 

MATERIALS AND METHODS 
The Texas VNIR-DRS spectral library was created with 2454 oven dried, 2 mm 

ground soil samples, archived by the Texas Agrilife Research Soil Characterization 

Lab. The soils were scanned with a mug lamp connected to an AgSpec® Pro( 

Analytical Spectral Devices, Inc) with a spectral range of 350-2500 nm. Each soil 

sample was scanned twice with a 90° rotation between scans. The spectral data were 

pretreated by splicing, averaging, and taking the 1st and 2nd derivatives. Out of the 

2454 soil samples, only 1236 had COLE, total clay content, and CEC values. These 

1236 were divided into a calibration (70 % of the samples) and a validation set (30 

% of the samples). Using only the calibration data set, models to predict COLE were 

made using soil spectra as predictors and lab measurements as predictors. Measured 

versus predicted values of the validation samples were compared using multiple 

regression. The regression equations were created using laboratory data and 

backward elimination in R. The primary elimination criterion was a p-value of 0.05 or 

less.  Partial least squares (PLS) regression was used to create the COLE prediction 

model using soil spectra. For all validations comparisons, negative COLE values were 

changed to zero before comparison of predicted COLE values to measured COLE 

values. Diagnostics for comparing models included p-value, residuals plots, R2 

values, and simplicity. 

 

 

RESULTS AND DISCUSSION 
Texas has a wide range of geologies, annual temperatures and annual precipitation; 

therefore the soil data base that was scanned is extremely variable in its parent 

material, mineralogy, and other soil formation factors (Godfrey et al., 1973) The 

calibration and validation data had very similar ranges and averages of soil 

properties (Table 1).  

 

 



 

Table 1: Summary statistics for calibration and validation datasets 

Soil  property Units Mean Standard deviation 

calibration samples, n = 862 

COLE† cm cm-1 0.048 0.042 

CEC‡ cmol(+) kg-1 16.43 13.31 

Clay % 26.72 18.95 

validation samples, n= 374 

COLE cm cm-1 0.048 0.042 

CEC cmol(+) kg-1 16.00 13.33 

Clay % 26.46 19.11 

 

 

To meet regression assumptions of normal distribution COLE was transformed into 

the square root of COLE prior to model calibrations. Three soil properties and two 

models were chosen from backward elimination; the first model used total clay 

content and the second model used fine clay content and cation exchange capacity 

(CEC). Based on the literature clay content is highly correlated with COLE (Vaught et 

al, 2006). The total clay and fine clay plus CEC models resulted in R2 values of 0.74 

and 0.75, respectively. The residuals were homoscadastic, and no outliers were 

observed. Though clay content alone was not the best predictor of COLE, soil clay 

content is relatively easy to measure compared to CEC. Hence clay content alone is a 

less expensive alternative for estimating.  While CEC alone had an R2 of 0.69, adding 

total clay to the CEC regression improved residuals. Using the validation data 

(n=374), total clay plus CEC predicted COLE with an RMSD, R2, and RPD value of  

0.02 % clay, 0.74, 1.74 respectively. Total clay alone predicted COLE with an RMSD, 

R2, and RPD value of 0.05 % clay, 0.65, 1.26 respectively (Figure 1). Total clay plus 

CEC predicted COLE better than total clay alone. Including CEC in the model 

probably improved the estimation of COLE because clay mineral type has been 

associated with soil shrink-swell potential and CEC is an indicator of clay type. Clay 

minerals with a higher CEC values, such as smectite, are known to be associated 

with soils of high shrink-swell potentials (Wilding, 1998), while kaolinite soils can 

have high shrink swell potential, they are more associated with low shrink-swell 

potential. Even though CEC and total clay content were able to predict COLE with an 

R2 value of 0.74 there is much laboratory work which has to go into determining both 

the CEC and total clay content of a soil. Both procedures for predicting CEC and total 

clay content can be time consuming and expensive.  

 

Spectroscopy was able to predict COLE with an R2, RMSD, and RPD value of 0.67, 

0.03, and 1.4 respectively. Spectroscopy predicted COLE better than predicting COLE 

with total clay content alone. However, clay content plus CEC predicted COLE better 

than spectroscopy (Figure 1). 



 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Predicted vs. measured COLE values of the validation set (n= 374) for (a) 

total clay content, (b) total clay content plus CEC, and (c) spectroscopy. 

 

CONCLUSION 
Though spectroscopy did not predict as well as the clay plus CEC prediction, scanning 

the soil with spectroscopy is fast, non-destructive, and has fixed costs compared to 

lab measurements of CEC and clay content. One useful way to interpret the 

spectroscopy prediction results is to look at how the prediction errors translate into 

predicting shrink-swell classes. According to the USDA NRCS, soils are classified into 

five shrink-swell classes, from very low to very high (Kariuki et. al. 2003). Given the 

prediction errors of spectroscopy, the results were still useful for classification 

purposes. The spectroscopy prediction error was an RMSD of 0.024 cm cm-1. In other 

words, the spectroscopy predictions will be within 2.4% of the actual COLE value, 

66% of the time. The separation between the moderate, high and very high shrink-

swell classes is greater then 3%. Therefore spectroscopy can correctly classify soils 

into these three shrink-swell classes. Total clay content and CEC prediction of COLE 

had an RMSD of 0.022 cm cm-1. The CEC and total clay content predictions can be 

used to predict COLE within 2.2% of the actual COLE value as compared to the 2.4% 

of the spectroscopy prediction. Taking into consideration the price and size of a 

project, this difference between the two predictions may not be practically 

significant. Our results indicate that VNIR-DRS may be useful in predicting a soils 

shrink-swell potential. We envision using spectroscopy for in situ characterization of 

soils for greater spatial and vertical densities than is practical with conventional soil 

characterization techniques. To make this vision a reality, continued research is 

needed on in situ VNIR-DRS applications. These in situ studies should be careful to 

include a wide range of soil diversity and field conditions.  
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