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Snapshot – Soil Data Mart (1:24,000) Columbia County – Soil Orders and map units



Snapshot – same area Elevation (30 m spatial resolution)

USDA – Digital Elevation Model
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Relate GIS/remote 
sensing landscape
data to soil data 
(regression 
techniques);
upscale regression
model to landscape
scale
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Quantify
spatial 

relationships

GIS / remote sensing layers

Assess
spatial 
structure
(autocorrelation;
soil variability)

Soil samples

combine

Soil predictions across landscape• Regression variants
• CART
• GLM
• Artificial Neural Nets
• Variography / kriging
• Regression, indicator kriging
• Cokriging
• Spatial stochastic simulations

and others



Objective: 
Predict Soil Orders across the Santa Fe River 
Watershed, Florida

Grunwald S., G.W. Hurt, G.L. Bruland, and N.B. Comerford. 2006. SCORPAN-based soil-landscape modeling in north-east Florida. 
World Congress of Soil Science - Frontiers of Soil Science, Philadelphia, Pennsylvania, July 9-15, 2006. 
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SCORPAN 
factors 
derived from 
GIS layers¯0 7.5 15 22.5 303.75
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Soil Orders 
mapped
at 141 sites

+

Regress with each other
(or build a tree model)

Use tree model to predict 
Soil Orders across the 
watershed

Evaluate prediction quality (R2)

GIS



Tree-model to predict Soil Orders

T – Terminal nodes
(mode: CLORPT-lfg; 
bagging with 250 trees)



Results - Prediction performance of Soil Orders
(10 V-fold Cross Validation) 

R2: 0.9

% correct Alfisols: 0.0
% correct Entisols: 50.0
% correct Spodosols: 60.0
% correct Ultisols: 83.3



Predictions 
(30 m resolution)

Soil Orders were predicted covering 
an area of about 81% of the 
watershed with 
16.0% Ultisols, 
40.6% Spodosols, 
15.6% Entisols, 

and 9.2% Alfisols.

NRCS – Soil Data Mart 
(1:24,000)

Coverage of soil orders: 
46.5% Ultisols, 
26.6 % Spodosols, 
16.5 % Entisols, 
4.3 % Histosols, 2.8% Alfisols, 1.0 % 
Inceptisols, and 2.2% Unknown. 



C (mg/kg)
< 500
500 – 1,000
1,000 – 2,000
2,000 – 3,000
3,000 – 4,000
4,000 – 5,000
5,000 – 6,000
6,000 – 7,000
7,000 – 8,000
8,000 – 9,000
9,000 – 10,000 
10,000 – 15,000
15,000 – 20,000
20,000 – 25,000
> 25,000

CC

N (mg/kg)
< 75
75 – 150
150 – 225
225 – 300
300 – 375
375 – 450
450 – 525
525 – 600
600 – 675
675 – 750
750 – 825 
825 – 900
900 – 975
975 – 1,050
> 1,050

NN

Mehl-P (mg/kg)
< 2.5
2.5 – 5.0
5.0 – 7.5
7.5 – 10.0
10.0 – 20.0
20.0 – 30.0
30.0 – 40.0
40.0 – 50.0
50.0 – 60.0
60.0 – 70.0 
70.0 – 80.0
80.0 – 90.0
90.0 – 100.0
100.0 – 1,000.0
> 1,000.0

MehlMehl--PP

Method: Log-Normal Kriging (Soil 0-30 cm)
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L2L2
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VNIR VNIR –– Visible/NearVisible/Near--Infrared SpectroscopyInfrared Spectroscopy

Objectives:

Spectra
Soil
Lab 
Data

Predict soil 
properties
at unsampled
locations

DSM



Spectral scans of 554 soil samples collected in the SFRW at 
4 different soil depths (0-30, 30-60, 60-120 and 120-180 cm)

Mean

Min.

Max.

+ 1 SD

- 1 SD

Wavelength (nm)

Total carbon (TC) [mg kg-1]: 
Minimum =  169
Maximum = 268,995
Median =     4,282 

Vasques G.M., S. Grunwald, and J.O. Sickman. 2008. Comparison of multivariate methods for inferential modeling of soil carbon 
using visible/near-infrared spectra. Geoderma (in press). 

Funded by 
NRCS-CESU



PLSR
(Method: Partial Least Squares Regression)

[pre-processing: Savitzky-Golay 1st-derivative using a 3rd-order polynomial with search
window of 9 (SGF-3-9)] 

CT
(Method: Committee Trees)

[pre-processing: Norris gap derivative with a search window of 7 (NGD-7)] 

Validation ResultsValidation Results

Vasques G.M., S. Grunwald, and J.O. Sickman. 2008. Comparison of multivariate methods for inferential modeling of soil carbon 
using visible/near-infrared spectra. Geoderma (in press). 

Funded by 
NRCS-CESU
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0.1760.860.1900.86PLSR

0.1890.830.2120.83PCR

0.1760.850.1490.91SMLR

RMSEVRv
2RMSECRc

2

ValidationCalibration
Model

[30 pre-processing methods were tested]SMLR: Stepwise multiple linear regression
PCR:    Principal component regression
PLSR:  Partial least squares regression
RT:       Regression tree
CT:       Committee tree

Prediction Performance Prediction Performance –– logTClogTC [mg kg[mg kg--11]]

Vasques G.M., S. Grunwald, and J.O. Sickman. 2008. Comparison of multivariate methods for inferential modeling of soil carbon 
using visible/near-infrared spectra. Geoderma (in press). 

Funded by 
NRCS-CESU



0.1410.650.1590.69SNV-PLSRMC

0.0950.700.0870.88SNV-SMLRSC

0.1080.820.1090.90SAV-PLSRRC

0.2850.400.2180.49SAV-PLSRHC

0.0780.860.0820.93LOG-PLSRTC

RMSEVRv
2RMSECRc

2

ValidationCalibration
Best modelSOC and 

fractions

LOG: Log (1/Reflectance) 
SAV: Savitzky-Golay smoothing, and averaging
SNV: Standard normal variate transformation  

Vasques G.M., S. Grunwald and J.O. Sickman. 2008. Visible/near-infrared spectroscopy modeling of dynamic soil carbon fractions.
Soil Sci. Soc. Am. J. (in press).

Prediction Performance Prediction Performance –– Soil 0Soil 0--30 cm (n: 141)30 cm (n: 141)
Log TC and carbon fractions [mg kgLog TC and carbon fractions [mg kg--11]]

TC: Total organic carbon
HC: Hydrolysable carbon (after digestion with 6N HCl) - Thermo Electron FlashEA Elemental Analyzer
RC: Recalcitrant carbon was calculated as the difference between TOC and HC
SC: Hot water soluble organic carbon
MC: Mineralizable organic carbon  



Implications Implications -- OutlookOutlook

Florida Spectral Library 
(USDA-NRI)

Global Spectral Library Project
Pedometrics DSM – Soil Spectroscopy Group
(Viscarra Rossel et al., 2008)

~ 27 countries are participating, 
incl. UF GISSoil Group

• Accurate and rapid soil predictions of various properties (C, N, P, texture, etc.)
• Cheaper when compared to traditional analytical techniques
• On-the-go and in-situ VNIR 
• Combinations of VNIR and other soil sensors



Objective: 
Upscaling of site-specific soil data to landscape 
scales using statistical, geostatistical and mixed 
models

Rivero R.G., S. Grunwald, and G.L. Bruland. 2007. Incorporation of spectral data into multivariate geostatistical models to map soil 
total phosphorus variability in a Florida wetland. Geoderma, 140: 428-433. 
Rivero R.G., S. Grunwald, T.Z. Osborne, K.R. Reddy and S. Newman. 2007. Characterization of the spatial distribution of soil 
properties in Water Conservation Area-2A, Everglades, Florida. Soil Sci., 172(2): 149-166.



Water 
Conservation 
Area 2A, 
Everglades
(43,281 ha)

Soil total 
phosphorus 
(TP) 0-10 cm

n: 111

SiteSite--specific Soil Dataspecific Soil Data



ASTER satellite image (15 m)
14 spectral bands from visible to 
thermal infrared

Normalized Difference 
Vegetation Index (NDVI)
• Chlorophyll content
• Amount of green biomass

Remote Sensing DataRemote Sensing Data



(1) Ordinary Kriging
using 111 TP 
site observations

(3) Regression Kriging
using 111 TP 
site observations &
satellite imagery &
ancillary environmental
GIS data

(2) Co-Kriging
using 111 TP 
site observations &
satellite imagery

TP obser-
vations
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Soil Grids

Satellite 
images
(Aster &
Landsat
ETM) 

Various
spectral
indices & GIS data



Soil TP
Ordinary 
Kriging

Soil TP
Regression 
KrigingASTER

Soil TP
CokrigingLandsat

Soil (0-10 cm)
TP (mg kg-1)

Cross-validation:
ME:       -41.8
RMSE: 257.5

ME:          0.2
RMSE: 238.8

ME:         -5.2
RMSE: 200.1

Total Phosphorus Grids (Predictions)Total Phosphorus Grids (Predictions)



Impacted Soil TP (mg kg-1)



Minimum Mean Maximum

Std.dev.

…..

S1
S2

S3

S4 S100

Simulated fields

Method: Conditional Sequential Gaussian Simulation

Grunwald S., R.G. Rivero and K.R. Reddy. 2007. Understanding spatial variability and its application to biogeochemistry analysis. In Sarkar D., Datta R. and R. 
Hannigan (eds.), Concepts and Applications in Environmental Geochemistry, Elsevier, Chapter 20, pp. 435-462.

Uncertainty Uncertainty 
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Grunwald S., T.Z. Osborne and K.R. Reddy. 200_. Temporal trajectories of phosphorus and pedo-patterns mapped in Water 
Conservation Area 2, Everglades, Florida, USA. Geoderma (in press). 

SpaceSpace--Time Trajectory Analysis Time Trajectory Analysis 
(1998(1998--2003)2003)

Error assessment
TP predictions:

Year Layer ME RMSE 
(mg kg-1)

1998 Floc -0.132 561.0
Soil -0.824 247.5

2003 Floc 0.461 206.3
Soil 0.467 253.1



• Soil AND environmental data analysis 

• Various methods to develop soil prediction models

• Focus on soil grids (raster) that map the

underlying soil-landscape variability

• Error analysis - evaluation of quality of soil 

predictions



• UF GISSoil Group will continue to test, compare
and develop DSM in terrestrial and aquatic 
soil-landscapes to improve their prediction qualities  
and accuracies

• Use new, higher resolution remote sensors to 
investigate spatial scaling behavior to generate 
accurate and cost-effective soil prediction models

→→ DSM DSM 

↔ Partners & Cooperators



Menace?
Myth?
Miracle?

Is there a Universal Soil Equation?  Is there a Universal Soil Equation?  

Soil = SCORPAN

→→ DSM DSM 



• Transpose site-specific soil properties and processes 
into landscapes

• Understand soil patterns, spatial variability and 
covariation with environmental landscape properties

…. tremendous opportunities


