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Programme

10.00 – 11.00 Probabilistic modelling of
uncertainty

11.00 – 11.30 Coffee break
11.30 – 12.30 Multivariate uncertainty
12.30 – 13.30 Lunch
13.30 – 15.00 Spatial uncertainty
15.00 – 15.30 Coffee break
15.30 – 16.30 Uncertainty quantification for

GlobalSoilMap
16.30 – 17.00 Discussion (or Uncertainty Game!?)



PART I: PROBABILISTIC
MODELLING OF 
UNCERTAINTY



Is this map error-free?

Organic Carbon content 
A horizon (g/kg)



Common error sources

• Measurement errors
• Interpretation errors
• Digitization errors
• Classification errors
• Generalisation errors
• Interpolation errors



Error = difference between reality and our 
representation of reality
• Suppose map says OC=35 g/kg at some 

location, while true value = 57 g/kg, then 
there will be no disagreement that in this case 
the error = 57 – 35 = 22 g/kg

• Other example: number of people in this 
building

• Or: mean temperature Lincoln, Monday next 
week (my guess: 77F = 25C)

• Problem: we usually do not know the error 
(because if we did, we would eliminate it!)



We usually do not know the error

• But in many cases we do know something:
- We may know that the error has equal chance of being 

positive or negative, it can go either way
- We may know that it is unlikely that the absolute value of 

the error is greater than a given threshold

• In other words, we are uncertain about the 
true value but not completely ignorant



What is uncertainty?

• Uncertainty arises when we are not sure about the ‘true’ 
state of the environment; it is an expression of 
confidence based on limited knowledge

• Uncertainty is an acknowledgement of error: we are 
aware that our representation of reality may differ from 
reality and express this by being uncertain

• Uncertainty is subjective; one person can be more 
uncertain than another

• In the presence of uncertainty, we cannot identify a 
true ‘reality’.  But perhaps we can identify all possible 
realities and a probability for each one

• Example: temperature Lincoln, Monday next week



Uncertainty can be described statistically with a 
probability distribution function (pdf)



The pdf characterizes uncertainty 
completely, it is all we need
• It is usually parametrized and thus reduced to 

a few parameters such as the mean and 
standard deviation

• Common parametrizations: normal, lognormal, 
exponential, uniform, Poisson, etc.

• The normal distribution is the easiest to deal 
with and luckily it also follows from the Central 
Limit Theorem
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Accuracy and precision

• Accuracy = degree to which a representation 
of reality is close to reality ( inverse of error)

• Precision = degree to which repeated 
measurements under unchanged conditions 
show the same results



EXERCISE 1

How many US$ in cash are in this 
room?
1. Make a guess
2. How good is your guess? Specify lower and 

upper limit of 90%-confidence interval
3. Even more informative: draw a pdf
4. We’ll check at the end how often the true 

value lies within your confidence intervals 
(should be about 9 out of 10 times)



PART II: MULTIVARIATE 
UNCERTAINTY



We often need the joint uncertainty of 
multiple variables:

• Temperature and humidity in Lincoln, Monday 
next week

• Temperature Lincoln on Monday and Tuesday 
next week

• Soil pH and Organic Carbon at some location
• Soil pH at 0-5 cm and 5-15 cm depths
• Soil pH at location x1 and location x2

• Soil pH at x1 and Organic Carbon at x2

• Extension to >2 variables also needed



Uncertainty quantification temperature 
Lincoln, Monday and Tuesday next week
• We need a (marginal) pdf for both variables, 

but that is not enough!
• The uncertainties are correlated: if 

temperature on Monday is greater than 
expected, then on Tuesday it will likely be the 
same

• We need a bivariate pdf that also specifies the 
correlation between the uncertain variables

• Let us take a closer look for the bivariate 
normal distribution



Graphical illustrations



Mathematical formulation

• So, under normality, we need a vector of means 
and a variance-covariance matrix R

• R characterized by the variances of the uncertain 
variables and their correlation coefficients

• In principle easy to extend from bivariate case to 
multivariate case (with ݉ uncertain variables)

• However, note that this requires ଵ
ଶ
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correlation coefficients

݂ ݖ ൌ
1

ሺ2ߨሻ
௠
ଶ ܴ

ଵ
ଶ
exp	ሾെଵ

ଶ ௭ିఓ ೅ோషభሺ௭ିఓሻሿ



Risky to ignore the correlations

• Uncertainty propagation analysis that uses 
multiple uncertain inputs may yield incorrect 
results:
- Example 1: Degree of pollution = 13  Cd + Pb. How 

does the correlation between uncertainty about Cd 
and Pb influence uncertainty in degree of pollution?

- Example 2: Plant water availability = water content 
at field capacity – water content at wilting point. 
How does the correlation influence uncertainty? 



EXERCISE 2

How does the correlation in uncertain Organic 
Carbon and Nitrogen influence the C/N ratio?
• Assume ܥ~ܰ ߤ ൌ 80, ଶߪ ൌ 15ଶ , 	ܰ~ܰሺߤ ൌ 3, ଶߪ ൌ 0.6ଶሻ
• Calculate pdf C/N ratio for =0, 0.5 and 0.8 and 

compare results
• Use Monte Carlo simulation because analytical 

solution difficult



Presence of correlation can also be turned 
to our advantage
• When variables X and Y are correlated, then 

knowledge about X helps to know Y
• Conditional (normal) distribution:

• Also exploited in regression:
- Pedo-transfer functions that predict an expensive variable 

from cheap ones
- Digital soil mapping relates soil properties to 

geomorphometric parameters and remote sensing data
- Predicting shoe size from height for Wageningen 

University students
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variance reduction!!



Wageningen students willing to provide 
their personal data:
nr height shoe size

1 188 44
2 193 42
3 179 42
4 190 47
5 193 44
6 183 42
7 178 44
8 172 44
9 185 46

10 176 42
11 174 43
12 185 44
13 179 41
14 188 41
15 176 40



Knowing height reduces uncertainty 
(variance) about shoe size with 50 per cent



PART III: SPATIAL
UNCERTAINTY



The spatial case may be seen as a 
multivariate case
• Each location has a variable, the collection of 

all locations (e.g., the nodes of a grid) yields a 
(very large) vector of variables

• All we need is a vector of means and a 
variance-covariance matrix (again assuming 
normality)

• However, these are too many parameters to 
be estimated from the limited information that 
is typically available

• We need an assumption: stationarity



Stationarity assumption

• Assume that the mean and variance are 
constant, and that spatial correlation only 
depends on separation distance between 
locations

• Gross simplification but can be relaxed (later)
• Variance and correlation function are captured 

by the semivariogram, the key tool of 
geostatistics

• Mean and semivariogram can reliably be 
estimated from 60 observations



Typical shape of the semivariogram, with 
parameters

sill

nugget

range



It is good to know which spatial pattern 
corresponds with which semivariogram



Example 1: a possible ‘reality’



Example 2: second reality



Example 3: third reality



Example 4: fourth reality



Realisations are a random sample from 
the imposed pdf: parameters reproduced



Conditioning to point observations

• Just like we can condition shoe size to height 
we can also condition the value of a spatial 
variable at any location to observations at 
measurement locations

• This is done with kriging: no need to explain
• It will reduce uncertainty in the neighbourhood 

of the measurement locations, provided there is 
spatial correlation

• The conditional pdf is complicated (no longer 
stationary), but we don’t need it in explicit form



Conditioning reduces uncertainty



Conditioning reduces uncertainty



Uncertainty can also be reduced by 
including covariate information

• Many variables, including soil properties, are 
correlated with exhaustively available covariates 
(DEM and derivatives, remote sensing imagery)

• We can use these to drop the constant-mean 
assumption and include a trend

• Simplest with multiple linear regression, but 
alternatives are CART, ANN, RF or even 
mechanistic models

• The trend will explain part of the spatial variability 
and hence reduce the interpolation error



Regression kriging

Soil depth(s) =
0 + 1elevation(s) + 2slope angle(s) + 

3vegetation density(s) + 
4upstream area(s)

+ residual (s)

trend, explanatory part
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dependent, target variable
stochastic residual, unexplanatory 
part, can be spatially correlated!

Unlike ordinary kriging, in regression kriging the trend is no 
longer constant but a function of  ’explanatory’ variables, for 
example:



1. select explanatory variables and fit regression model 
(estimate regression coefficients)

2. compute residuals (by subtracting the fitted trend 
from the observations) at observation locations and 
compute from them a semivariogram

3. apply the regression model to all unobserved 
locations (usually a grid)

4. krige the residuals
5. add up the results of steps 3 and 4

Regression kriging algorithm



Example from Hengl et al. (Geoderma, 2004): predicting 
soil depth for a 50 × 50 km area in Croatia



observations

regression only

soil map only
predictor

regression
kriging

ordinary
kriging

Results using various interpolation methods



Validation on 35 independent observations



Summary spatial uncertainty 
quantification
• As before, all we need is a probability distribution 

function (pdf), nothing new there
• The pdf is complex, even if we assume multivariate 

normality we still need a large vector of means and a 
huge variance-covariance matrix

• Solution is to assume stationarity, this brings 
parametrization down to a scalar mean (or known 
trend in covariates) and a semivariogram

• Information in observations will narrow down the pdf, 
this is achieved by kriging

• Resulting pdf will again be complex but we do not need 
it in explicit form



EXERCISE 3 (can skip if running out 
of time)
Topsoil lead concentration of 
river Geul valley, Netherlands
• Build geostatistical model
• Use kriging to condition to 

observations
• Show uncertainty with 

kriging standard deviation 
and conditional simulations

• Calculate area for which 
P(Pb>250 mg/kg)<0.05



PART IV: UNCERTAINTY
QUANTIFICATION FOR
GLOBALSOILMAP



Most of it covered in Part III (spatial 
uncertainty quantification)

• However, we need a 3D extension
• We must also take cross-correlations between 

multiple soil properties into account
• And then there are three more issues that 

deserve attention too: unambiguous definition 
of soil property, support and expert elicitation

• Conclude with three approaches to uncertainty 
quantification for the GlobalSoilMap project



3D modelling, two basic approaches:

• True-3D: include depth as a third 
dimension
- Requires a semivariogram that characterizes 

spatial variation in lateral and vertical direction
- There will be zonal and geometric anisotropies

• Pseudo-3D: treat 3rd dimension as a stack of 
layers (in GlobalSoilMap we have six)
- Model the layers one by one or better jointly (see cross-

correlation approach hereafter)
- Requires observations for each layer: in deeper layers often 

fewer observations



Cross-correlation between multiple soil 
properties
• Standard geostatistical 

solution: cokriging
• Doable as long as the number 

of correlated variables is not 
too large (say up to 15?)

• Kriging prediction and 
standard deviation maps 
perhaps do not change that 
much, but joint simulations 
do: important for uncertainty 
propagation analysis (recall 
C/N ratio exercise!)



Three more issues (1/3)

1. We need unambiguous definitions of soil 
properties

- pH(H2O)pH(KCl)pH(CaCl), and that is one of the easy 
ones, Organic Carbon can be measured in so many ways

- GlobalSoilMap is very aware of the problem and has 
decided on a standard for all soil properties considered

- But metadata do not always specify the measurement 
method and conversion from one method to another not 
always easy

- This all augments to the uncertainty, perhaps it can be 
addressed as follows: assign larger ‘measurement’ errors 
to these type of observations?



Three more issues (2/3)

2. We need to match the ‘support’ of soil 
observations

- Bulk sampling yields observations that have less variation 
than point observations: observations at different 
supports cannot be merged into one dataset unless the 
change of support is taken into account

- Equally holds for the vertical: we cannot merge 
observations from 0-5cm with observations from 0-10cm

- Spline fitting in the allows for change of support in the 
vertical and can hence solve the problem, but we ought 
not ignore the spline interpolation error (a spline 
interpolation cannot replace a real measurement)

- Perhaps regularization theory provides a better solution



Three more issues (3/3)

3. We may need to resort to expert 
elicitation of uncertainties

- Ideally we quantify uncertainty using 
real data (such as we do in kriging), 
but sometimes there are no data or 
there are not enough data

- Expert elicitation is a mature research 
field which provides a sound scientific 
basis to reliably and consistently 
extract knowledge from experts

- It is cumbersome and cannot replace 
inference using real data but it 
deserves more attention



Three approaches to uncertainty 
quantification of GlobalSoilMap products
1. Geostatistical modelling of soil properties

- This is what we did in this short course: use the point 
data and covariates to build a geostatistical model that 
renders a spatial multivariate pdf that automatically 
captures the uncertainty (‘free’ by-product)

2. Geostatistical modelling of errors in existing 
(legacy) soil property maps

- Similar as above with an important difference that an 
existing map is taken as is and uncertainty modelling 
focuses on the error in that map

3. Validation with independent data
- Not yet discussed, it does not yield a full-statistical 

model of uncertainty but has some attractive properties



Validation with independent data

• Useful if (geo)statistical modelling is infeasible or 
unwanted because of the many assumptions

• Provides ‘model-free’ estimates of summary 
measures of the accuracy, such as the Mean Error 
and Root Mean Squared Error

• These measures can only be estimated because we 
have only a (small) sample from the whole area

• Estimation errors can be quantified if the sample is 
a probability sample, such as a simple random 
sample or a stratified random sample



Validation with independent data

• Validition with non-probability samples is more 
common but does not allow proper quantification 
of estimation errors

• Cross-validation also falls under this category, as 
does validation with legacy data

• In any case, the data must be truly independent, 
otherwise we might get a false sense of security

• Validation data should also be sufficiently 
accurate: measurement errors should be small 
compared to the errors in the map that is 
validated, or else must be taken into account



EXERCISE 4

Validation of OC and peat 
thickness maps for part of the 
Drenthe province, Netherlands
• Overlay validation data with 

soil prediction map
• Estimate ME and RMSE
• Calculate confidence 

intervals

OC

Peat



Pros and cons of the three approaches
approach advantages disadvantages
geostatistical 
modelling of soil 
properties

full characterization of 
uncertainty with spatial 
multivariate probability 
distribution; reproducible; 
flexible with respect to 
new data or different 
output formats

only valid under the 
assumptions made; cannot 
accomodate all soil 
mapping approaches; can 
be computationally 
demanding

geostatistical 
modelling of 
errors in existing 
soil property maps

attractive when soil 
property maps have 
already been prepared; no 
restrictions on the way 
that soil property maps 
are made

requires independent data 
that cannot be used for soil 
mapping; takes maps as 
they are and does not try 
to improve them

independent 
validation

makes no model 
assumptions; fairly easily 
applied

provides only a summary 
measure of uncertainty; 
requires that soil property 
maps have been prepared; 
requires independent 
validation data



THANK YOU
That’s it


