Ranking Criteria for NRCS Programs - Fiscal Year 2024

Application Overview

Any applicant may apply for participation in the Agricultural Conservation Easement Program (ACEP). The NRCS State Conservationist or Area Director, in consultation with the State Technical Committee, Tribal Conservation Advisory Councils, Local Work Groups, and other stakeholders, has developed the following ranking criteria to prioritize and select applications that best address the applicable program purposes and priority natural resource concerns in the Pacific Islands Area.

The NRCS State Conservationist or Area Director will establish application batching periods and select the highest ranked applications for funding, based on applicant eligibility and the NRCS ranking process. In Fiscal Year 2024, NRCS will use the Conservation Assessment Ranking Tool (CART) to assess and rank all eligible applications for NRCS conservation programs.

Inventory and Assessment in CART

CART is a decision support system designed to provide a consistent, replicable framework for the conservation planning process based on geospatially referenced information, client-provided information, field observations and NRCS conservation planner expertise. CART is designed to assist NRCS conservation planners as they assess site vulnerability and existing conditions and identify natural resource concerns for a unit of land.

CART assessments of existing management and conservation efforts are compared against conservation planning criteria thresholds to determine the additional level of conservation efforts needed to address identified natural resource concerns. NRCS uses the results to identify conservation planning activities for the client. NRCS also uses CART to consolidate resource data and program information to prioritize program delivery and report outcomes of NRCS investments in conservation.

In general, resource concerns fall into one of three categories for the assessment method used in CART to assess and document a resource concern:

- Client Input/Planner Observation: A streamlined list of options is presented to the planner to document the client's activities and the planner's observation of the resource concerns. These observations are compared to the conservation planning criteria thresholds.
- **Procedural/Deductive:** A large group of resource concerns fall into this category and are assessed using a resource concern-specific evaluation tool or a list of inventory-like criteria. Due to the variability in State tools, assessment questions and answers will be broad in nature to allow States to align them with State conditions.
- **Predictive:** The remaining resource concerns are assessed using a predictive interactive model simulation. The CART systems attempt to replicate the outcomes related to the assessment threshold outcomes compared to the model outputs.

After identifying resource concerns and describing existing conditions, planned conservation practices and activities can be added to the existing condition to determine the state of the proposed management system. Practices that are needed to support primary conservation practices and activities are also identified, but do not add conservation management points to the total.

If the client is interested in financial assistance through an NRCS conservation program, the inventory and assessment information, along with client decisions related to conservation practice adoption, are directly and consistently transferred from the assessment portion of CART to the ranking portion of CART. Based on the transferred assessment information and the conservation practices proposed for implementation, CART identifies the appropriate program ranking pool(s).

In general, NRCS program ranking criteria uses the following guiding principles:

- Degree of cost-effectiveness of the proposed conservation practices and activities;
- The level of performance of proposed conservation practices and activities;
- Treatment of resource concerns or national priority resource concerns;
- Magnitude of the environmental benefits resulting from the treatment of resource concerns reflecting the level of performance of the proposed conservation practices and activities; and
- Compliance with Federal, State, local, or tribal regulatory requirements with regards to natural resources.

CART uses a set of National Ranking Templates developed for each NRCS program and initiative. The National Ranking Templates contain four parameters that are customized for each program to reflect the national level ranking criteria. The four parameters are:

- 1. **Land Uses** NRCS has developed land use designations to be used by planners and modelers at the field and landscape level. Land use modifiers more accurately define the land's actual use and provide another level of specificity and help denote how the land is managed. Land use designations and modifiers are defined in Title 180, National Planning Procedures Handbook, Part 600.
- 2. **Resource Concerns** The resource condition that does not meet minimum acceptable condition levels as established by resource planning criteria. This implies an expected degradation of the soil, water, air, plant, or animal resource base to the extent that the sustainability or intended use of the resource is impaired. Because NRCS quantifies or describes resource concerns as part of a comprehensive conservation planning process, which includes client objectives, human and energy resources are considered components of the resource base.
- 3. **Practices** A specific treatment used to address resource concerns, such as structural or vegetative measures, or management techniques that are planned and implemented in accordance with applicable standards and specifications.
- 4. **Ranking Component Weights** A set of five components comprise the ranking score for an individual land-based assessment. The five components are:
 - a. **Vulnerability** Site vulnerability is determined by subtracting the existing condition and existing practice scores from the thresholds. This score is weighted by ranking pool to address the resource concerns prioritized by that ranking pool.
 - b. **Planned Practice Effects** The planned practice effect score is based on the sum of the planned practice on that land unit that addresses the resource concern. This score is weighted by ranking pool to address the resource concerns prioritized by that ranking pool.
 - c. **Resource Priorities** National and State resource priorities are established to address the most critical land and resource considerations and are based on NRCS national and State priorities identified with input from national, State, and local stakeholders.
 - d. **Program Priorities** National and State program priorities are established to maximize program effectiveness and advance program purposes and are based on NRCS national and State priorities identified with input from national, State, and local stakeholders.
 - e. **Cost Efficiency** Summation of 'Planned Practice Points' divided by the log of the 'Average Practice Cost'.

NOTE: The points for vulnerability, planned practice effects, and cost efficiency are garnered from the assessment portion of CART.

The Pacific Islands Area created State-specific ranking pools within the above-described National Ranking Template parameters. The State ranking pools contain a set of questions that are divided into the following sections – applicability, category, program questions, and resource questions. Ranking pool

customization allows States to focus funding on priority resource concerns and initiatives identified at the State level with input from NRCS stakeholders. Each eligible application may be considered for funding in all applicable ranking pools by program.

NRCS Resource Concerns

The following table lists the 47 resource concerns NRCS uses during the Conservation Planning process.

Categories	NRCS Resource Concerns
Soil	1. Sheet and rill erosion
	2. Wind erosion
	3. Ephemeral gully erosion
	4. Classic gully erosion
	5. Bank erosion from streams, shorelines, or water conveyance channels
	6. Subsidence
	7. Compaction
	8. Organic matter depletion
	9. Concentration of salts or other chemicals
	10. Soil organism habitat loss or degradation
	11. Aggregate instability
Water	12. Ponding and flooding
	13. Seasonal high-water table
	14. Seeps
	15. Drifted snow
	16. Surface water depletion
	17. Groundwater depletion
	18. Naturally available moisture use
	19. Inefficient irrigation water use
	20. Nutrients transported to surface water
	21. Nutrients transported to groundwater
	22. Pesticides transported to surface water

	23. Pesticides transported to groundwater
	24. Pathogens and chemicals from manure, biosolids, or compost applications
	transported to surface water
	25. Pathogens and chemicals from manure, biosolids, or compost applications
	transported to groundwater
	26. Salts transported to surface water
	27. Salts transported to groundwater
	28. Petroleum, heavy metals, and other pollutants transported to surface water
	29. Petroleum, heavy metals, and other pollutants transported to groundwater
	30. Sediment transported to surface water
	31. Elevated water temperature
Air	32. Emissions of particulate matter (PM) and PM precursors
	33. Emissions of greenhouse gasses (GHGs)
	34. Emissions of ozone precursors
	35. Objectionable odors
	36. Emissions of airborne reactive nitrogen
Plants	37. Plant productivity and health
	38. Plant structure and composition
	39. Plant pest pressure
	40. Wildfire hazard from biomass accumulation
Animals	41. Terrestrial habitat for wildlife and invertebrates
	42. Aquatic habitat for fish and other organisms
	43. Feed and forage imbalance
	44. Inadequate livestock shelter
	45. Inadequate livestock water quantity, quality, and distribution
Energy	46. Energy efficiency of equipment and facilities
	47. Energy efficiency of field operations

Program-Specific Information

The following questions are included in the "Program Questions" section of the PIA ACEP FY24 ranking pools for Agricultural Land Easements (ALE) and Wetland Reserve Easements (WRE).

Program Questions for ACEP-ALE Statewide Rank Pool

- 1. Percent of prime, unique, and important soils in the parcel to be protected.
- 2. Percent of cropland, rangeland, grassland, historic grassland, pastureland or nonindustrial private forest land in parcel to be protected.
- 3. Ratio of the total acres of land in the parcel to be protected to the average farm size in the county according to the most recent USDA Census of Agriculture. (USDA NASS Census of Agriculture)
- 4. Decrease in the percentage of acreage of farm and ranch land in the county in which the parcel is located between the last two USDA Censuses of Agriculture. (USDA NASS Census of Agriculture)
- 5. Decrease in the percentage of acreage of permanent grassland, pasture and rangeland, other than cropland and woodland pasture, in the county in which the parcel is located between the last two USDA Censuses of Agriculture. (USDA NASS Census of Agriculture)
- 6. Percent population growth in the county as documented by the most recent United States Census. (Census Bureau Home Page)
- 7. Population density (population per square mile) as documented by the most recent U.S. Census.

- (Census Bureau Home Page)
- 8. Existence of a farm or ranch succession plan or similar plan established to address agricultural viability for future generations.
- 9. Proximity of the parcel to other protected land, such as compatible military installations; land owned in fee title by the United States or an American Indian tribe, State or local government, or by a nongovernmental organization whose purpose is to protect agricultural use and related conservation values; or land that is already subject to an easement or deed restriction that limits the conversion of the land to nonagricultural use or protects grazing uses and related conservation values.
- 10. Proximity of the parcel to other agricultural operations and agricultural infrastructure.
- 11. Parcel ability to maximize the protection of continuous or proximal acres devoted to agricultural use.
- 12. Currently enrolled in CRP in a contract that is set to expire within a year.
- 13. The parcel is a grassland of special environmental significance that would benefit from protection under a long-term easement.

Program Questions for ACEP-WRE Statewide Rank Pool

- 1. Restoration Cost Effectiveness: The total estimated restoration cost per acre that will be borne by NRCS per the preliminary restoration plan.
- 2. Restoration Cost-Benefit: Calculate cost per environmental benefit ratio. Restoration cost per acre ÷ Environmental Benefits points = Cost-Benefit Ratio.
- 3. Percent the landowner, another person, or entity is offering to contribute financially to the cost of the easement or other interest in the land to leverage Federal funds.
- 4. Percent cost-share contribution by landowner or other conservation partner to the Wetland Reserve Plan of Operations restoration.
- 5. Extent to which ACEP-WRE Purposes are Achieved: High probability of restoring wetland functions and values that benefits migratory birds and other wetland-dependent wildlife.
- 6. Productivity of Offered Land: What amount of the land offering is classified as prime, unique, state-wide or locally important farmland?
- 7. On-Farm or Off-Farm Environmental Threats: Are current production practices on the offered land creating on-site or off-site environmental impacts (e.g. sedimentation, pesticide drift, water quality impacts) that could be alleviated by easement acquisition and restoration?