DEFINITION
A channel that has a supporting ridge on the lower side, constructed across the slope at defined gradient and horizontal or vertical interval, with or without a vegetative barrier.

PURPOSE
To safely control the flow of water by diverting runoff from upland sloping areas to a stable outlet.

CONDITIONS WHERE PRACTICE APPLIES
This practice applies to steeply sloping sites where surface flow is damaging sloping upland, and there is sufficient soil depth for constructing a hillside ditch system. Hillside ditches shall not be used to provide protection to buildings, roads, or other improvements.

CRITERIA
Location. Locate hillside ditch systems to fit land conditions, soil texture, and field slope, and to drain to a stable outlet.

Outlets. Locate or establish adequate outlets prior to the construction of hillside ditches, with enough capacity to dispose of discharged water without creating an erosion hazard. An outlet may be a grade control structure, a natural or constructed waterway, a stable watercourse, or a stable disposal area such as a well-established pasture. Criteria for grassed waterways are found in NRCS Conservation Practice Standard, Grassed Waterway (412).

Length. The maximum allowable length of ditch draining in one direction is 400 feet, unless an extension is necessary to reach a stable outlet. In no case shall a ditch exceed 500 feet in length.

Permissible velocities. Design the ditch to be compatible with the erosion resistance characteristics of soils of the site.

Maximum channel velocities shall not exceed those recommended in NRCS National Engineering Handbook, Part 650, Engineering Field Handbook, Chapter 9, Diversions.

Horizontal spacing
Use Table 1 to determine the maximum horizontal spacing.

<table>
<thead>
<tr>
<th>Land Slope (percent)</th>
<th>Maximum Spacing (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td><12</td>
<td>40</td>
</tr>
<tr>
<td>12-25</td>
<td>35</td>
</tr>
<tr>
<td>25-40</td>
<td>25</td>
</tr>
<tr>
<td>>40</td>
<td>20</td>
</tr>
</tbody>
</table>

Capacity
At a minimum, hillside ditches shall safely carry the peak discharge from a 10-year frequency, 24-hour duration, rainfall event.

CONSIDERATIONS
When planning this practice, consider the following as applicable:

Conservation practice standards are reviewed periodically, and updated if needed. To obtain the current version of this standard, contact your Natural Resources Conservation Service State Office, or visit the Field Office Technical Guide.
Effects upon components of the water budget, especially effects on volumes and rates of runoff, infiltration, evaporation, transpiration, deep percolation, and ground water recharge.

Filtering effects of vegetation on movement of sediment and dissolved and sediment-attached substances.

Short-term and construction-related effects of this practice on the quality of downstream water.

Steep fields with sandy soils may benefit more from NRCS Conservation Practice Standard, Vegetative Barrier (601), than from hillside ditches.

Potential for development of saline seeps or other salinity problems resulting from increased infiltration in the presence of restrictive layers.

Potential to affect significant cultural resources.

PLANS AND SPECIFICATIONS

Plans and specifications for constructing hillside ditches shall be in keeping with this standard and shall describe the requirements for applying the practice to achieve its intended purpose.

The plan shall specify the locations, grades, dimensions, quantities, and materials requirements for the hillside ditch. Provisions must be made for necessary maintenance.

OPERATION AND MAINTENANCE

An Operation and Maintenance plan shall be prepared for use by the landowner or operator. The plan shall include provisions to address the following, as a minimum:

Maintain hillside ditch capacity, ridge height, and the outlet capacity.

Remove vegetative growth or debris interfering with the proper functioning of the ditch, as necessary.

Remove debris interfering with the outlet operation, as necessary.

Maintain well-established vegetation in the outlet at all times, to provide stability.

Maintenance and repairs should be done on a routine basis with special emphasis on inspection as soon as possible after heavy rainfall events. Sediment accumulated in the ditches shall be removed and disposed of properly, as needed, to maintain the required minimum cross section and grade.

REFERENCES

NRCS, NHCP

May 2008